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Abstract: High-dimensional data, lower detection accuracy, susceptibility to 
manual errors, and the requirement of clinical experts are some drawbacks of 
conventional classification models available for Autism Spectrum Disorder 
(ASD) detection. To address these challenges and explore the affiliated 
information from advanced imaging modalities such as Magnetic Resonance 
Imaging (MRI) in structural MRI (sMRI) and resting state-functional MRI (rs-
fMRI), the study applied an Artificial Intelligence (AI) approach. In this 
context, AI is used to automate the feature extraction process, which is crucial 
in the interpretation of medical images for diagnosis. The work aims to apply 
AI-based techniques to extract the features and identify the impact of each 
feature in the Autism diagnosis. The morphometric features were extracted 
using sMRI images and rs-fMRI scans were employed to fetch functional 
connectivity features. Surface-based, region-based, and seed-based analyses 
are performed for the whole brain, followed by feature selection techniques 
such as Recursive Feature Elimination (RFE) with correlation, Principal 
Component Analysis (PCA), Independent Component Analysis (ICA), and 
graph theory are implemented to extract and distinguish features. The 
effectiveness of the extracted features was measured as classification accuracy. 
Support Vector Machine (SVM) with RFE is the best classification model, with 
88.67% accuracy for high-dimensional data. SVM is a supervised learning 
model that outperforms other classification models due to its capability to 
handle high-dimensional data with a larger feature set. Medical imaging 
modalities provide detailed insights and visual differences related to various 
cognitive conditions that must be recognized accurately for efficient diagnosis. 
The study presented an empirical analysis of various Feature extraction 
approaches and the significance of the extracted features in high-dimensional 
data scenarios for Autism classification. 
 
Keywords: Autism Spectrum Disorder, Artificial Intelligence, Feature 
Extraction, MRI, Structural MRI, Functional MRI 

 
Introduction 

Autism Spectrum Disorder (ASD) is a 
neurodevelopmental disorder that restricts the natural 
development of children by affecting their 
communication and social behavior (Genovese and 
Butler, 2020). Autism occurs in the very early stages of 
life and children with autism are characterized by 
repetitive behavior, restricted interaction, and 
communication. This symptomatic variation makes it 
challenging for autistic individuals to perform routine 
tasks (Huang et al., 2017; Randall et al., 2018). Early 
diagnosis of ASD is essential to minimize the adverse 

consequences to the patients and help the professionals 
and caretakers plan therapies and treatment plans 
(McCarty and Frye, 2020). However, the accurate 
diagnosis of autism can be challenging due to the varying 
symptoms and attributes (Jacob et al., 2019). Continuous 
and persistent occurrence of a diverse range of symptoms 
is difficult to diagnose accurately. At present, multiple 
tools and observational measures are available to assess 
ASD-related behaviors. For example, the Autism 
Diagnostic Observation Schedule (ADOS) is widely used 
for diagnosis (Adamou et al., 2018), while other 
instruments—such as the Autism Observation Scale for 
Infants (AOSI) (Reid et al., 2024), the Social Orienting 
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Continuum and Response Scale (Mosconi et al., 2009), 
and the Early Social and Communication Scales 
(Wetherby et al., 2021) serve as research tools to observe 
early indicators of ASD but are not diagnostic in nature. 
Diagnosis requires manual efforts and expertise, which 
vary based on the experience, information given by the 
parent, and the individual's behavior, as well as 
observations. Physicians use clinical biomarkers for the 
early diagnosis of ASD. However, these biomarkers are 
insufficient for the early identification of ASD since the 
patterns of the disease vary for each individual. Recent 
studies have successfully employed computer-aided 
techniques using various data modalities, such as 
Electroencephalogramgram (EEG) signals and MRI to 
understand ASD (Tawhid et al., 2021; Sivasangari et al., 
2022; Ismail et al., 2016). Moreover, advances in imaging 
techniques such as structural MRI (sMRI) and resting 
state functional MRI (rs-fMRI) have resulted in the 
precise identification of ASD. Several research has been 
presented that utilize MRI modalities to identify ASD 
(Hashem et al., 2020; Li et al., 2017; Dekhil et al., 2017). 
Despite the advancements, it is still uncertain whether the 
structural and functional abnormalities are sufficient in 
distinguishing between individuals with ASD and those 
who are neurotypical. While both sMRI and rs-fMRI can 
accurately identify brain pattern changes and connectivity, 
Artificial Intelligence (AI) based models for ASD 
classification have yet to be fully developed. Furthermore, 
to achieve accurate ASD diagnosis, it is crucial to explore 
and distinctly define disease-related features that capture 
complex brain patterns. This research aims to harness the 
benefits of AI by developing a framework that 
incorporates a feature extraction mechanism to enable 
accurate and efficient diagnosis of ASD. 

The core contributions of the paper are: 
• Empirical analysis of dual neuroimaging modalities 

performing the preprocessing, feature extraction, 
dimensionality reduction, and comparative analysis 
of structural features for classification 

• The classification algorithms applied to the structural 
features and proposed to be applied to rs-fMRI features 

The research is based on a high-dimensional scenario, 
which is most suitable for studies aimed to explore the 
insights of a specific condition, but the dataset availability 
is limited. The study aimed to achieve higher 
classification using AI methodologies suitable for limited 
datasets having a huge number of features, such as high-
resolution medical images. The hypothesis for the study 
was to investigate the impact of a large feature set coupled 
with a low volume of data on classification accuracy and 
the successive clinical implications. 

Related Work 
Inaccurate or late diagnosis might cause severe 

damage and can result in perilous circumstances. Hence, 

it is essential to develop efficient techniques for consistent 
definition and detection of the symptoms of ASD with 
high accuracy. Recent studies have implemented AI 
techniques to extract complex and multivariate patterns 
from neuroimaging data for diagnosing ASD (Chen et al., 
2020; Ferrari, 2021). In addition, feature extraction plays 
a significant role in providing valuable information about 
the disease and advanced diagnostic tools such as fMRI 
and rs-fMRI provide relevant information about the brain 
(Mohi ud Din and Jayanthy, 2023). Recent research 
proposed a deep multimodal approach, which combines 
the information acquired from rs-fMRI with a deep 
learning model to automate ASD diagnosis (Tang et al., 
2020). This approach achieved a classification accuracy 
of 74%, a recall rate of 95%, and an F1 score of 0.805 in 
distinguishing ASD individuals from neurotypical 
individuals. Another study proposed an informative 
biomarker for ASD diagnosis using rs-fMRI data, where 
static and dynamic connectivity were determined and 
used as inputs for the classifier to select essential features 
(Karampasi et al., 2021). These features comprised 
demographic and motion data, which were critical in 
identifying ASD cases. The classification accuracy 
achieved by the model was 76.63% with static and 
dynamic connectivity being key factors. The authors Koc 
et al. (2023) implemented sMRI and resting-state MRI 
(rsMRI) data to detect ASD. For the experimentation, the 
authors utilized two-dimensional rs-fMRI images that 
were transformed into 3D sMRI images for analysis. The 
data was collected from the ABIDE dataset and the fusion 
of sMRI and rs-fMRI data enabled the Hybrid 
Convolutional Recurrent Neural Network (HCRNN) 
model to achieve a phenomenal accuracy of 96% in 
classifying ASD. A Convolutional Neural Network 
(CNN) combined with rs-fMRI modality was applied by 
Mahadevaswamy and Manjunath (2022) for detecting 
autism. The CNN was trained using the scan images 
obtained from rs-fMRI, which yielded an accuracy of 
97%. The effectiveness of feature selection and extraction 
was validated, and a comprehensive explanation was 
provided. In the work presented by Lamani et al. (2023); 
Hazim Hammed and Albahri (2023). It implies that 
feature extraction is a crucial process that helps the AI 
models to identify the patterns or characteristics in the 
data to differentiate individuals with ASD from Normal 
Control (NC). Multi-level feature extraction has a more 
significant role in enhancing the accuracy of AI models 
such as neural networks given by Alam et al. (2023). 
Although AI models, along with sMRI and rs-fMRI, are 
more effective in automating the ASD detection process, 
there are specific challenges due to complicated structures 
and inconsistent biomarkers. Most of the existing work 
does not consider the biological diversity of individuals 
and less cognitive functional individuals with severe ASD 
symptoms are often neglected, which affects the 
generalization capacity of the models. 
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Materials and Methods 
The material applied for the research is the 

neuroimaging modalities of autistic and normal subjects. 
Data for the experimental analysis was collected from a 
multisite data repository known as ABIDE containing rs-
fMRI and sMRI images. The ABIDE II was a set of 1114 
scans with a balanced combination of 521 ASD and 593 
control subjects and greater phenotypic characterization. 
The dataset applied in the presented work belongs to the 
University of California Los Angeles (UCLA). The 
dataset information is available at 
http://fcon_1000.projects.nitrc.org/indi/abide/, which 
specified that the data repository has followed all the 
protocols released by the US Health Insurance Portability 
and Accountability Act (HIPAA) as well as approved by 
the regional Institutional Review Board to collect the data. 

The scans obtained from sMRI and rs-fMRI were 
preprocessed to achieve artifact and noise-free images 
for feature extraction. The research implements a five-
stage process for detecting ASD. The flowchart 
displayed in Fig. (1a), the detailed execution of the steps 
given in Fig. (1b). The first step was to collect the data 
as input from the ABIDE dataset, which consisted of 
images obtained from sMRI and rs-fMRI scans. The 
second step was the preprocessing stage, wherein the 
input images were processed and a regression model was 
created. In the third step, feature extraction from sMRI 
containing the Gray Matter (GM), White Matter, and 
Cerebro Spinal Fluid (CSF) volumes of brain regions, 
Total Intracranial Volume (TIV), and surface thickness. 
Features for the rs-fMRI scan images are extracted using 
Functional Connectivity analysis (FC), graph theory, 
and ICA, followed by PCA in the fourth step. The 
extracted features are applied to various AI classification 
models to validate the significance of extracted features 
for autistic subjects. 

The Graph theory approach was employed to calculate 
the correlation coefficients between every voxel in the 
brain and to categorize them. Based on the correlation, a 
thresholding level was identified using which the 
redundant edges from the brain images are eliminated and 
only relevant brain regions are considered for detecting 
ASD. Figure (1a-b) depicts the whole methodology 
applied to the current work. 
 

 
(a) 

 
(b) 

 
Fig. 1: (a) Flow chart for the complete analysis; (b) 

Methodology flow chat 
 
Data Preprocessing 

Preprocessing was performed to remove external 
noise, such as physiological and thermal noise, and 
prevent the influence of uncertainties. The MATLAB, 
Statistical Parametric Mapping (SPM), and the Functional 
Connectivity (CONN) toolbox were applied to perform 
preprocessing. The preprocessing was executed 
individually on sMRI and rs-fMRI with different steps. 
The functional scans are processed in six different steps, 
which are as follows: (i) Functional realignment and 
unwarp (ii) Slice-timing correction, (iii) Outlier 
identification (iv) Direct segmentation and normalization, 
and (vi) Functional smoothing (Nieto-Castanon, 2020). 
The preprocessing steps for sMRI scans are registration, 
segmentation, and normalization. The original images, the 
pipeline of the preprocessing stages, and the preprocessed 
images are displayed in Fig. (2). 

Realignment: The MRI data was realigned with a 6-
parameter rigid-body affine transformation and least 
squares approach. The image co-registration was 
performed with the first image of the scan of the session 
considering it as a reference scan. Further, the scans were 
resampled using the b-spline interpolation so that the data 
the resampled data can be applied for motion and 
magnetic susceptibility interactions. 

Slice Timing Correction (STC): The slice acquisition was 
in interleaved mode and Repeat Time (TR) was 3, which was 
a comparative larger and needed to be corrected to remove 
any time difference effects on the slices. The temporal 
misalignment between different slices of the functional data 
was corrected using the STC process (Parker et al., 2017). 
The STC involves correcting and shifting the slices using 
slice Acquisition Time (TA) for the first slice of the TR 
parameters to ensure temporal alignment. 

Outlier detection: Possible outlier scans are detected 
using Artifact detection Tools (ART). A frame-wise 
displacement was determined at each time step by 
creating a bounding box of dimension 140´180´115 mm 
across the brain. The time series for each subject 
transformed into MNI template space using 12°C of 
Freedom linear affine transformation. The distorted 
BOLD signals and filtered signals with the outlier are 
shown in Fig. (3). 
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Fig. 2: Methodology flow chat 
 

  
Fig. 3: Outlier detection-sample output for single image demising 
 

Structural segmentation and normalization: The 
functional and structural data are normalized into a 
standard default Tissue Probability Map (TPMT1-152) 
template (Pecco et al., 2022). The segmentation was 
performed on the sMRI scans to achieve GM, WM, and 
CSF tissue types followed by resampling to 2 mm 
isometric voxels. The normalization was performed using 
forward deformation and B-Spline interpolation 
algorithms. The voxel size and resolution need to be 
adjusted to enhance the quality of normalized scans, the 
image voxel size was considered for resampling. 

Functional smoothing and filtering: The functional 
scan smoothening was achieved with an eight-mm Full 
Width Half Maximum (FWHM) Gaussian kernel with a 
spatial convolution, to maximize the Signal-To-Noise 
Ratio (SNR) to minimize the impact of residual variations 
in both functional and anatomical scans across different 
subjects. The ‘F’ statistic is a ratio of the mean square 
between and within a group. The noise removal for low-
frequency ranges or drift high pass filter was applied to 
the fMRI scans. The brain activity signals can be as slow 
as noise but not below the range of 0.008 Hz which is 
equivalent to a cycle below 125 sec. To preserve the 
significant signals and to remove the noise high pass filter 
was applied to the time series ranging from 0.008 Hz and 
0.09 Hz. The range of filtered signal was estimated to be 
from 13.6-40.2. The average ratio for the de-noised signal 
was 35.6 for all individuals. 

Feature Extraction and Feature Selection 
The data applied in the current work is high-

dimensional data with a small set of images, such 
scenarios are challenging and known as the curse of 
dimensionality. Several methodologies were applied 
under the trial-and-error strategy. Least Absolute 

Shrinkage and Selection Operator (LASSO), FeatureWiz, 
and RFE applied to sMRI scans for feature extraction. To 
perform the whole brain analysis, ICA was applied to rs-
fMRI scans for feature extraction. PCA algorithm applied 
to rs-fMRI scans for dimensionality reduction. Functional 
Connectivity maps and features were observed using 
Graph theory. 

Recursive Feature Elimination (RFE)-sMRI 
RFE is an ML-based wrapper-type feature selection 

methodology that applies ML methods to evaluate the 
significance of a feature. RFE is a recursive elimination 
process to reach a predefined count of features. 
Correlation analysis was performed to remove the highly 
correlated and redundant features. To achieve the most 
significant features, RFE was performed using Random 
Forest (RF), Support Vector Machine (SVM), and 
Logistic Regression (LR). 

Seed-Based Connectivity Maps (SBC)-rs-fMRI 
The spatial pattern of functional connectivity was 

observed from seed or Region of Interest (RoI)/seed to 
each voxel in the brain using the 32 HPC-ICA network 
ROIs. The FC is determined using Fisher-transformed 
bivariate correlation coefficients obtained using the 
weighted General Linear Model (GLM). The z-score for 
transforming the coefficients into a score is defined 
using Eq. (1): 
 
𝑧 = 0.5[𝑙𝑛(𝑙 + 𝑟) − 𝑙𝑛(𝑙 − 𝑟)]	 (1) 
 
where, z is the z-score, r is the correlated coefficient and 
ln is the natural log. 

The coefficients are determined for each seed and 
target voxel, as shown in Eq. (2): 
 
r(x)= ∫ S(x,t)R(t)dt

(∫R2(t)dt ∫ S2(x,t)dt)
1
2
 (2) 

 
where, R is the average BOLD time series within an ROI, 
r is the spatial map of pearson correlation coefficients and 
Z is the SBC map of Fisher-transformed correlation 
coefficients for the ROI. 

ICA-rs-fMRI 
ICA performed a whole-brain analysis and extracted 

40 statistically Independent Components (ICs) to analyze 
the communication between brain regions. A Singular 
Value Decomposition (SVD) on the z-score normalized 
BOLD signal (subject-level SVD) is performed for each 
feature. Mathematical representation is given in Eq. (3): 
 
𝑋 = 𝐴𝑆 (3) 
 
where, X is the observed data matrix with dimensions’ n ́  m, 
n is the number of observations (samples) and m is the 
number of variables (features). S represents the matrix of 
independent source signals with dimensions’ n ´ m and A 
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is the mixing matrix with dimensions’ n ´ m. GICA3 back 
projection is used to compute the ICA maps associated with 
the same brain regions for each subject separately. 

Graph Theory 
A graph theory is applied to determine the correlation 

between the features and to estimate the correlated 
coefficients. In the graph, the nodes denote the regions 
and the edges are the connections. A threshold value is 
defined to remove the redundant edges or regions; only 
relevant regions are considered. Graph theory produces 
two essential features: Clustering coefficient, 
betweenness centrality, eigenvalue centrality, global 
efficiency, and modularity. 

Results and Discussion 
The most commonly used methods to analyze MRI 

data modalities are GLM, FC analysis, Voxel-Based 
Morphometry (VBM), and Surface-Based analysis 
(Ecker et al., 2017; Nickl‐Jockschat et al., 2012; Müller, 
2014). The study aimed to achieve the most significant 
features to optimize the classification accuracy for autistic 
neuroimages. Due to high dimensional data, 
dimensionality reduction was challenging to achieve. The 
selected features are discussed in detail and the 
classification accuracy for the sMRI scans is compared 
and evaluated using ML methodologies. 

Structural Features 
Morphological aspects for sMRI scans are - Gray 

matter volume within a particular region, Cortical 
thickness, that is, the average distance between the 
outermost (the pial surface) and the innermost layer of 
GM, and the surface area of the cortex. Curvature is the 
local folding pattern of the cortex, which is calculated by 
calculating the Gaussian curvature at every point on the 
cortical surface. Computational Anatomy Toolbox-
CAT12, applied to perform volumetric and surface 
analysis to the sMRI images. VBM calculates and 
compares the GM volume between both groups at the 
voxel level. The GM Volume (GMV), Total Brain 
Volume (TBV), and Total Intracranial Volume (TIV) are 
extracted as significant features for classification. Cortical 
thickness and surface area differences are measured using 
surface-based analyses. Surface-based analyses involve 
the reconstruction of the cortical surface and alignment of 
the surfaces across the subjects, followed by statistical 
analyses to calculate the differences in the cortical 
thickness or surface area between groups. The segmented 
regions GM (green), WM (pink), and CSF (blue) are 
shown in Fig. (4). 

RFE applied to all the 134 regions defined in the 
neuromorphometry atlas. Best performing features were 

observed as right caudate, left caudate, right cerebral WM, 
left cerebral WM, left lateral ventricles, left ventral dorsal 
caudate, left anterior cingulate gyrus, left central 
operculum, right occipital pole, Left superior parietal 
lobule. For WM analysis the volume variations are 
observed in the right cerebellum white matter, right 
cerebral white matter, right OCP occipital pole, Left INF 
LAT vent, right pallidum, right GRE gyrus rectus, brain 
regions where most of them are common for both GM and 
WM, but notable changes in WM was found in right Palli-
dum and Right GRE gyrus rectus. 

Functional Connectivity Analysis for fMRI 
SBC for individual subjects was implemented to measure 

the connectivity between seed and voxels. Figure (5a) 
depicts a default mode connectivity map for a single 
subject. Group-level analysis executed with GLM and 
voxel-level assumptions is performed using multivariate 
parametric statistical analysis. The cluster (set of adjacent 
voxels) evaluation and cluster-level implications are 
obtained using the parametric statistics. The selected 
clusters for group-level analysis are shown in Fig. (5b). 
The clusters are obtained using p-value, p<0.001 voxel-
level threshold, and a familywise corrected p-FDR <0.05 
for cluster-size threshold. 
 

 
 
Fig. 4: Gray matter, white matter, and CSF 
 

 
(a) 
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(b) 

 
Fig. 5: (a) First level SBC analysis for autistic brain; (b) Group 

level SBC analysis for autistic brain 
 

The ROI approach was performed on the 32 ROIs to 
observe the connectivity patterns among individual 
subjects and between groups. The ASD group has 13 
subjects and the NC group has ten subjects. 

The matrix display for the first-level analysis is 
displayed in Fig. (6a) and the group-level analysis is 
presented in Fig. (6b). Regions with the network strength 
are shown in the circular representation and different 
colors, where each color has a predefined strength, are 
shown in Fig. (6c). A 2D matrix display was generated to 
understand the network strength of all subjects better. 
Figures (7a-b) represent the upper triangle connectivity of 
the brain regions and connectivity strength for ASD and NC 
groups, respectively. The matrix displayed an observable 
difference in the network pattern among the groups. 

The selected graph theory features are global efficiency 
and clustering coefficient. The graph theory results for ASD 
and NC datasets are displayed in Figs. (8a-b), respectively. 

The ROIs selected are analyzed concerning the 
threshold value of 0.15, eliminating the redundant edges 
and nodes. If the clustering coefficient is 0.94, the graph 
states that 94% of the neighboring nodes are connected to 
the selected ROI. Results of the experimental analysis 
show that using the coefficients for all ROIs, the proposed 
approach effectively distinguishes the connectivity 
between the brain regions for both groups. 

ML Classification strategies were applied using 
structural feature sets to assess the significance of the 
features. The ML models were selected using high-
dimensional data based on the existing neuroimaging 
results. GM volumes for neuromorphometry regions are 
considered as features. Four ML models, including RF, 
LR, Gradient Boost, and Naïve Bays, were implemented 
with 40, 30, 25, 20, 15, and 10 features. The features for 
Naïve Bays are selected using select best and the chi-
square test. Classification accuracy of 80% was achieved 
with Naïve Bays using the features selected with a chi-
squared test. The highest classification accuracy of 
88.67% was achieved using SVM and RFE. 

 
 (a) (b) (c) 
 
Fig. 6: (a) ROI analysis for a single subject; (b) ROI analysis 

group ASD; (c) ROI functional connectivity analysis 
 

 
 (a) (b) 
 
Fig. 7: (a) Connectivity matrix for ASD; (b) Connectivity matrix 

for NC 
 

 
 (a) (b) 
 
Fig. 8: (a) Results of graph theory for ASD; (b) Results of graph 

theory for NC 
 

The comprehensive explanation of the features 
achieved by both imaging modalities proved the 
significance of features for specific analysis. The VBM 
and SBM analysis for sMRI provide the structural 
information for the disorder and are useful for exploring 
spatial differences. In contrast, the features extracted from 
rs-fMRI images, such as functional connectivity measures 
and network information, helped to study the brain's 
functional activities during the resting state. 
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SVM with RFE performed better than other classifier 
methods. The features collected with different methods 
were assessed using the classification accuracy achieved 
by distinct AI models. SVM has outperformed in multiple 
medical imaging studies because it can handle large 
volume data. RFE feature extraction works well with a 
low volume of data and a huge amount of features. 

Based on the achieved resulting images, it is 
confirmed that neuroimages in distinct modalities are 
noisy and attenuated by external signals such as 
mechanical fluctuations, physical movements, and other 
physiological effects. The pre-processing pipelines are 
implemented with multiple methodologies and achieved 
higher quality images for further analysis, which needs to 
be performed for classification and region of interest for 
autism disorder. The results and the visual analysis of pre-
processed images displayed the signal changes in the 
extracted time series for each voxel present in the number 
of frames of an MRI scan. The original scans and the pre-
processed scans provide a huge set of information but the 
noisy or raw images contain inaccurate information, 
which needs to be filtered using specific strategies to 
extract the data without noise. Medical image pre-
processing is a crucial step to achieve a higher accuracy 
rate. In the study, a comprehensive comparison was 
performed on the neuroimaging dataset modalities and 
presented the various levels of denoising. The 
deliverables of the work are the strategies and the results 
for future research works in the field of cognitive 
disorders using neuroimaging scans. 

Conclusion 
Autism is a condition with a cluster of comorbid 

conditions with no definite symptoms or biomarkers. In 
the current scenario, most of the work in autism detection 
is diverted to neuroimaging research. The study presented 
a comprehensive analysis of feature extraction strategies 
for dual modalities of autistic brains. Successful 
implementation of highly recommended methods for 
structural and functional images was performed. The 
result section discussed the features and classification 
accuracy for 23 images. Work with high-dimensional data 
is complicated and challenging due to the curse of 
dimensionality, overfitting, and poor generalization, but 
the presented work has achieved 88.67% accuracy. The 
contribution of the work is to present the best-performing 
feature extraction techniques for autism detection with 
less or high-dimensional data. The present work 
performed feature extraction for sMRI and rs-fMRI. The 
research aims to implement the functional features for the 
classification and discover the model to solve the current 
challenges. The future enhancement of the work suggested 
is including more data for analysis. The Deep Learning 
model is restricted to data limit and needs a large dataset; it 
can be another advancement to the current work. 
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