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Abstract: Brain tumors present a significant medical challenge, often 

necessitating surgical intervention for treatment. In the context of 

postoperative brain MRI, the primary focus is on the resection cavity, the 

void that remains in the brain following tumor removal surgery. Precise 

segmentation of this resection cavity is crucial for a comprehensive 

assessment of surgical efficacy, aiding healthcare professionals in 

evaluating the success of tumor removal. Automatically segmenting 

surgical cavities in post-operative brain MRI images is a complex task due 

to challenges such as image artifacts, tissue reorganization, and variations 

in appearance. Existing state-of-the-art techniques, mainly based on 

Convolutional Neural Networks (CNNs), particularly U-Net models, 

encounter difficulties when handling these complexities. The intricate 

nature of these images, coupled with limited annotated data, highlights the 

need for advanced automated segmentation models to accurately assess 

resection cavities and improve patient care. In this context, this study 

introduces a two-stage architecture for resection cavity segmentation, 

featuring two innovative models. The first is an automatic skull removal 

model that separates brain tissue from the skull image before input into the 

cavity segmentation model. The second is an automated postoperative 

resection cavity segmentation model customized for resected brain areas. 

The proposed resection cavity segmentation model is an enhanced U-Net 

model with a pre-trained VGG16 backbone. Trained on publicly available 

post-operative datasets, it undergoes preprocessing by the proposed skull 

removal model to enhance precision and accuracy. This segmentation 

model achieves a Dice coefficient value of 0.96, surpassing state-of-the-

art techniques like ResUNet, Attention U-Net, U-Net++, and U-Net. 
 
Keywords: Cavity Segmentation, Enhanced U-Net, Post-Operative Brain 

MRI, Skull Removal, VGG16 Backbone 
 

Introduction  

Magnetic Resonance Imaging (MRI) has emerged as an 

indispensable tool in the field of medical imaging, 

particularly in the realm of brain tumor segmentation 

(Rajasekaran and Gounder, 2018). However, one of the 

inherent challenges associated with MRI data, especially 

for brain tumor analysis, lies in its three-dimensional 

nature. While 3D MRI provides comprehensive spatial 

information (Madan, 2015), it also results in significantly 

larger datasets compared to traditional 2D imaging. These 

formidable data sizes can strain computational resources, 

hinder efficient storage, and impede timely analysis. When 

it comes to storing and analyzing brain MRI datas, two 

common formats are Digital Imaging and Communications 

in Medicine (DICOM) and Neuroimaging Informatics 

Technology Initiative (NIfTI) (Samuel et al., 2020). These 

formats contain not only the brain structures of interest 

but also the entire skull, adding an extraneous layer of 

complexity. To address these issues and streamline the 

preprocessing pipeline, there is an urgent need for an 

automatic skull removal model. This model plays a 

pivotal role in dimensionality reduction by effectively 

eliminating non-brain regions, thereby optimizing MRI 

data for subsequent segmentation tasks (Fatima et al., 

2020). In essence, the development of an automated skull 

removal approach is instrumental in unlocking the full 

potential of MRI in brain tumor segmentation, providing more 

efficient and precise analyses. 
Postoperative brain MRI plays a pivotal role in 

assessing tumor resection extent and monitoring post-
surgery changes. The postoperative resection cavity in the 
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brain represents the space remaining after the surgical 
removal of a brain tumor or lesion. Precise segmentation 
and analysis of postoperative MRI images enable 
healthcare professionals to extract valuable information 
about resection extent (Arnold et al., 2022), residual 
tumor presence, and postoperative brain changes. 
Manual segmentation is labor-intensive and prone to 
errors. Computer-assisted techniques have gained 
attention for their potential to enhance efficiency, 
accuracy, and reproducibility. However, automating the 
segmentation of surgical cavities in these images presents 
challenges due to image artifacts, tissue reorganization, 
and diverse appearances. Therefore, the development of 
dedicated algorithms that consider postoperative features 
is crucial for effective segmentation. State-of-the-art 
techniques for brain MRI segmentation primarily utilize 
Convolutional Neural Network (CNN)-based models 
(Hesamian et al., 2019), particularly U-Net models. 
However, the efficacy of deep learning models, such as 
U-Net, heavily depends on having ample annotated 
datasets. Post-operative brain MRI, unfortunately, 
confronts a scarcity of annotated data due to ethical and 
practical considerations. These constraints underscore 
the urgency for innovation and advancement in this 
crucial domain. The shortage of adequate annotated data 
remains a significant obstacle, frequently curbing the 
adaptability and universality of deep learning models. 

To address this challenge, our study introduces a two-

stage architecture that initially preprocesses the input 

images, followed by the prediction of a brain tissue mask 

from the entire skull MRI. Subsequently, this predicted 

region of interest is cropped and input into the cavity 

segmentation network for the second stage. The proposed 

post-operative cavity segmentation model is an enhanced 

U-Net model, which incorporates an attention-enabled U-

Net with a pre-trained VGG16 encoder and residual 

connections. This hybrid framework aims to enhance 

resection cavity segmentation precision. The model was 

trained on the publicly available post-operative dataset 

EPISURG (Pérez-García et al., 2021). 

Additionally, this research presents a novel model for 

automatic skull removal: An enhanced U-Net with a pre-

trained VGG16 backbone (Zhang et al., 2018). The 

objective of the skull removal model is to enhance post-

operative brain MRI cavity segmentation. It begins with 

image preprocessing, including tasks like intensity 

normalization, bias field correction, and noise reduction. 

After that, morphological procedures are used to create a 

brain extraction mask, isolating the brain tissue and 

aligning it with anatomical edges using edge detection. 

The largest connected area of white pixels in the mask 

represents the brain tissue, effectively separating it from 

the background. This binary mask is applied to the 

original MRI image to produce a skull-stripped brain 

image. Optionally, post-processing steps like smoothing 

or artifact correction can be applied to refine the results. 

Automatic skull removal is crucial for accurate brain 

analysis in neuroimaging and medical image processing. 

These steps collectively form a typical pipeline for 

automatic skull removal in MRI image processing. This 

model is trained with the NFBS dataset (Pravitasari et al., 

2020). Compared to existing skull removal models, the 

proposed model outperforms them with a Dice score of 

0.98. To assess the impact of skull removal on the cavity 

segmentation model, we further evaluated the 

performance of the proposed cavity segmentation model 

on a dataset containing skull-stripped images compared to 

a dataset with skulls included, resulting in an improved 

Dice coefficient of 0.96 from the initial 0.92. 

Two distinct areas are thoroughly examined in this 

section. The first examines current developments in 

automatic skull removal methods, highlighting research 

gaps and their contributions. A thorough analysis of the 

current post-operative segmentation models is the second. 

Automated Skull Removal Methods 

Deep learning models require large datasets for 

training, which poses a significant challenge, especially in 

the case of three-dimensional MRI data, where each 

volume can be several gigabytes in size. Loading such 

massive datasets demands terabytes of memory and 

considerable CPU resources, making it a daunting task. 

Typically, researchers resort to resizing the dataset to 

lower dimensions to make it manageable, but this 

inevitably impacts the model's accuracy. However, an 

alternative approach is to automatically extract the brain 

region from the entire skull, reducing the MRI image's size 

and potentially enhancing the training model's accuracy. 

Hence, there is a need for an automatic skull removal 

model. Automatic skull removal is a multi-step process 

used in MRI image analysis (Swiebocka-Wiek, 2016).  
In their work, Pei et al. (2022) harness the capabilities 

of 3D convolutional neural networks to automate skull 
removal in multiparametric MRI scans, providing a 
versatile solution for diverse imaging scenarios. 
However, the reliance on large datasets and the inherent 
complexity of deep learning models may present 
challenges in resource-constrained environments and 
interpretability. Azam et al. (2023) introduced an 
innovative deep learning-based skull removal method 
using Mask-RCNN, showcasing superior performance 
compared to traditional approaches. While it offers 
enhanced accuracy and automation, its computational 
intensity and model complexity may pose challenges for 
resource-constrained environments. 

Addressing skull removal challenges for multi-

contrast MR images, (Roy et al., 2018) introduced a deep 

learning framework that eliminates the need for 

deformable registration and extends its applicability to 

diverse species. This approach significantly enhances 

brain extraction accuracy in both healthy and pathological 

human and rodent images, emphasizing its potential for 
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broader neuroimaging applications. Valvano et al. (2018) 

developed an advanced Convolutional Neural Network 

(CNN)-based skull removal method to automatically 

remove non-brain tissue from Magnetic Resonance (MR) 

brain scans. This innovative approach achieved a 

remarkable Dice metric score of 96.5% and a processing 

time of 4.5 sec per volume, demonstrating exceptional 

performance and efficiency on the NFBS public database. 

However, our aim is to further enhance this model's 

capabilities by creating an improved version capable of 

efficiently handling both pre-operative and post-operative 

brain MRI scans. 

Deep learning-based skull removal methods, as 

exemplified by deep strip Zhou et al. (2020), deep skull 

Curnoe et al. (2016), Synth Strip Hoopes et al. (2022), and 

deep BrainSeg Tan et al. (2020), face challenges related 

to dataset availability, especially the need for 

comprehensive and well-annotated datasets spanning 

diverse MRI modalities and clinical contexts. 

Additionally, these models can be resource-intensive, 

limiting their accessibility for researchers with modest 

computational resources. Future research efforts could 

focus on developing more efficient deep-learning 

architectures tailored specifically for skull removal tasks. 

On a different note, models like ROBEX (Iglesias et al., 

2011) and SPM Brain Extraction (Kazemi and 

Noorizadeh, 2014) have shown limitations regarding their 

sensitivity to data quality and noise, emphasizing the 

necessity for research that enhances the robustness of 

skull removal techniques, particularly when confronted 

with noisy and complex datasets. Classical image processing 

approaches (Lalande Lalande and Fournier, 2014; Tan et al., 

2020; Roy et al., 2017; Kamnitsas et al., 2016), such as 

FSL BET, BET2 and AFNI 3dSkullStrip, are recognized 

for their susceptibility to artifacts. Prospective research 

directions should refine these methods to improve their 

accuracy when dealing with data containing artifacts. 

Existing Models for Post-Operative Brain MRI 

Segmentation 

The U-Net architecture, proposed by Ronneberger et al. 

(2015), has gained popularity in medical image 

segmentation tasks due to its ability to capture fine-

grained details and contextual information. The U-Net 

model comprises an encoder-decoder architecture with 

skip connections that enable the incorporation of high-

resolution features from the encoder into the decoder. 

These skip connections enhance spatial localization and 

mitigate the vanishing gradient problem during training. 

U-Net models have demonstrated success in various 

medical imaging applications, including organ 

segmentation, tumor detection, and lesion segmentation. 

The architecture's inherent flexibility allows adaptation 

to specific medical imaging tasks, including brain MRI 

cavity segmentation. Several studies have investigated 

U-Net-based approaches for cavity segmentation, 

achieving promising results in the context of 

preoperative brain MRI data. 

In the domain of postoperative brain MRI 

segmentation, limited contributions have driven progress. 

It's essential to recognize the dedication of researchers to 

pushing the boundaries of this field. Bakas et al. (2016) 

introduced GLISTRboost, a semi-automatic method that 

employed a hybrid generative-discriminative model a 

milestone in postoperative brain MRI segmentation. 

Jungo et al. (2018) brought forth the Fully convolutional 

DenseNet, a specialized deep-learning model designed 

for segmentation tasks, utilizing dense connections and 

convolutional layers for precise results. Pérez-García et al. 

(2021) proposed a self-supervised learning approach for 

postoperative brain MRI segmentation. This method 

harnessed both labeled and unlabeled data to enhance 

the segmentation model's performance without 

extensive manual annotations. In the same year, the 

Brain Tumor Sequence Registration Challenge, as part 

of the MICCAI challenge, catalyzed the development of 

innovative brain tumor segmentation techniques. 

Additionally, Baheti et al. (2021) introduced a co-

registration method, aligning preoperative and 

postoperative brain MRI scans to enhance segmentation 

accuracy. Arnold et al. (2022) presented a modified U-Net 

model, incorporating additional features and layers to 

enhance segmentation performance. 

The study's insights uncover several crucial findings. 

Following surgery, CSF (cerebrospinal fluid) fills the 

resection cavities. Because of this, it is inherently 

difficult to distinguish RCs next to structures like sulci, 

ventricles, or edemas (Pérez-García et al., 2021). There 

is limited availability of annotated training data for post-

operative resection cavity segmentation, posing a 

challenge for model generalization. Given the scarcity of 

annotated datasets, the utilization of pre-trained models 

can enhance segmentation results. Improving the 

efficiency of segmentation models can be accomplished 

by fine-tuning existing segmentation models with post-

operative datasets. 

Materials and Methods 

Dataset Description 

In this study, a publicly available dataset, the NFBS 

dataset (Pravitasari et al., 2020) (Neurofeedback skull 

removal dataset), is used as the foundation for training 

the automated skull removal model. The NFBS dataset 

is widely recognized in the neuroimaging research 

community and is specifically designed for skull 

removal tasks. The NFBS dataset features MRI data 

from 125 participants aged 21-45, encompassing various 

clinical and subclinical psychiatric conditions. It 

comprises structural T1-weighted anonymized (de-
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faced) images, brain masks obtained through the Beast 

method with expert manual edits, and skull-stripped 

images, all at a 1 mm³ resolution in NiFTI format. This 

format is a standard for housing neuroimaging data. The 

NFBS dataset comprises two integral components: The 

unprocessed T1-weighted MRI raw image, which serves 

as our model's initial input; and the meticulously crafted 

brain mask, generated through a combination of the 

Beast method and manual expert adjustments, providing 

crucial guidance for defining the brain's boundaries.  

The EPISURG dataset, or the Epilepsy Surgery 

Dataset, represents a valuable resource for postoperative 

cavity segmentation. It encompasses T1-weighted 

Magnetic Resonance Images (MRI) from a substantial 

cohort of 430 patients who have undergone resective brain 

surgery for epilepsy treatment. Within this dataset, there 

are both preoperative and postoperative MRI scans 

available. In this study, the trained skull removal model 

was applied to this dataset and removed non-brain 

structures from the MRI images.  

Proposed Two-Stage Segmentation Framework 

Using separate stages for skull removal and 

segmentation is a vital strategy for achieving accuracy. It 

enables the network to initially identify the anatomical 

position and then perform segmentation on the region of 

interest. This two-stage approach is more efficient, 

particularly when dealing with small regions of interest 

(Francis et al., 2022) or when they are surrounded by 

structures like surgical artifacts that could affect 

segmentation. It significantly enhances segmentation 

accuracy by reducing false positives, narrowing the search 

space, and improving overall robustness. The process 

begins with image preprocessing, which includes tasks 

like intensity normalization, bias field correction, and 

noise reduction. Morphological procedures follow, 

creating a brain extraction mask to isolate brain tissue and 

align it with anatomical edges using edge detection. The 

largest connected area of white pixels in the mask 

represents brain tissue, effectively separating it from the 

background. This binary mask is applied to the original 

MRI image to produce a skull-stripped brain image. The 

region of interest is then cropped and fed into the cavity 

segmentation network for the second stage. The 

framework of this proposed method is illustrated in Fig. 1. 

and comprises three main steps: ROI identification, 

Cropping, and cavity segmentation. 

Automatic Skull Removal Model 

Automatic brain extraction is essential due to its 

critical role in clinical applications and enabling accurate 

neuroimaging analyses. The automatic brain extraction 

method employed in this study is designed to extract the 

brain region from the entire skull from MRI scans.  

 
 
Fig. 1: Proposed two-stage segmentation architecture 

 

 
 
Fig. 2: Proposed automated skull removal model architecture 

 

Figure 2 illustrates the architecture of the proposed 

skull removal using a VGG16 backbone and a U-Net 

architecture with attention gates. It is aimed at segmenting 

brain images and focuses on down-sampling (encoder) 

and up-sampling (decoder) components to facilitate the 

integration of features across large spatial regions. The 

input is a 3D image of dimensions (128, 128, 128, 1). It 

features an encoder-decoder structure, with the encoder 

consisting of ten convolutional blocks organized in pairs 

(Zhang et al., 2018), followed by max-pooling and 

dropout layers for feature extraction and down-sampling. 

The decoder incorporates attention mechanisms and up-

sampling layers, aiming to recover spatial information and 

facilitate feature integration. VGG16 is known for its 

ability to extract hierarchical features from images. 

Combining this feature extraction capability with the 

attention mechanisms of the U-Net architecture can 

improve the model's understanding of intricate details in 

brain MRI images. In summary, an attention U-Net with 

a pre-trained VGG16 backbone combines the advantages 
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of attention mechanisms and transfer learning. The model 

output is a 3D image of dimensions (128, 128, 128, 1) 

with a sigmoid activation function applied. The model 

consists of a total of 11 convolutional layers, including 5 

in the encoding path, 1 in the bottleneck, and 4 in the 

decoding path. Additionally, there are corresponding up-

sampling layers and dropout layers in the decoding path 

to facilitate feature expansion and capture spatial details 

during the up-sampling process. The model uses the 

Adam optimizer with a batch size of four and employs 

Rectified Linear Unit (ReLU) activation functions to 

introduce non-linearity.  

Automatic Cavity Segmentation Model 

This is an improved version of the model discussed 

in our previous study, 'Post-Operative Brain MRI 

Resection Cavity Segmentation Model and Follow-Up 

Treatment Assistance' (Xavier et al., 2024). The 

proposed cavity segmentation model features an 

attention-enabled U-Net with residual connections and a 

VGG16 backbone. In this model, residual connections 

play a pivotal role in maintaining effective information 

flow during training. They mitigate the vanishing 

gradient problem, ensuring the model's ability to learn 

and extract features efficiently. The diagram illustrates 

the arrangement of convolutional layers, residual 

connections, and attention modules within the U-Net 

framework, underscoring their significance in achieving 

accurate segmentation. The VGG16 backbone consists 

of 13 convolutional layers grouped into five blocks, 

facilitating the capture of high-level image features. 

Integration of skip connections between encoder and 

decoder layers enhances the exchange of both low-level 

and high-level features for improved segmentation 

accuracy. Figure 3 illustrates the architecture of the 

proposed cavity segmentation model. 

 

 
 
Fig. 3: Proposed automated cavity segmentation model architecture 

Two additional modules are incorporated into the 

proposed design to enhance model performance. To 

mitigate the vanishing gradient issue inherent in deep 

neural networks with numerous layers, the residual block 

includes a skip connection that enables training to bypass 

certain layers. The attention gate, as illustrated in Fig. 2, 

is placed in the skip connection between the encoder and 

decoder of the U-Net structure. This gate highlights only 

relevant activations during training, minimizing 

computational resource waste on irrelevant activations. 

Results 

The skull removal model was trained on the NFBS 
dataset, which consists of data from 125 participants. To 
enhance the model's adaptability, the data augmentation 
technique of rotation was incorporated during training. The 
dataset was split into 360 samples for training and 20 
samples for testing. For the cavity segmentation model, the 
EPISURG dataset was used. The skull removal model was 
employed as a preprocessing step, followed by splitting the 
skull-removed data into 240 samples for training and 20 for 
testing. Both models were implemented using the 
TensorFlow framework and trained on CoLab Pro with a 
batch size of 1. To reduce memory space requirements 
during training of the skull removal network, the input 
images and masks were downsized to a quarter of their 
original size. The Region of Interest (ROI) for each organ 
was identified from the ground truth mask and individual 
organ bounding boxes were created. The skull removal 
model underwent 30 epochs of training using these 
bounding boxes as labels to predict brain boundaries. 
Subsequently, the 3D ROI coordinates for all organs were 
calculated from the predicted outputs of the skull removal 
model, and the cropped images were prepared for 
segmentation. The models were trained separately and the 
model weights were saved. To enhance convergence, the 
model weights were updated during the training process 
using the Adam optimizer (Kingma and Ba, 2014). 

The training of the proposed skull removal model on the 

NFBS dataset yielded impressive results, highlighting its 

effectiveness in accurately segmenting brain tumor regions. 

Figure 4 provides a summary of the training outcomes, 

showcasing the model's capability to delineate and segment 

the brain accurately in MRI scans with the skull. 

For training the cavity segmentation model, the 

EPISURG dataset, consisting of postoperative brain MRI 

scans with annotated ground truth for cavity segmentation, 

was utilized. Initially, the model underwent training using 

the entire skull-inclusive dataset, and its segmentation 

accuracy was assessed. Subsequently, the same model was 

applied to the dataset after skull removal, and the results 

were evaluated. A comparison of the two result sets 

revealed a significant improvement in the Dice coefficient 

value, increasing from an initial 0.92-0.96 after skull 

removal. Figure 5 provides a visual summary of the training 

outcomes for the proposed cavity segmentation model. 
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Fig. 4: Training outcomes of the proposed skull removal model 

on the NFBS dataset 
 

 
 
Fig. 5: Training outcomes of the proposed cavity segmentation 

Model on the EPISURG dataset 
 

 
 
Fig. 6: Performance metrics of the proposed cavity segmentation 

model 

 

The key evaluation metrics used to assess cavity 

segmentation quality in this study are Loss function, 

Intersection over Union (IoU), and Dice Coefficient (Jadon, 

2020; Valvano et al., 2018). Loss (training and validation) 

serves as the foundation for model training and 

optimization, employing suitable loss functions like Mean 

Squared Error (MSE) or Binary Cross-Entropy to quantify 

dissimilarity between predicted segmentation and ground 

truth masks, aiming to minimize this loss during training 

for improved boundary accuracy. IoU measures spatial 

overlap between predicted cavity regions and ground truth 

masks, calculated as the intersection divided by the union. 

Similarly, the Dice Coefficient quantifies the similarity 

between predicted and actual cavity masks, computed as 

twice the intersection divided by the sum of their areas. 

Both IoU and Dice Coefficient provide valuable insights 

into segmentation accuracy, with higher scores indicating 

better alignment and robust performance, particularly 

beneficial when the cavity region is relatively small 

compared to the brain. Figure 6 summarizes the training 

outcomes of the proposed cavity segmentation model, 

showcasing a decline in both training and validation losses, 

improved Intersection over Union values (from 0.0323-

0.9659 for training and 0.0105-0.9767 for validation), and 

an increasing Dice coefficient (from 0.0621-0.9593 for 

training and 0.0208-0.9622 for validation). These metrics 

collectively emphasize the model's precision and robust 

performance in segmenting both datasets. 

Discussion 

Using the skull removal method before segmentation 

proves beneficial in the postoperative context, allowing the 

network to identify the region of interest and extract minute 

features, ultimately improving segmentation accuracy. This 

research proposes an enhanced resection cavity 

segmentation framework with automatic skull removal, 

consisting of two parts. The first part automates skull 

removal in brain MRI scans, utilizing a U-Net model with 

a VGG16 backbone and attention gates for efficient feature 

extraction. This approach outperforms existing models, as 

demonstrated in Table 1 using the NFBS dataset. 

The second part focuses on post-operative resection 

cavity segmentation in brain MRI, addressing challenges 

posed by surgical interventions and varying brain tissue 

structure. Accurate segmentation is crucial and our method, 

evaluated against top-performing models (U-Net, U-Net++, 

Attention U-Net, and ResuNet) on the post-operative 

EPISURG dataset, significantly enhances segmentation 

performance. This comparative analysis highlights the 

efficacy of our proposed cavity segmentation model. The 

performance metrics resulting from a comprehensive 

analysis of well-known brain MRI segmentation models U-

Net, U-Net++, Attention U-Net, and ResUNet in post-

operative cavity segmentation using the EPISURG dataset 

are presented in Table 2 and Fig. 7. The analysis 

demonstrates that the suggested cavity segmentation model 

surpasses previous models by incorporating automatic skull 

removal and an improved U-Net design. There is limited 

work on automated postoperative resection cavity 

segmentation. Pérez-García et al. (2021) utilized a self-

supervised 3D CNN for Resection Cavity (RC) 

segmentation. Arnold et al. (2022) proposed a modified U-Net 

model for cavity delineation. Billardello et al. (2022) 

proposed a semi-automated region-growing algorithm for 

cavity segmentation. Table 3 summarizes the performance 

metrics reported in various studies on post-operative 

cavity segmentation models. These results indicate that 

existing segmentation models perform well in standard 

scenarios, such as preoperative scans, but encounter 

significant challenges with postoperative brain MRI data. 
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Table 1: Comparison of deep learning-based automatic skull 

removal models Using NFBS Dataset 

Architecture Dice score 

Multi-view U-Net  0.918 

(Fatima et al., 2022)  

Enhanced U-Net  0.965 

(Valvano et al., 2018) 

Proposed model 0.980 

  

Table 2: Comparison of various segmentation models on a 

post-operative dataset 

Model Dice-coefficient 

U-Net 0.6150 

Attention U-Net 0.8234 

U-Net++ 0.7302 

ResUNet  0.7145 

Proposed model 0.9600  
 

Table 3: Comparison of performance metrics in various post-operative 

cavity segmentation models 

Model Dataset Dice  

Used Used coefficient 

Self-supervised 3D CNN EPISURG dataset  85.2 
(Arnold et al., 2022)  

Modified U-Net  Clinical dataset (62 images 0.84±0.08 

model (Pérez-García et al., of epilepsy patients)  
2021)  

Semi-automated Clinical dataset (35 MRI 0.83 (0.72  
region growing of glioma patients) -0.85)   

(Fatima et al., 2022)  

Proposed model EPISURG dataset 0.96 

 

 
 

Fig. 7: Various segmentation models performance on 

EPISURG dataset 

 

Conclusion 

In conclusion, this research introduces a 

groundbreaking approach to postoperative brain MRI 

segmentation with an innovative two-stage architecture 

that incorporates an enhanced cavity segmentation 

model featuring automatic skull removal. The proposed 

model outperforms existing segmentation models, 

demonstrating superior accuracy on the EPISURG 

dataset. By utilizing a novel automatic skull removal 

model and a postoperative cavity segmentation model, 

this approach addresses memory space constraints and 

reduces false positive predictions, ultimately 

improving segmentation accuracy. The integration of 

attention gates and residual blocks enhances the feature 

extraction capability of the segmentation model, 

mitigating the vanishing gradient problem. This study 

not only contributes a robust framework for post-

operative cavity segmentation but also sheds light on 

the broader challenges posed by limited annotated data 

in this domain. The proposed two-stage architecture, 

coupled with the enhanced U-Net model, presents 

promising results and opens avenues for more accurate 

and efficient neuroimaging analyses. The findings of 

this research hold significant implications for 

advancing medical diagnoses and treatments in the 

field of neuroimaging. 
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