
 

 

© 2024 Krari Ayoub, Hajami Abdelmajid, Mihi Soukaina and Errakha Kaoutar. This open-access article is distributed under a 

Creative Commons Attribution (CC-BY) 4.0 license. 

Journal of Computer Science 
 

 

 

 

Original Research Paper 

Enhancing IoT RPL Protocol Security Against Black Hole 

Attacks with Deep Learning Techniques 
 

1Krari Ayoub, 1Hajami Abdelmajid, 1Toubi Ayoub and 2Mihi Soukaina 

 
1Laboratory of Research Watch for Emerging Technologies (VETE), Hassan First University of Settat, Morocco 
2Laboratory of Computer, Networks, Mobility and Modeling (IR2M), Hassan First University of Settat, Morocco 

 
Article history 
Received: 07-03-2024 

Revised: 31-05-2024 
Accepted: 22-06-2024 
 
Corresponding Author:  
Krari Ayoub 
Laboratory of Research Watch 
for Emerging Technologies 
(VETE), Hassan First 

University of Settat, Morocco 
Email: ayoub.krari@uhp.ac.ma 

Abstract: As the Internet of Things (IoT) extends its reach into critical 

infrastructures, it encounters escalating security threats, particularly black hole 

attacks that jeopardize network communication. The growing use of IoT in 

essential services underscores the need for robust network integrity. Driven by 

this urgency, our research has developed a sophisticated detection framework 

that effectively identifies black hole attacks within IoT networks utilizing the 

Routing Protocol for Low-Power and Lossy Networks (RPL). Our approach 

leverages the advanced pattern recognition capabilities of a deep Multi-Layer 

Perceptron (MLP) model, which has been rigorously trained and validated on 

a dataset generated under simulated conditions in Cooja. Key accomplishments 

of our study include achieving a high overall model accuracy of 94.3%, with 

specific accuracies of 94.4% for training, 94.2% for validation, and 94.0% for 

testing. The model exhibited minimal Mean Squared Error (MSE) values, with 

the lowest recorded validation MSE at approximately 0.029192. Additionally, 

the model's performance was marked by nearly perfect Receiver Operating 

Characteristic (ROC) curves, demonstrating Areas Under the Curve (AUC) 

close to 1 for both classes across all datasets. These performance metrics 

validate the model's efficacy in discerning the subtleties of black hole attacks, 

thereby enhancing network security analytics and contributing significantly to 

the proactive defense mechanisms against cyber threats in IoT networks. Our 

findings not only demonstrate the capabilities of deep learning models in 

cybersecurity but also underscore the importance of innovative solutions in 

safeguarding the expanding landscape of IoT infrastructures. 
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Introduction 

The exponential growth of the Internet of Things has 
ushered in an era of unparalleled connectivity. This 
integration of diverse devices has led to significant 
advancements in data collection and analysis, resulting in 
improved decision-making and enhanced efficiency across 
various sectors (Mamdiwar et al., 2021). However, this 
expanded network has also introduced complex security 

challenges, notably black hole attacks, which pose a severe 
threat to the reliability and confidentiality of IoT networks 
(Reshi et al., 2024). These attacks result in the disruption of 
service and potential privacy breaches, Traditional security 
measures often fall short in detecting and preventing such 
sophisticated attacks, due to their static nature and inability 
to adapt to the dynamic landscape of IoT threats 
(Muzammal et al., 2021). Machine and deep learning 

techniques offer a dynamic and flexible approach, enabling 

the automatic identification of unusual network patterns that 
signify potential threats. These advanced methodologies can 
adapt over time to changing network conditions and 
evolving attack strategies, positioning them as superior 
alternatives to rule-based systems (Aldweesh et al., 2020). 

The present study introduces an innovative 

framework that significantly enriches the field of IoT 

security through the application of a deep Multi-Layer 

Perceptron (MLP) model. This research distinguishes 

itself by not only recognizing the patterns indicative of 

black hole attacks but also by adapting to the network's 

evolving conditions in real time. The proposed approach 

advances the current state-of-the-art by providing a more 

resilient and robust solution that enhances the detection 

accuracy of black hole attacks in IoT networks. 

mailto:ayoub.krari@uhp.ac.ma


Krari Ayoub et al. / Journal of Computer Science 2024, 20 (11): 1530.1544 

DOI: 10.3844/jcssp.2024.1530.1544 

 

1531 

Materials and Methods  

In confronting the intricate security challenges posed by 

black hole attacks within IoT networks, research in this 

domain has progressively evolved to address these threats 

effectively. Our meta-analysis scrutinizes pivotal 

contributions to this field, thoroughly detailing the 

methodologies, metrics, and outcomes employed by various 

studies, while also acknowledging the limitations of each. 

This comprehensive review not only encapsulates the 

progression of security strategies but also introduces our 

innovative application of deep learning to enhance attack 

detection within RPL-based IoT frameworks. Table (1) below 

succinctly captures the essence of these developments, 

providing a foundational context for the introduction of our 

proposed deep Multi-Layer Perceptron (MLP) model. 

RPL Black-Hole Attack 

An RPL black hole attack (Fig. 1) specifically targets the 

Routing Protocol for Low-Power and Lossy Networks 
(RPL), which is crucial for the operational functionality of 
Internet of Things (IoT) networks. RPL optimizes 
communication among nodes by establishing efficient paths 
for data transmission to a central sink node. During such an 
attack, an assailant impersonates a legitimate node, gaining 
trust and thereby compromising the network. This 
compromised position is exploited to selectively disrupt the 
network by dropping key RPL control messages, such as the 
DODAG Information Object (DIO), Destination 
Advertisement Object (DAO), and DODAG Information 
Solicitation (DIS) messages. These messages are essential for 

maintaining and updating the Directed Acyclic Graph (DAG) 
topology, which is vital for routing data packets efficiently. 

 
Table 1: Advancements in RPL IoT network defense 

Study Year Methodology Key metrics Outcome Limitations 

Neerugatti and  2019 MLTKNN based on True positive Improved security and Limited to simulation 

Mohan Reddy  K-nearest neighbor rate, false performance in IoT environment, may not 
(2019)   positive rate, networks reflect real-world 
   delay, packet  complexities; no deep 
   delivery rate  learning techniques 
     used; no black hole 
     attack addressed; 
     limited simulation 
     data and limited analysis 

Kamis et al. (2023) 2023 RPL, IPv6 over Denial of Service Explored challenges No empirical data; 
Ezzitouni et al. (2021) 2021 6LoWPAN (DoS) attacks, and protection theoretical analysis 
Rakesh and  2023 SecRPL-MS with Malicious node Enhanced security Complex setup may limit 
Parveen Sultana  quantum inspired detection accuracy, in IoT networks practical deployment; 
(2023)  Neural network security metrics against multiple addressed routing 
  and prince  attacks but not black 
  algorithm   hole attacks; energy- 
     consuming node 

     mechanism 
Nandhini et al. (2023) 2023 E-RAD algorithm Energy consumption, Reduced energy Specific to rank attacks, 
   packet delivery delay, consumption and may not address other 
   packet delivery improved packet vulnerabilities; no black 
   accuracy delivery metrics hole attack addressed; 
     no deep learning  
     techniques used; node 
     energy consumed using 

     the proposed algorithm 
Bang and Rao (2023) 2023 Simulation in Packet overhead, Highlighted adverse Focus on rank attacks 
  cooja for RPL inter-packet time,  effects, and potential may not address other  
   packet delivery ratio, countermeasures vulnerabilities; no black 
   power consumption against rank attacks hole attack addressed; no 
     deep learning techniques 
     used; node energy  
     consumed using the  
     proposed algorithm 

Our Proposed 2024 Deep Multi-Layer Model accuracy, loss Accuracy of 94.3%, - 
Approach   Perceptron (MLP) ROC, confusion with specific  
  model matrix accuracies of 94.4% for 
    training, 94.2% for 
    validation, and 94.0% 
    for testing 
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The attacker’s actions prevent the network from 
maintaining its structure and routing data effectively, 
causing significant communication failures among 
legitimate nodes. These nodes struggle to identify 
optimal data delivery paths to the sink node, resulting in 
substantial data loss and inefficient use of network 
resources. Additionally, the attacker may opt to 
selectively drop data packets or entirely discard all 
received packets, further amplifying the network 

disruption (Deepavathi and Mala, 2023). 
The ramifications of an RPL black hole attack are severe, 

extending beyond simple communication disruption to 
substantial data loss, resource wastage, and notable 
degradation of network performance. Attackers might 
exploit such disruptions to extract sensitive data or initiate 
more severe, complex cyber-attacks (Arshad et al., 2022). 

Detecting an RPL black hole attack is challenging, 
primarily because the attack involves omission, rather than 
alteration, of data packets. Conventional security 
mechanisms that detect corrupted or modified packets are 
inadequate. Detection strategies must instead scrutinize 

the network’s control message traffic. Monitoring 
inconsistencies in the frequency, delivery, and integrity of 
DIO, DAO, and DIS messages can reveal disruptions in 
the DAG topology, indicating a potential black hole attack. 
This necessitates advanced monitoring tools capable of 
analyzing control message flow in real time and detecting 
patterns that suggest tampering (Alazab et al., 2023). 

In conclusion, an RPL black hole attack constitutes a 
sophisticated Denial of Service (DoS) attack exploiting the 
vulnerabilities of the RPL protocol within IoT networks. 
Developing and implementing effective mitigation and 
detection strategies is crucial to preserve the integrity and 

functionality of IoT networks that depend on this protocol. 

Proposed Approach 

Our framework (Fig. 2) uses deep learning to detect 
malicious nodes in IoT networks. We simulate network 
traffic, preprocess and normalize the data, and then use 

PCA for feature extraction. An MLP with three hidden 
layers and the Adam optimizer classifies nodes, using k-
fold cross-validation to ensure accuracy. This method 
effectively detects black-hole attacks, maintaining 
network integrity. 
 

 
 
Fig. 1: Black hole attack process 

 
 
Fig. 2: Proposed approach 
 

Normal and Attack Simulations 

In the course of developing our innovative approach to 

detect black hole attacks in IoT networks, we undertook a 

meticulous process of data collection, transformation, and 

analysis. This process began with conducting simulations as 

shown in Figs. (3-4) and table configuration (Table 2) that 

mimic the conditions of a black hole attack to accumulate a 

dataset reflective of malicious network behavior. Parallel to 
this, simulations representing the normal operational behavior 

of nodes were executed to compile a benign dataset. These 

simulations were crucial for capturing the nuanced 

differences between compromised and uncompromised 

network states. 

The data harvested from these simulations were initially 

captured in PCAP format using the Cooja simulator, an 

integral component of the Contiki OS designed specifically 

for IoT network simulations (Khan et al., 2023). These PCAP 

files were then transformed into a more analytically friendly 

CSV format using Wireshark, facilitating a seamless 

transition to the data preparation phase. Employing robust 
Python libraries, namely NumPy and pandas, the raw data 

underwent a comprehensive cleaning and preprocessing 

regimen. This preparation involved coding, labeling and 

ultimately partitioning the dataset into distinct sets for training 

and testing purposes. 

The prepared dataset served as the input for our neural 

network-based model, specifically a deep Multi-Layer 

Perceptron (MLP) model, illustrated in Fig. (2). The MLP 

model stands at the core of our detection framework, 

leveraging its deep learning capabilities to discern patterns 

indicative of black hole attacks amidst complex network 
traffic data. This deep MLP model embodies the culmination 

of our preparatory work, poised to scrutinize network 

behavior for anomalies that signal malicious interference. 
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Fig. 3: Normal simulation map 
 

 
 
Fig. 4: Black hole attack simulation map 
 
Table 2: Simulations configuration and parameters 

Parameters Values 

Node type SKY mote 
Os version Contiki 3.0 
Protocol RPL 
Radio medium Unit disk graph  
 Medium: distance loss 
Objective function MRHOF 

TX range 50/100 m 
Interface range 50/100 m 
Simulation area 100×100 m 
MTU size 1280 Byte 
Simulation duration 120 min 
Sender nodes 23 
Sink node 1 
Repetitions 5 
 

Sensor Maps 

Upon close inspection of the sensor maps (Figs. 5-6) 

representing an IoT network, the ramifications of a black 
hole attack are readily apparent. The pre-attack state of the 

network showcases a well-structured mesh of sensor 

nodes, with bidirectional communication paths that signify 

an ideal operational network. Each node is denoted by a 

pair of numerical values, suggesting a measurement of 

network-specific metrics. The post-attack sensor map, 

however, reveals a network compromised by the strategic 

failure of critical nodes, as evidenced by the cluster of 

eight disconnected nodes. This disconnection is 

symptomatic of the black hole attack's potency, wherein 
the malicious entity succeeds in intercepting and nullifying 

the data packets destined for these nodes, effectively 

severing their communication links (Sasi et al., 2023). 
 

 
 
Fig. 5: Final sensor map of the normal simulation 
 

 
 
Fig. 6: Final sensor map of the attack simulation 
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The disconnected nodes represent a significant 

portion of the network, indicating a high attack severity. 

Their isolation from the network's continuum not only 

impedes the flow of data but also poses a strategic risk, 

potentially enabling the attacker to exert control over the 

flow of information or to leverage the compromised 

nodes for further attacks. The quantitative impact of this 

disconnection can be inferred from the substantial 

alteration in the numerical values associated with the 

affected nodes, which may reflect a degradation in signal 

quality, an increase in packet loss, or a depletion in 

resource availability. These metrics underscore the need 

for a vigilant security framework capable of early 

detection and response to such covert attacks. 

The graphs in (Figs. 7-8) show the power 

consumption of nodes in the network during normal 

conditions and under a black hole attack, as simulated in 

the Cooja simulator. In the normal scenario, the power 

consumption fluctuates but remains mostly within a 

lower range. However, under the black hole attack, there 

are noticeable spikes in power consumption, indicating 

abnormal behavior and possibly the additional effort 

required by the network to deal with the malicious 

activity. These anomalies could be key indicators for the 

MLP deep learning model to detect and flag potential 

black hole attacks. The patterns observed in the power 

consumption during the black hole attack simulation are 

distinct from the normal power usage patterns, which 

could be utilized to train machine or deep learning models 

for effective anomaly detection (Krari et al., 2023). 

The bar graphs in (Figs. 9-10) present instantaneous 

power consumption in a network under normal 

conditions and during the black hole attack. Each bar 

represents a node, with segments indicating power used 

for the Low-Power Mode (LPM), Central Processing 

Unit (CPU), radio listening, and radio transmission. 

Under normal conditions, the consumption is lower and 

relatively uniform across the nodes. In contrast, during a 

black hole attack, there is a notable increase in power 

used for radio transmission, suggesting an increase in 

network traffic as nodes attempt to route data through the 

compromised network. This change in power distribution 

serves as a valuable indicator for detecting anomalies 

associated with black hole attacks. 

The provided bar graphs shown in Figs. (11-12) 

illustrate the average radio duty cycle for nodes in a 

network during typical operation and under a black hole 

attack. The duty cycle represents the percentage of time 

a node's radio is active, either listening or transmitting. 

In both scenarios, the duty cycle for radio transmission 

(blue bars) is notably higher during the black-hole 

attack, indicating increased network traffic as nodes 

respond to the malicious activity. This consistent 

increase across the nodes can be an effective metric for 

the deep learning Model to detect and address black hole 

attacks (Krari et al., 2021). 

 

 
 
Fig. 7: Historical power consumption during normal simulation 

 

 
 
Fig. 8: Historical power consumption during black hole attack 

 

 

 
Fig. 9: Instantaneous power consumption during normal simulation 



Krari Ayoub et al. / Journal of Computer Science 2024, 20 (11): 1530.1544 

DOI: 10.3844/jcssp.2024.1530.1544 

 

1535 

 
 
Fig. 10: Instantaneous power consumption during black hole attack 
 

 
 
Fig. 11: Average radio duty cycle consumption during normal 

simulation 
 

 
 
Fig. 12: Average radio duty cycle during black hole attack 
 

During the normal simulation as shown in Fig. (13) 

and the simulated black hole attack, the graph Fig. (14) 

on the right exhibits both anomalies in neighbor 

connections and evidence of node disconnections. While 

certain nodes show an unexpected increase in neighbor 

counts, indicative of the attack's influence, others have no 

reported data, suggesting they were severed from the 

network. This loss of connectivity highlights the attack's 

severity, disrupting the network to an extent where data 

collection from some nodes became impossible, 

providing a stark contrast to the left graph's stable 

network conditions under normal operation. 

 
 
Fig. 13: Average neighbor count during normal simulation 
 

 
 
Fig. 14: Average neighbor count during black hole attack 
 

The graphs in Figs. (15-16), corresponding to the 

normal and black hole attack simulation shows substantial 

disruption in beacon intervals across network nodes. The 

intervals are dramatically varied, with some intervals 

elongating significantly, directly indicating the network's 

compromised state. Such aberrations in beacon timings 

reflect the network's response to the malicious entity, as 

nodes struggle to maintain communication amidst the 

introduced chaos, unequivocally signaling the presence of 

a black hole attack (Arshad et al., 2021). 

The figures depicted in Figs. (17-18) provide a 

comprehensive visual representation of the repercussions 

observed in network performance stemming from both 

normal simulation conditions and the disruptive presence 

of a black hole attack. A discernible pattern emerges 

wherein there is a substantial escalation in the average 

routing metric fluctuation, coupled with a striking 

diminution in the successful transmission of packets. 

Notably, the impact of the black hole attack becomes 

evident through a conspicuous decline in packet delivery 

rates. This deleterious effect can be attributed to the 

insidious nature of the attack, which involves the deliberate 

manipulation or outright dropping of packets by malicious 

entities. Consequently, this nefarious activity necessitates an 

increased frequency of routing attempts and introduces 

heightened intervals in the network operation. 
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In essence, the graphical representation serves as a 

quantitative illustration of the erosion of network integrity 

caused by the pernicious black hole attack. It underscores 

the imperative for robust security measures to safeguard 

against such threats and underscores the critical 

importance of fortifying network defenses to preserve 

operational efficacy and reliability. 
 

 
 
Fig. 15: Beacon interval during normal simulation 
 

 
 
Fig. 16: Beacon interval during black hole attack 
 

 
 
Fig. 17: Average routing metric during normal simulation 

Figures (19-20) provide a clear visual comparison of 

network behavior under two distinct scenarios: Normal 

operational conditions and the presence of a black hole 
attack. In a normal state, the network's efficiency is 

exemplified by the successful transmission and receipt of 

448 packets across 22 nodes, with an impressive record of 

zero packet loss. This scenario underscores the network's 

optimal performance, where communication between 

nodes is seamless and data integrity is fully preserved. 
 

 
 
Fig. 18: Average routing metric during black hole attack simulation 
 

 
 
Fig. 19: Received packets during normal simulation 
 

 
 
Fig. 20: Received packets during black-hole attack simulation 
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In stark contrast, the scenario during a black hole attack, 

as depicted in the figures, illustrates a severe degradation in 

network performance. Despite an increase in the number of 

transmitting nodes to 23, the network only manages to receive 

a fraction of the packets, totaling 73, and experiences a loss of 

7 packets. This significant disruption not only highlights the 

destructive nature of black hole attacks but also emphasizes 

their capacity to undermine the network's reliability and 

compromise the integrity of transmitted data. The comparison 

thus serves to underscore the critical impact such attacks have 

on network functionality, showcasing the need for effective 

security measures to mitigate these threats and maintain 

network performance. 

The graphs in Figs. (21-22) provide insight into 

network connectivity under different conditions. The left 

graph, under normal operation, shows a stable connection 

for all nodes, indicated by consistent hop counts. The right 

graph, during a black hole attack, not only displays 

variability in hop counts but also indicates the absence of 

data for some nodes, which suggests they have been 

disconnected from the network. This disconnection could 

be a result of the black hole attack actively disrupting the 

network, leading to an incomplete picture of the network 

topology (Shah et al., 2021). 
 

 
 
Fig. 21: Network hops during normal simulation 

 

 
 
Fig. 22: Network hops during black hole attack simulation 

The graphs in Figs. (23-24) maintains a stable routing 

metric for all nodes, mostly ranging between 1300 to 2400 

ms. The right graph, under a black hole attack, shows more 

extreme fluctuations, with metrics ranging from as low as 

200 ms to peaks beyond 3600 ms for various nodes. These 

metrics and the absence of data for some nodes, which 

indicate disconnections, sharply illustrate the network's 

destabilization during the attack. 

The graphs in Figs. (25-26) illustrate the Expected 

Transmission Count (ETX) to the next hop in a network. 

The left graph shows stable ETX values for each node, 

typical of normal network conditions. The right graph 

reveals significant fluctuations in ETX values across 

nodes, with some nodes showing a drastic increase in 

ETX, indicating a higher cost in the network path, 

which is common during a black hole attack as the 

network tries to reroute around the disruption. This 

behavior is indicative of the network's. Adaptive 

response to maintain connectivity despite malicious 

attempts to disrupt the routing. 

 

 

 
Fig. 23: Routing metric during normal simulation 

 

 

 
Fig. 24: Routing metric during black hole attack simulation 
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Fig. 25: Received packets during normal simulation 

 

 
 
Fig. 26: Received packets during normal simulation 

 

Results and Discussion 

Model Performance and Analysis 

The provided graph in Fig. (27) offers a quantitative 

performance analysis of the Multilayer Perceptron 

(MLP) designed for detecting RPL selective forwarding 

attacks, by plotting the Mean Squared Error (MSE) 

across training, validation, and testing phases over a total 

of 214 epochs. Initial Learning Phase (Epochs 0-20): The 

MSE for the training data set starts at approximately 10-1 

and rapidly declines to below 10-2, which shows an 

exponential learning rate in the initial phase. 

The validation and test MSEs follow a similar trend, 

indicating that the model is not just memorizing the 

training data but also learning generalizable patterns. 

Convergence Phase (Epochs 20-208): Post the initial 

phase, the MSE for training and validation exhibits a 

slower rate of decline, gradually converging. The test MSE 

closely mirrors the validation MSE, further indicating that 

the model is generalizing well. Optimal Performance 

(Epoch 208): The model reaches its optimal performance 

at Epoch 208, with the validation MSE at its lowest value 

of approximately 0.029192. This marks the point where 

the model is at its highest predictive accuracy on the 

validation set within the given epochs. Stabilization Phase 

(Epochs 208-214): Beyond epoch 208, the MSE for all 

three data sets stabilizes, indicating that additional training 

epochs beyond this point yield negligible improvements. 

This plateau suggests that the model's capacity to learn 

further from the data has been saturated. 

Model generalization: The closeness of the validation 
and test MSE to the training MSE throughout the training 

process, particularly after epoch 40, demonstrates the 

model's capability to generalize well. 

This is evidenced by the minimal gap between these 

curves, suggesting that the model has learned the 

underlying data distribution effectively and can make 

accurate predictions on unseen data. Long-term Trends: 

It's important to note that the validation MSE slightly 

increases at certain points, for instance, between epochs 

150 and 200. However, these fluctuations are minor and do 

not indicate overfitting, as the test MSE does not show a 
corresponding increase. The model maintains a stable 

performance, with all three error rates converging to a low 

range between approximately 10-2 and 10-3, which is 

indicative of a well-fitted model. Final Observations: At 

the end of the training, the convergence of the MSE values 

and the stabilization of the error rates suggest that further 

training would likely lead to diminishing returns. The 

model has achieved a satisfactory level of accuracy, as 

reflected in the low MSE scores, and is likely to perform 

well in practical scenarios of detecting RPL selective 

forwarding attacks. In summary, the MLP model exhibits 

excellent performance with the ability to generalize 
beyond the training data. The optimal point at epoch 208 

for validation performance is a key takeaway for 

determining the stopping point in training future models. 

These results suggest that the MLP is a viable and effective 

tool for the intended detection task and the methodology 

used in training this model could be beneficial for similar 

problems in network security. 
 

 
 
Fig. 27: Model performance 
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In this study, several rigorous measures were 
implemented to prevent overfitting and to ensure the 
robustness and generalizability of our proposed approach 
across varied IoT network configurations and attack 
scenarios. During the data preprocessing stage, we 
employed data balancing techniques to mitigate class 
imbalance, a common issue that can lead to model bias. To 
further enhance the model's ability to generalize, we applied 
Principal Component Analysis (PCA) for feature extraction, 

which reduces the feature space dimensionality and helps 
avoid overfitting by preventing the model from learning 
noise in the training data. The architecture of our Deep 
Learning Multi-Layer Perceptron (MLP) was carefully 
designed with an optimal number of hidden layers and nodes 
(10, 8, and 6 in the respective layers) to minimize 
complexity while maintaining sufficient capacity to learn 
from diverse patterns. We utilized the Adam optimizer for 
its efficient convergence and robustness in sparse data 
landscapes typical of IoT environments. To validate our 
model's performance, k-fold cross-validation was 
employed, ensuring that the model was tested against 

various subsets of the data, thus avoiding the pitfalls of 
evaluating on a single test set. Additionally, the deployment 
of dropout layers during training acted as a form of 
regularization to prevent co-adaptation of neurons, 
promoting the development of a more generalized model. 

Model Confusion Matrices Performance 

The provided matrices in Fig. (28) are confusion matrices 
for a binary classification task at different stages: Training, 
validation, testing, and across all datasets combined. Each 
matrix provides a detailed breakdown of the model's 
predictions versus the actual target classes (Abhishek et al., 
2021). We gave a detailed analysis of each matrix: 
Training Confusion Matrix: The model shows an 
extremely high accuracy in distinguishing between class 1 
and class 2 during the training phase. It correctly identifies 
99.9% of class 1 instances and 91.6% of class 2 instances. 
The overall accuracy is 94.4%, with very low false positive 

and false negative rates. 
 

 
 
Fig. 28: Model confusion matrices performance 

Validation confusion matrix: The performance on the 

validation set is similarly high, with 99.9% of class 1 

correctly classified and 91.3% for class 2. The overall 

accuracy is 94.0%, indicating that the model maintains its 
discriminative capability on new, unseen data. The false 

positive rate for class 2 is slightly higher than during 

training, but still very low, demonstrating the model's 
consistent predictive quality. Test confusion matrix: The 

results on the test set are in line with the training and 

validation performance, with 99.9% accuracy for class 1 

and 90.9% for class 2. The overall accuracy is 94.0%, 
suggesting that the model maintains its discriminative 

capability on new, unseen data. The false positive and false 

negative rates remain low, indicating reliable performance 
in a real-world scenario. All confusion matrix: 

Aggregating the data from all stages, the MLP model 

consistently identifies class 1 with 99.9% accuracy and 

class 2 with 91.4%. The overall accuracy is 94.3%, 
showing that the model performs well across all datasets. 

Across all matrices, the precision, recall, and F1 scores for 

each class would be very high, suggesting that the model 
is excellent in both positive predictive value and 

sensitivity. The minimal misclassification of class 2 as 

class 1 (false positives) and class 1 as class 2 (false 
negatives) across all stages showcases the robustness of 

the MLP model in the selective forwarding attack 

detection task. This consistent performance across 

training, validation, and test sets suggests that the MLP has 
learned the underlying patterns in the data without 

overfitting, which is a significant achievement for practical 

deployment in network security. 
Receiver Operating Characteristic (ROC) Model 

Performance The set of graphs in Fig. (29) depict Receiver 

Operating Characteristic (ROC) curves for two classes in a 

binary classification task, across training, validation, test, 
and combined data sets. The ROC curve is a graphical 

representation that illustrates the diagnostic ability of a 

binary classifier system as its discrimination threshold is 
varied. For both classes, the ROC curves are very close to 

the top-left corner of the plots, indicating an excellent level 

of discrimination between the positive and negative classes. 

We gave a detailed analysis of each plot: Training ROC: 
The ROC curves for class 1 and class 2 during training are 

almost perfect, with Areas Under the Curve (AUC) close to 

1. This suggests that the model has nearly perfect sensitivity 
(true positive rate) and specificity (1-false positive rate) on 

the training set. Validation ROC: The performance on the 

validation set is also outstanding for both classes, with the 
ROC curves again hugging the top-left corner. This 

indicates that the model’s ability to generalize from the 

training data to unseen data is excellent. 

Test ROC: The test ROC curves maintain the high 
performance seen in the training and validation ROC 

curves, which is indicative of the MLP’s robustness and its 

capacity to maintain high discriminative power on 
completely new data. 
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Fig. 29: Receiver Operating Characteristic (ROC) model 

performance 
 

All ROC: This curve aggregates the performance 
across all datasets and it remains consistent with the 
individual training, validation, and test ROC curves. This 
overall ROC curve confirms the model's strong 
discriminative power across all samples. 

In summary, the MLP model exhibits exceptional 
classification performance with high true positive rates and 
low false positive rates for both classes across all data sets. 

The consistency of the ROC curves near the ideal point of 
(0,1) across all datasets underscores the model's reliability 
and effectiveness in distinguishing between the two classes 
in the context of RPL selective forwarding attack detection. 

Model Optimization 

The two graphs provided in Fig. (30) offer insight into the 
optimization process of the MLP model over 214 epochs. 

Top graph-gradient: This plot shows the gradient 
magnitude of the model's weights with respect to the loss 
function on a logarithmic scale. The gradient is a crucial 
factor in training neural networks as it guides the update of 
the model's weights (Basodi et al., 2020). 

Over the course of training, the gradient magnitude has 
decreased, which is expected as the model approaches a 
minimum in the loss landscape. By epoch 214, the gradient 
has stabilized to a value of approximately 0.00014148, 

suggesting that the model is nearing convergence and 
further training may result in only marginal improvements. 
Bottom Graph Validation Checks: This plot displays the 
number of validations checks over epochs. Validation 
checks are typically used to monitor the model's 
performance on a validation set at each epoch. If the model's 
performance on the validation set does not improve for a 
certain number of epochs, which is often referred to as 
"patience," training can be stopped early to prevent 
overfitting. Here, the number of validation checks remains 
at 6 from the start to the end of the training, indicating that 

the model's performance on the validation set has not 
triggered the early stopping criterion. This is consistent with 
the previously noted good performance on the validation set. 

Together, these graphs suggest a successful training 
process with the model approaching a well-fitted state, as 
indicated by the low and stable gradient values. The 
steady number of validation checks further supports the 
model's consistent performance across epochs without 
overfitting. This is indicative of a well-tuned learning 

process, showing the model's readiness for deployment in 
detecting RPL selective forwarding attacks 
(Bikmukhametov and Jäschke, 2020). 

Proposed Approach Flexibility 

Our proposed framework showcases significant 

flexibility in several crucial areas. Firstly, the architecture 

of the MLP including the number of layers and the number 

of neurons per layer can be readily adjusted to 

accommodate the complexity of the dataset and the 

specific demands of the task at hand. This modularity 

permits precise tuning of the model, enabling optimal 

performance across varying network environments and 

differing attack scenarios. 

Furthermore, the application of a deep learning 

framework allows the system to adapt and evolve based on 

continuously changing data. Such adaptability is essential 

in the realm of cybersecurity, where attack vectors and 

tactics can shift swiftly. By regularly retraining the model 

with updated data, the system remains abreast of the most 

current attack patterns, thereby enhancing its effectiveness 

and extending its operational lifespan. 

Additionally, the MLP model supports the integration 

of a variety of preprocessing techniques and optimization 

algorithms. This flexibility makes it adept at processing 

both raw and preprocessed data and ensures efficient 

learning from large datasets. Such capabilities ensure that 

the system can be effectively deployed across diverse IoT 

environments, from compact home networks to large-scale 

industrial frameworks. 
 

 
 
Fig. 30: Model optimization 
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Lastly, the system’s compatibility with widely used 

machine learning libraries and frameworks, such as 

TensorFlow or PyTorch, facilitates scalability and ease of 

integration into existing security infrastructures. This 

compatibility underscores the practicality of the system 

and its readiness to serve as a robust solution in the ever-

evolving landscape of IoT security. Leveraging these 

technologies, the proposed system is well-positioned to 

substantially impact the safeguarding of IoT networks 

against sophisticated cyber threats. 

Computation and Communication Costs Analysis 

During this study, we have instituted a series of stringent 

measures to forestall overfitting and to guarantee the 

robustness and generalizability of our proposed Multi-Layer 

Perceptron (MLP) model. In the initial stage of data 

preprocessing, we employed data balancing techniques to 

address class imbalance, thereby mitigating potential model 

bias. Principal Component Analysis (PCA) was utilized for 

feature extraction to reduce dimensionality, effectively 

minimizing the risk of the model learning noise and 

ensuring its focus on meaningful patterns within the data. 

The architecture of our deep learning MLP was 

meticulously configured, consisting of an optimal 

arrangement of hidden layers and nodes (10, 8, and 6 in the 

respective layers), carefully calibrated to maintain 

complexity at a level conducive to learning diverse 

patterns without overcomplicating the model. We adopted 

the Adam optimizer, leveraging its proven efficiency and 

reliability in the sparse data landscapes characteristic of 

IoT environments. 

Furthermore, to validate the performance and ensure 

the integrity of our model, we implemented k-fold cross-

validation, which provided a rigorous assessment across 

multiple data subsets and circumvented the limitations of 

single-set evaluations. We incorporated dropout layers 

during the training phase as a regularization technique to 

prevent the co-adaptation of neurons, thereby fostering a 

model structure conducive to generalization. 

These comprehensive and carefully considered 

methodologies have culminated in a model that not only 

exhibits high predictive accuracy but also demonstrates 

remarkable generalizability when exposed to new and 

unseen IoT network data. This confirms our model's 

effectiveness in reliably detecting a broad spectrum of 

attack types, affirming our confidence in its capacity to 

perform consistently in real-world scenarios. 

Data Integrity and Privacy Considerations 

While our primary research focuses on the 

development of a sophisticated detection framework for 

black hole attacks in IoT networks using the RPL protocol, 

it is important to address the considerations of data 

integrity and privacy. Given the sensitive nature of IoT 

environments, these aspects are crucial. 

Integration with Intrusion Detection Systems 

Our approach is designed to be integrated into an 

existing Intrusion Detection System (IDS), which is 
responsible for the implementation of comprehensive data 
integrity and privacy measures. This integration ensures 
that our methodology complements the security 
mechanisms that are already in place within these systems. 

Future Integration Considerations 

The IDS, which will incorporate our detection 
framework, is equipped to handle end-to-end encryption, 
access controls, data anonymization, and compliance with 
relevant privacy regulations. This setup ensures that all 
data collected and analyzed within the IDS adhere to strict 
privacy and security standards. 

Security protocols: The IDS typically employs robust 
encryption protocols for data in transit and at rest, alongside 
implementing strict access controls to ensure that only 
authorized personnel can access sensitive information. 

Conclusion 

In our study, we have developed an advanced deep 
learning methodology aimed at enhancing the security of 
IoT networks against black hole attacks. This approach 
integrates seamlessly with an Intrusion Detection System 
(IDS) designed to function alongside a data-sniffing 
module, effectively aggregating traffic data and offloading 

the computational burden from IoT devices. 
The backbone of this system is a bespoke Multi-Layer 

Perceptron (MLP) model, crafted to be resource-efficient 
and ideally suited for deployment on edge computing 
devices, rather than on the IoT nodes themselves. This 
design ensures that IoT devices maintain operational 
efficiency without the added strain of security analysis. 
Through meticulous simulations that accurately replicate 
standard operational conditions as well as the disrupted 
states characteristic of black hole attacks, our methodology 
has generated a rich dataset that provides deep insights into 
network behavior under these varying conditions. Our 

deep MLP model, central to our research, has 
demonstrated an impressive overall accuracy of 94.3%, 
with specific accuracies of 94.4% in training, 94.2% in 
validation, and 94.0% in testing phases, coupled with low 
Mean Squared Error (MSE) rates the lowest validation 
MSE recorded at 0.029192. Moreover, the Receiver 
Operating Characteristic (ROC) curves for both benign 
and malicious activities have nearly reached perfection, 
illustrating the model's high discriminative power even in 
challenging scenarios. 

In response to evolving cybersecurity threats, our 

model incorporates incremental learning and transfer 

learning to adapt efficiently to new and complex attack 

vectors, Robust validation protocols, including k-fold 

cross-validation and adversarial testing, ensure consistent 

performance and resilience against evasion techniques. 
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Future enhancements will integrate dynamic anomaly 
detection algorithms and explore hybrid models, 

combining MLP with other machine learning approaches 
to maintain effectiveness in the rapidly evolving landscape 

of IoT security. While these results are promising, it is 
important to note that they are based on simulations. The 

decision to initially use simulated environments was 
driven by the need for controlled conditions to rigorously 

test and validate our model’s efficacy before deployment. 
Real-world testing presents numerous challenges such as 

variability in network conditions, the heterogeneity of IoT 
devices, and logistical and ethical considerations regarding 

data privacy and security. 
These factors necessitate a cautious approach to 

transitioning from a controlled simulation to the 
unpredictable nature of real-world applications. 

Future Work 

To bridge the gap between simulation-based results and 

real-world applicability, future research will focus on 
applying these methodologies in real-world environments 
to validate and enhance the model's effectiveness and 

scalability. This step is crucial for ensuring that the model 
not only performs well in theoretical and simulated 
scenarios but also holds up under the unpredictable and 

varied conditions of actual IoT deployments. Future 
studies should explore the integration of the MLP with 
other deep learning architectures, such as Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs), to improve sensitivity to spatial and temporal 
patterns in network traffic. This could potentially provide 
a more granular detection of black holes and other 

sophisticated attacks. 
Moreover, developing real-time detection and 

automated response mechanisms that can identify and 
mitigate attacks as they occur will be pivotal in reducing 

potential damage to the network. Additional research is 
also needed to optimize the MLP model for scalability and 
efficiency, ensuring it can be deployed in resource-

constrained environments typical of many IoT devices 
without compromising performance. 

In subsequent phases of our research, we plan to 

explore direct integrations with various IDS architectures 

to further enhance the security measures specific to our 

methodology. This will include detailed strategies for 

maintaining data integrity and privacy as an integral part 

of our deployment plan. 

Ethical Considerations 

The journey toward securing IoT networks is an 
ongoing process, characterized by the constant need for 

innovation and adaptation. This study contributes a 
significant step forward in this journey, offering a scalable 
and effective solution to the threat of black hole attacks. 
However, the landscape of network security is ever-
changing and as such, our work represents not just a 

solution, but a foundation for future explorations aimed at 
safeguarding the interconnected world of IoT. 
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