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Abstract: This paper explores the prediction of CO2 emissions using
Multivariate Regression models, incorporating the influence of significant
historical events such as pandemics and industrial revolutions. While
existing research primarily focuses on carbon emissions alone in forecasting
models, this study emphasizes the importance of incorporating multiple
factors for a comprehensive understanding of CO2 dynamics. Beyond
emissions, factors such as socioeconomic indicators, industrial activities,
environmental policies, and historical events play significant roles. This
multidimensional methodology is essential for developing robust prediction
models capable of capturing the complex dynamics of CO2 emissions. This
paper introduces the notion of regression flags to mark these impactful
events, revealing the intricate relationship between CO2 emissions and
external factors. By integrating these flags into a Multivariate Regression
model, we uncover how different historical contexts shape emissions trends
over time. Experimental results underscore the effectiveness of our model in
accurately predicting CO2 emissions dynamics amidst varying historical
conditions. The experimental results demonstrate a robust ability of the used
Multivariate Regression model with the notion of events flags to achieve
precise predictions of CO2 emissions over time.

Keywords: CO2 Emissions, Forecasting, Multivariate Regression, Artificial
Intelligence

Introduction
The pressing challenge of our era lies in climate

change, where anthropogenic carbon dioxide (CO2)
emissions stand out as a key driver, requiring a thorough
grasp of their dynamics for effective mitigation
strategies, which in turn call for both monitoring and
predictive capacities. The ability to forecast CO2
emissions accurately is crucial for informing policy
interventions and guiding sustainable development
efforts (Faruque et al., 2022). To this end, sophisticated
analytical techniques such as polynomial regression and
others offer promising avenues for modeling the complex
relationships between CO2 emissions and various
influencing factors (Konya and Nematzadeh, 2024).

In addition to ongoing anthropogenic activities,
significant historical events, such as pandemics and
industrial revolutions, have demonstrable impacts on
CO2 emissions. These events disrupt societal and
economic systems, leading to fluctuations in energy
consumption, industrial output, and transportation
patterns, all of which influence carbon emissions (Khan
et al., 2022). Recognizing the need to account for such

events in predictive models, the incorporation of flags or
indicators becomes imperative. Flags serve as markers
for periods characterized by extraordinary circumstances,
enabling the delineation of distinct temporal segments
within datasets and facilitating more nuanced analyses.

While existing research predominantly focuses on
carbon emissions as the sole predictor in their forecasting
models, our study underscores the imperative of
integrating multiple factors to achieve a comprehensive
understanding of CO2 dynamics. By broadening the
scope beyond carbon emissions alone, our approach
advocates for a more holistic perspective that
incorporates various criteria crucial for accurate CO2
predictions. Factors such as socioeconomic indicators,
industrial activities, environmental policies, and
historical events like pandemics and industrial
revolutions can significantly influence CO2 emissions
(Konya and Nematzadeh, 2024). Recognizing the
interconnectedness of these variables is paramount for
developing robust prediction models that capture the
nuanced dynamics of CO2 developments. Our work
underscores the necessity of adopting a multidimensional
approach to forecast CO2 emissions, thereby offering
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insights crucial for informed decision-making and
effective climate mitigation strategies.

In this context, we believe that pandemics have
historically played a pivotal role in influencing global
CO2 emissions, often resulting in abrupt. For instance,
during the COVID-19 pandemic, global daily CO2
emissions experienced a significant decline of
approximately 17% at the height of global confinement
measures in April 2020, compared to the same period in
2019 (Le Quéré et al., 2020). This reduction was
attributed to widespread lockdowns, diminished
industrial activity, and reduced transportation demand.
Similarly, historical pandemics, such as the 1918
influenza pandemic, likely caused regional disruptions in
emissions, although comprehensive datasets from earlier
periods are sparse.

The transient nature of these reductions underscores
the limited capacity of pandemics to effectuate sustained
emission decreases without systemic policy
interventions. Recognizing this, recent studies have
incorporated pandemics as a variable in predictive
models to better understand their long-term implications
on CO2 emissions. For example, Liu et al. (2020) used
machine learning algorithms to project emissions
trajectories under scenarios that factor in potential
pandemic events. Such models are instrumental in
elucidating the interplay between health crises and
climate dynamics, enabling policymakers to anticipate
and mitigate the rebound effects observed post-
pandemic. These predictive approaches not only
highlight the immediate impacts of pandemics but also
serve as critical tools for planning sustainable recovery
strategies that align with global climate objectives.

Brzezinski (2021) explored how past pandemics
influenced CO2 emissions and the shift toward
renewable energy. The study found that historical
pandemics triggered a short-term decline in CO2
emissions by approximately 3.4–3.7% while also
contributing to a rise in the share of electricity generated
from renewable sources over the following five years.

In the forthcoming sections, we will delve into our
methodology, explaining the utilization of polynomial
regression, as a chosen prediction model for this study,
and the notion of event flags. By incorporating historical
contexts, our research seeks to offer a nuanced
comprehension of the impact of pandemics and industrial
revolutions on CO2 emissions. Through this analysis, our
goal is to improve the precision and utility of CO2
emissions prediction models within a constantly evolving
global landscape.

The rest of this paper is organized as follows: In
coming paragraphs of this introduction, we embark on a
comprehensive review of the current literature pertaining
to our research domain. The Materials and Methods
section delves into the specifics of our methodology,
encompassing a detailed exposition of the used dataset,

the processes involved in data integration and
preprocessing, as well as the formulation of the used
emissions prediction model and its evaluation criteria.
The Results section is dedicated to the presentation and
discussion of our experimental results, shedding light on
the insights gleaned from our analyses. Finally, the
Conclusion section encapsulates our concluding remarks
and outlines potential avenues for future research and
exploration in this field.

Literature Review

Understanding the factors influencing carbon dioxide
(CO2) emissions is crucial for mitigating climate change.
Multivariate polynomial regression offers a valuable tool
for modeling CO2 emissions and assessing the impact of
various factors. This study aims to predict CO2
emissions using multivariate polynomial regression and
the notion of flag, specifically focusing on the role of
pandemics and industrial revolutions. We emphasize that
modeling without analyzing the relationships between
carbon emissions and various factors cannot reliably
support forecasts, as these factors influence carbon
emissions over time. Thus, it is crucial to establish a
carbon emissions forecasting model capable of
uncovering these interactions.

Indeed, must of previous CO2 forecasting models
may not comprehensively depict the intricate interplay
between emissions and diverse factors, especially
nonlinear relationships. Moreover, existing studies lacks
the integration of event flags, such as pandemics and
industrial revolutions, into their analyses, emphasizing
the need for a nuanced approach. Existing CO2
forecasting models in the literature can generally be
classified into two main types. The first category
includes models that assess the influence of a single
factor on carbon emission trends. The second category
consists of models that analyze the effects of multiple
factors on CO2 emissions independently.

In the context of the first category, Houghton (2003)
analyzed land-use changes in the United States and
China, as well as the latest FAO estimates of
deforestation and tropical afforestation, to calculate the
annual flow of carbon between terrestrial ecosystems and
the atmosphere, representing direct human activities,
resulting in a global release of 156 PgC into the
atmosphere from 1850 to 2000. Bouznit and Pablo-
Romero (2016) examined the correlation between
Algerian GDP and CO emissions, revealing a significant
association between the two variables. In Saleh et al.
(2016), an SVM model is proposed to predict carbon
emission expenditure based on energy consumption, with
a focus on monitoring CO2 emissions in business
operations. Bokde et al. (2021) proposed a novel short-
term CO2 emissions forecast for intelligent scheduling of
flexible electricity consumption, aiming to minimize
emissions. They compare two time series decomposition
methods against state-of-the-art models, achieving a 25%
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lower mean absolute percentage error. Alam and
AlArjani (2021) conducted a comparative analysis of
CO2 emission forecasts in Gulf countries. Their study
employed three forecasting models—Autoregressive
Integrated Moving Average (ARIMA), Artificial Neural
Networks (ANN), and Holt-Winters Exponential
Smoothing (HWES)—to predict annual CO2 emissions
in the region. Similarly, Zhao et al. (2018) introduced a
hybrid forecasting approach, integrating the mixed data
sampling (MIDAS) regression model with a Back
Propagation (BP) neural network, known as the MIDAS-
BP model, to estimate carbon dioxide emissions in the
United States. Prakash and Singh (2023) focused on
predicting carbon dioxide (CO2) emissions using various
time-series, machine learning, and deep learning models
applied to a dataset from the central electricity authority.
Köne and Büke (2010) underscores the importance of
trend analysis in modeling and forecasting energy-related
CO2 emissions, particularly focusing on the top-25
emitting countries. Through regression analyses,
statistically significant trends in CO2 emissions are
identified for eleven countries and the world total,
enabling the development of models for future CO2
emission projections. Libao et al. (2017) establishes a
method for predicting CO2 emissions from coal-fired
power plants based on combustion analysis and
proximate fuel data, aiding in online monitoring.

For the second category where studies examine the
impact of several factors on carbon emissions, we can
cite first namely Faruque et al. (2022) that explores CO2
emissions, GDP, and energy usage, employing advanced
modeling techniques for enhanced predictive accuracy
and highlights the concerning upward trend in CO2
emissions for Bangladesh. Between 1970 and 2010, Ye et
al. (2022) introduced a dynamic time-delay discrete grey
forecasting model, designed to enhance accuracy in
predicting China’s carbon emissions. This model
leverages lagged relationship analysis and impulse
response assessment to improve its applicability. In a
similar approach, Aftab et al. (2021) used the
AutoRegressive Distributed Lag (ARDL) model and
Johansen cointegration analysis to explore the
relationship between CO2 emissions, energy
consumption, and economic growth in Pakistan over the
period from 1971 to 2019, employing both bivariate and
multivariate techniques. Meanwhile, Jamel and Derbali
(2016) analyzed time-series data from 1991 to 2013
across eight Asian countries, uncovering a strong link
between economic development, energy consumption,
and CO2 emissions, with economic growth and energy
use playing a significant role in environmental
degradation.

Always in the context of the second category, Zhang
and Lin (2012) analyzed the impact of multiple
economic factors on pollution levels, particularly CO2
emissions, in China between 1995 and 2010. Using the
fixed effects model and least squares generalized linear

regression, they examined key economic indicators such
as demographic intensity, urbanization, GDP, industrial
and service production, and energy consumption. Their
study found that demographic intensity, GDP, industrial
output, and energy consumption had a significant
influence on CO2 emissions.

Likewise, Ozturk and Acaravci (2013) performed a
time-series analysis to examine the relationship between
financial development, energy consumption, economic
growth, trade openness, and CO2 emissions in Turkey
over the period from 1960 to 2007. Their findings
indicated that while economic growth and trade openness
had a notable impact on environmental pollution,
financial development did not play a significant role in
determining environmental quality.

Additionally, Salari et al. (2021) investigated the link
between CO2 emissions, energy consumption, and GDP
across different U.S. states from 1997 to 2016. Their
analysis, based on both static and dynamic models,
revealed a persistent long-term relationship between
various forms of energy consumption and CO2
emissions. In this context Machine learning algorithms
have shown proficiency in understanding intricate
associations directly from the dataset.

Linardatos et al. (2023) used a multivariate dataset
comprising IoT sensor readings of various environmental
parameters to predict CO levels in a smart-city setting.
This hybrid approach integrates the AutoRegressive
Integrated Moving Average (ARIMA) statistical
technique with Temporal Fusion Transformers (TFT), a
deep learning method. (Xiong et al., 2021) introduced an
advanced multi-variable grey model (GM(1,N)), derived
from a linear time-varying parameter discrete grey model
(TDGM(1,N)), to enhance the accuracy of carbon
emission predictions. Similarly, Wang and Ye (2017)
developed a nonlinear grey multivariable model
incorporating power exponential terms to forecast
China’s carbon emissions from fossil fuel consumption.
Their approach demonstrated greater precision than
traditional models, offering valuable insights for energy
planning and environmental policymaking.

Chiu et al. (2020) designed an innovative
Multivariate Grey Prediction Model (MGPM) for CO2
emissions forecasting, integrating grey relational analysis
for feature selection and a neural-network-based residual
model for improved accuracy. Validated against real CO2
emission data, their model outperformed existing
MGPMs. Additionally, Huang et al. (2022) proposed a
nonlinear multivariate grey model (ENGM(1,4))
specifically tailored for predicting carbon emissions from
the transportation sector. Their model incorporated the
IPAT equation and the STIRPAT model, providing a
comprehensive framework for analyzing emissions in
this domain.

To enhance model accuracy, they employed the
derivation method along with the Quantum Particle
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Swarm Optimization (QPSO) algorithm for parameter
optimization. The model was validated using 18 years of
carbon emission data from China, the USA, and Japan.
Comparative analysis demonstrated that the ENGM(1,4)
model outperformed other models in prediction accuracy,
forecasting an upward trend in carbon emissions for
China and the USA, while projecting a decline for Japan
between 2019 and 2025.

Similarly, Ding et al. (2023) introduced an advanced
grey multivariate coupled model (CTGM(1,N)) for
carbon emission forecasting. This model integrates the
Choquet fuzzy integral with a grey multivariate delay
framework, accounting for time-lag effects and
interactions between influencing factors. To further
enhance precision, the model’s parameters were
optimized using the whale optimization algorithm.
Javanmard and Ghaderi (2022) developed a hybrid
method that integrates machine learning and
mathematical programming to accurately predict
greenhouse gas emissions, utilizing data from Iran
between 1990 and 2018. The study employed nine
algorithms—ANN, AR, ARIMA, SARIMA, SARIMAX,
RF, SVR, KNN, and LSTM—for forecasting, followed
by evaluation using five performance indicators.

Wei et al. (2018) proposed a hybrid model combining
random forest and extreme learning machine for CO2
emission forecasting. The random forest was used for
identifying key influential factors, while the extreme
learning machine handled the prediction task. The
model’s initial weights and biases were optimized using
moth-flame optimization.

Ding et al. (2017) introduced a novel grey
multivariable model to predict CO2 emissions in China,
aiming to overcome the limitations associated with
traditional forecasting models.

It introduces optimizations in background value
prediction, variable trends incorporation, and adjustment
coefficient optimization. Lin et al. (2018) addressed the
critical issue of forecasting carbon dioxide emissions,
crucial for understanding environmental impact and
guiding policy. It introduces a novel two-stage approach
combining multivariable grey forecasting and genetic
programming, overcoming limitations of conventional
methods and achieving higher accuracy in predicting
emissions trends.

Wu et al. (2015) investigated the interplay between,
urban population, energy consumption, economic
growth, and CO2 emissions in BRICS countries from
2004 to 2010 using a novel multi-variable grey model.
Findings suggest varying effects of economic growth on
CO2 emissions across countries, with Brazil and Russia
showing a decreasing trend, while India, China, and
South Africa exhibit an increasing trend. Wen and Cao
(2020) aimed to accurately predict residential energy-
related CO2 emissions in China by analyzing influential
factors. Initial indicators are identified using grey

relational analysis, followed by principal component
analysis to extract main components for Support Vector
Machine (SVM) input. Otherwise Ahmed et al. (2020)
utilizes Grey system theory to predict CO2 emissions
based on various variables such as environmental-related
technological change, fossil fuel and renewable energy
consumption, and economic output. The findings
indicate a continued rise in emissions intensity in the
BICS region, but also highlight the potential of
environmental technology advancements to mitigate this
intensity while supporting economic growth targets.

In this paper, we propose a CO2 emission forecasting
model based on Multivariate Polynomial Regression and
the integration of event flags. Contrary to the other
models of literature, the proposed one examine the
impact of several factors, simultaneously, on carbon
emissions.

Materials and Methods
In this section, we outline the used databases for our

experiments, which encompass Our World in Data’s
repository (Ritchie et al., 2022) and the integrated event
flags. Following this, we present the predictive model for
CO2 emissions.

Data Preparation Procedures

The dataset used for this study draws from a
reputable source known as “Our World in Data” a
platform that curates and provides open-access data
related to various global issues, including CO2 and
greenhouse gas emissions. Additionally, historical
records of pandemics and industrial revolutions were
obtained from the List of Epidemics and Pandemics from
Our World in Data’ s Historical Pandemics page (Dattani
et al., 2023) as well. These records encompassed details
of major pandemics, including their onset dates,
duration, and geographical spread.

Indeed, adding the Pandemics Flag highlights periods
of widespread disease outbreaks, aiding in the analysis of
CO2 emissions during such crises. Furthermore, to
facilitate a comprehensive examination of the influence
of industrial revolutions on CO2 emissions, we
introduced flags as indicators of significant historical
events. These flags denote periods corresponding to
major industrial revolutions, such as the First Industrial
Revolution in the late 18th to early 19th century and
subsequent industrial milestones. By delineating these
epochs within our dataset, we sought to compare CO2
emissions trends across different phases of industrial
development, elucidating the long-term impacts of
technological advancements and societal transformations
on carbon emissions dynamics.

Through rigorous analysis, we aimed to deduce
whether a single factor, such as a pandemic or an
industrial revolution, is sufficient for accurate emissions
prediction, or if multiple criteria are necessary to
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precisely determine the trajectory of emissions in the
years to follow. Incorporating these diverse datasets and
methodologies, our analysis aimed to provide a nuanced
understanding of the interplay between pandemics,
industrial revolutions, and CO2 emissions, offering
valuable insights for climate change mitigation efforts
and policy formulation. In order to seamlessly blend
historical emissions data with event-specific information,
the dataset preprocessing is required, including the
incorporation of flags. This could entail aligning
temporal periods, standardizing data formats, and
potentially addressing any missing values. Flags are
particularly important as they help mark significant
events within the dataset, enabling a more nuanced
understanding of emissions trends during and after these
events. The successful integration of emissions data with
event-related data, facilitated by flags, is crucial for
accurately capturing the nuanced emissions trajectories
during and following these events.

The dataset provided by “Our World in Data”
consists of a total of 74 columns, with a datetime index
ranging from 1750-01-01 to 2021-01-01. Notably, it
includes various attributes related to CO2 emissions,
such as CO2, cement CO2, coal CO2, oil CO2 and flaring
CO2 among others. Each column represents different
aspects of CO2 emissions, including absolute values, per
capita metrics, and cumulative emissions. Additionally,
the dataset encompasses related indicators such as
population, GDP, primary energy consumption, and
greenhouse gas emissions. The dataset offers a
comprehensive view of CO2 emissions across countries
and over time, facilitating detailed analyses and insights
into global emissions trends and patterns.

In our study, we focused primarily on the CO2 field
within the dataset. This column provides crucial
information regarding absolute CO2 emissions, which
served as the primary variable of interest in our analysis.
The values unit is million-tones. During
implementations, it was found that on the CO2 field
missing values were present in 15174 features out of
31349. Thus, the attributes have been filled with median
values.

Fig. 1: Global Annual CO2 Emissions spanning the years 1751
to 2022

Subsequently, we proceeded to visualize the Global
Annual CO2 Emissions spanning the years 1751 to 2022,

this can be seen in Figure 1. This visualization offers a
comprehensive overview of the historical trends and
patterns in CO2 emissions, enabling us to gain insights
into the evolution of emissions over the past centuries.
Through this visualization, we aim to elucidate the
trajectory of global carbon emissions and identify
significant shifts or trends that have occurred over time.

On the other hand, Epidemics and Pandemics
information furnishes a comprehensive overview of
significant disease outbreaks throughout history,
encompassing details on various disease outbreaks that
have transpired over time. It includes details such as the
name of the epidemic or pandemic, the year it occurred,
the affected regions, the estimated number of cases and
deaths, and other relevant information. This dataset
serves as a comprehensive repository of historical
disease outbreaks, providing valuable insights into the
patterns, impacts, and responses to infectious diseases
over time.

The used list of epidemics & pandemics in this study
consists of 272 entries and comprises five columns. Each
entry provides information on epidemics or pandemics,
including the category and the name of the event
(Epidemics/Pandemics), the type of disease (Disease),
the death toll (Death Toll), the date of occurrence (Date),
and the location (Location). The dataset primarily
contains categorical and textual data, with no missing
values observed.
Table 1: List of Epidemics and Pandemics

Diseases Date Location
Third plague pandemic 1855–1960 Worldwide
Hong Kong flu 1968–1969 Worldwide
cholera pandemic 1846–1860 Worldwide
influenza epidemic 1847–1848 Worldwide
Third cholera pandemic 1846–1860 Worldwide
encephalitis lethargica pandemic 1915–1926 Worldwide
influenza pandemic (’Spanish flu’) 1918–1920 Worldwide
psittacosis pandemic 1929–1930 Worldwide
influenza pandemic (’Asian flu’) 1957–1958 Worldwide
Seventh cholera pandemic 1961–1975 Worldwide
Hong Kong flu 1968–1970 Worldwide
1977 Russian flu 1977–1979 Worldwide
HIV/AIDS pandemic 1981–present Worldwide
SARS outbreak 2002–2004 Worldwide
swine flu pandemic 2009–2010 Worldwide
Middle East respiratory syndrome 2012–2021 Worldwide
Zika virus epidemic 2015–2016 Worldwide
COVID-19 pandemic 2019–present Worldwide
hepatitis of unknown origin 2021–2022 Worldwide
monkeypox outbreak 2022–present Worldwide

We constructed a comprehensive pandemic dataset.
Subsequently, we performed a targeted extraction to
create a sub-dataset encompassing only pandemics that
exerted a global impact. This sub-dataset included well-
documented historical cases such as cholera, the Spanish
Flu, and the ongoing COVID-19 pandemic etc. The

http://192.168.1.15/data/13185/fig1.png
http://192.168.1.15/data/13185/fig1.png
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provided Table 1 presents the list of epidemics and
pandemics along with their respective dates and
locations.

We have divided the ‘Date’ column of the DataFrame
into two separate columns: ‘Start Date’ and ‘End Date’.
This division is achieved by identifying the start and end
dates within each date range specified in the ’Date’
column. The resulting DataFrame contains then distinct
columns for the start and end dates, facilitating easier
analysis and interpretation of the data, because We aim to
provide an insightful visualization that sheds light on the
prevalence of diseases within our dataset. By employing
a grouping and counting strategy, we have extracted and
ranked the top 12 diseases based on their occurrence
frequencies, this can be seen in Figure 2.

Moreover, we can visualize in Figure 3 the top 10
locations with the highest occurrence counts of
epidemics and pandemics in the dataset, providing a
clear overview of the distribution of epidemics and
pandemics across different geographical areas.

Fig. 2: Top 12 diseases based on their occurrence frequencies

Fig. 3: Top 10 locations with the highest occurrence counts of
epidemics and pandemics in the dataset

Fig. 4: The number of occurrences of each pandemic over time

Our experimental analysis is conducted on a
comprehensive dataset derived from global epidemics,
encompassing events that have significantly impacted
populations worldwide. We observe that there have been
a total of 27 worldwide epidemics documented in our
dataset. On the other hand, we produce a time series plot
in Figures 4 and 5 that shows the number and
occurrences of active global pandemics for each date
within the provided data range. This allows us to
visualize how many pandemics were occurring
simultaneously and identify potential patterns.

In the data preprocessing phase, a new column named
Pandemics Flag was introduced to the CO2 dataset. This
column serves as a binary indicator, denoted by a value
of 1, to signify the occurrence of a global pandemic in a
specific year. Thus, whenever a global pandemic
occurred in a particular year, the corresponding entry in
the Pandemics Flag column was set to 1, indicating the
presence of a pandemic during that period. This
additional feature enhances the dataset by providing
valuable contextual information about the occurrence of
pandemics alongside CO2 emissions data. It enables

subsequent analyses to explore potential correlations or
effects of pandemics on CO2 emissions trends,
facilitating a more comprehensive understanding of the
dataset dynamics.

Fig. 5: The number of Active Pandemics Over Time

Furthermore, we enhance the CO2 dataset by
integrating flags indicating the periods of industrial
revolutions:

1. Industrial Revolution (1760-1840)

http://192.168.1.15/data/13185/fig2.png
http://192.168.1.15/data/13185/fig2.png
http://192.168.1.15/data/13185/fig3.png
http://192.168.1.15/data/13185/fig3.png
http://192.168.1.15/data/13185/fig4.png
http://192.168.1.15/data/13185/fig4.png
http://192.168.1.15/data/13185/fig5.png
http://192.168.1.15/data/13185/fig5.png


Youssef Mekki et al. / Journal of Computer Science 2025, 21 (7): 1705.1718
DOI: 10.3844/jcssp.2025.1705.1718

1711

(1)

2. Industrial Revolution (1870-1914)
3. Industrial Revolution (1950-1970)
4. Industrial Revolution (2000-present)

Figure 6 illustrates the schema depicting flags
integration. Incorporating the Industrial Revolution’s
Flag into the CO2 dataset was a pivotal step in
augmenting the contextual information surrounding CO2
emissions. This flag serves as a binary identifier, with a
value of 1 denoting the presence of the Industrial
Revolution during a particular timeframe. By integrating
this additional feature, the dataset gains enhanced
granularity, enabling researchers to discern the temporal
relationship between industrialization and CO2
emissions. This augmentation facilitates a more nuanced
analysis of CO2 emission trends, shedding light on the
impact of industrialization on environmental dynamics.
Consequently, we believe that the inclusion of the
Industrial Revolution Flag enriches the dataset,
empowering researchers to explore and elucidate the
complex interplay between industrial activities and CO2
emissions over time.

Fig. 6: Schema illustrating the integration of Pandemics Flag
and Industrial Revolution Flag into the CO2 dataset

Data Modeling

In this study, we have chosen to employ the
Multivariate Polynomial Regression (Masry, 1996)
which is a sophisticated methodology centered around
the utilization of advanced Artificial Intelligence (AI)
and Machine Learning (ML) techniques to forecast CO2
emissions. By leveraging these powerful tools, we aim to
develop predictive models capable of capturing the
intricate dynamics of CO2 emissions while considering
the impacts of pandemic and industrial revolution events.
This approach enables us to discern complex patterns
and relationships within the data, facilitating more
accurate predictions of future emissions trajectories.
Through the integration of AI and events flags, we seek
to enhance our understanding of the factors driving CO2
emissions and contribute to informed decision-making in
climate change mitigation efforts. Additionally, we
investigate whether a single factor suffices to determine
emissions trajectories or if multiple factors are required
for a comprehensive understanding of CO2 emissions
dynamics.

Multivariate Polynomial Regression (Masry, 1996) is
a machine learning technique employed to model the

relationship between several independent variables
(features) and a dependent variable. It builds on simple
polynomial regression, which models the relationship
between a single independent variable and the dependent
variable, by extending it to cases involving multiple
independent variables.

In multivariate polynomial regression, the model
presumes a polynomial relationship between dependent
and independent variables. It can capture nonlinear
relationships between the features and the target variable
by introducing polynomial terms of various degrees.

The general form of a multivariate polynomial
regression model with n independent variables (features)
and up to k-degree polynomial terms is given by Eq. (1):

Where:

 is the predicted output.
 are the independent variables

(features).
 are the coefficients of the linear

terms.
 are the coefficients

of the polynomial terms.
ε represents the error term.

The model learns the coefficients βi and βij from the
training data to minimize the difference between the
actual and predicted values of the dependent variable.

Multivariate Polynomial Regression allows for more
flexible modeling of complex relationships between
features and the target variable, but it also increases the
risk of over fitting, especially when using higher-degree
polynomial terms. Regularization techniques can be
employed to mitigate over fitting in such cases.

In this study, Multivariate Polynomial Regression is
employed for forecasting, utilizing historical data of both
dependent and independent variables to train the model.
After training, the model can be applied to new data to
predict future values of the dependent variable. The
accuracy of the predictions is influenced by factors such
as data quality, the selected polynomial degree, and the
presence of outliers or other sources of error.

In this paper, the Polynomial Regression Models for
CO2 Emissions using Pandemics Flags are as follow:
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(2)

Where:

year represents the years.
 are the coefficients of the

polynomial terms for CO2 emissions.
 are the coefficients of the

polynomial terms for the Pandemics Flag.

These equations represent the regression models
where the outputs  and  are functions of
the years, including polynomial terms up to the third
degree. The coefficients βij’s are estimated during the
training process to minimize the error term.

The Polynomial Regression Models for CO2
Emissions using industrial Revolution Flag are as follow:

Where:

 and  are the predicted CO2 emissions and
predicted industrial revolution flags respectively.
year represents the years.

 are the coefficients of the
polynomial terms for CO2 emissions.

 are the coefficients of the
polynomial terms for industrial revolution flags.

These equations represent the regression models
where the outputs  and  are functions of the
years, including polynomial terms up to the third degree.
The coefficients βij’s are estimated during the training
process to minimize the error term.

The used multivariate polynomial regression model
can be described by the Eq. (2) below:

Where:

y is the predicted CO2 emissions.
 represents the Pandemics Flag.
 represents the Industrial Revolution Flag.
 is the intercept term.
 to  are the coefficients associated with each

term.
ε is the error term.

Moreover, if we use only the prediction on the
current values of the dataset until 2022 and the
multivariate polynomial regression model with Ridge
regularization expressed as follows we can predict more
specifically carbon emissions.

The model includes polynomial terms up to the third
degree for each feature, and Ridge regularization with a

regularization parameter α = 1.0 is applied to mitigate
over fitting. The Ridge regression model used can be
represented by the following equation:

Where:

 represents the predicted CO2 emissions.
 is the matrix of input features (including

polynomial features) with dimensions , where
 is the number of samples and  is the number of

features.
 is the target variable vector with dimensions 
.
 is the regularization parameter, which controls the

complexity of the model. It is multiplied by the
identity matrix  and added to the covariance matrix

 to penalize large coefficients
 denotes the transpose operation.
 denotes the matrix inverse operation.

The purpose of Ridge regression is to minimize the
residual sum of squares subject to the constraint that the
L2 norm of the coefficients (weights) is less than a
certain value, determined by the regularization parameter
α. This helps prevent overfitting by adding a penalty for
large coefficients, effectively shrinking them towards
zero.

In summary, Multivariate Polynomial Regression is a
valuable tool for forecasting that allows for the modeling
of nonlinear relationships between variables. By
leveraging historical data and polynomial terms, it
provides a flexible framework for predicting future
outcomes with enhanced accuracy and granularity.

Model Validation

To evaluate the performance of the predictive model,
the R-squared (R2) value was used as a key metric. (R2),
or the coefficient of determination, is a statistical
indicator that reflects the proportion of variance in the
dependent variable that can be explained by the
independent variable(s) in a regression model.
Mathematically, it is defined as:

Where:

 is the sum of squares of residuals (the
differences between actual and predicted values).

 is the total sum of squares (the differences
between actual values and the mean of the
dependent variable).

The R2 value ranges from 0 to 1, where:

R2 = 0 indicates that the model does not explain any
of the variability of the response data around its
mean.

β
 ,β  ,β  ,β  

00 01 02 03

β
 ,β  ,β  ,β  

10 11 12 13
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ŷCO
 

2
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ŷ

X

n × p

n p

y n ×
1
α

I

X XT

T
−1

R =2 1 −
 

SS
 

tot

SS
 

res

SS
 

res

SS
 

tot



Youssef Mekki et al. / Journal of Computer Science 2025, 21 (7): 1705.1718
DOI: 10.3844/jcssp.2025.1705.1718

1713

R2 = 1 indicates that the model explains all the
variability of the response data around its mean.
An R2 value closer to 1 indicates a better fit of the
model to the data.

The Root Mean Squared Error (RMSE) metric
(Karunasingha, 2022) is another method used to assess
the model’s performance. It is computed by taking the
square root of the mean of the squared differences
between the predicted and observed values. RMSE
provides a single value that quantifies the typical
magnitude of errors made by a predictive model. A lower
RMSE indicates better predictive accuracy, as it shows
that the model’s predictions are closer to the actual
observed values. The equation for calculating RMSE is
as follows:

Where:

n represents the number of data points.
yi represents the actual values.

 represents the predicted values.
The summation symbol ∑ represents the sum of
squared differences between actual and predicted
values.
The fraction  represents the average.
The square root symbol √ represents the square root
of the average of squared differences.

Results

Forecasting CO2 Emissions Using Flag

Our preliminary analysis revealed that the occurrence
of global pandemics could lead to a significant reduction
in CO2 emissions. Based on historical data and
predictive modeling, we estimated that a global
pandemic could cause a reduction in CO2 emissions of
up to 10%. This highlights the potential environmental
benefits of pandemic-related disruptions, which may
offer valuable insights for policymakers and
environmental scientists. However, the predictive models
reveal an intriguing trend wherein emissions appear to
resume their upward trajectory after a brief period
following the epidemic. This phenomenon can be seen in
the Table 2 which presents the CO2 emissions (in million
tonnes) for each year during the Spanish Flu period.
Table 2: CO2 Emissions During the Spanish Flu Period

Year CO2 Emissions (million tonnes)
1916 24560.298
1917 25450.989
1918 24842.169
1919 21446.094
1920 24997.031

In the same way, we noticed that the observed
resurgence of CO2 emissions during the years 2021 and

2022, coinciding with the easing of restrictions and the
gradual resumption of economic activities after COVID
19. The following Table 3 shows the evolution of
emissions over these years These observations suggest
the influence of additional factors beyond the immediate
impact of the pandemic on CO2 emissions.
Table 3: CO2 Emissions after COVID 19

Year CO2 Emissions (in millions of tonnes)
2019 239925.740
2020 228766.484
2021 240609.645

In this context, we notice that the used model
indicates an increase in flags since 1850, reaching a peak
during the COVID-19 pandemic, followed by a
subsequent decrease post-COVID. This observed trend
aligns with the historical occurrences of pandemics and
their aftermaths, suggesting a cyclical pattern in global
health emergencies. The model’s ability to capture such
fluctuations underscores its effectiveness in forecasting
the dynamics of pandemics flags over time, providing
valuable insights into the temporal evolution of public
health crises.

The Figure 7 illustrates the predicted CO2 emissions
and the predicted occurrence of pandemics over the
forecasted period.

Furthermore, The analysis of CO2 emissions and the
impact of global pandemics revealed several important
findings. Firstly, our predictive models achieved high
accuracy in forecasting both CO2 emissions and the
occurrence of pandemics, as indicated by the high R-
squared values obtained. The R-squared value for CO2
emissions prediction was found to be 0.88, suggesting
that our model can explain approximately 88% of the
variance in CO2 emissions. Similarly, the R-squared
value for the prediction of pandemics was 0.82,
indicating a good fit of the model to the data.

Table 4 presents the R-squared values obtained from
the predictive models for CO2 emissions and Pandemics
Flag.
Table 4: R-squared Values

Variable R-squared Value
CO2 Emissions 0.8820
Pandemics Flag 0.8161

Table 5 presents the RMSE values obtained from the
predictive models for CO2 emissions and Pandemics
Flag.
Table 5: RMSE Values

Variable RMSE Value
CO2 Emissions 9239.01
Pandemics Flag 31.17

For the CO2 emissions model, the RMSE is
approximately 9239.01. This value represents the

RMSE =
   

y
 

−
  

n
1 ∑i=1

n ( i ŷi)
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average error between the actual and predicted CO2
emissions Lower RMSE values indicate better model
performance, thus in this case, while the RMSE is quite
large, it is dependent on the scale of the CO2 emissions
data, in our case the value of CO2 emissions can reach

350000. For the Pandemics Flag model, the RMSE is
approximately 3117. This indicates a very small average
error between the actual and predicted values of the
Pandemics Flag, proving a good performance of the
model in predicting this variable.

Fig. 7: CO2 Emissions Prediction with pandemics Flag

Fig. 8: CO2 Emissions Prediction with Industrial Revolution Flag

These results prompted us to delve further into the
underlying cause of this surge by the study of CO2
emissions during industrial revolutions.

By investigating the influence of the industrial
revolutions on CO2 emissions, we observe an
exponential increase in carbon emissions from the 90s,
this is due to the industrial revolution which marked a
turning point in the history of CO2 emissions. Increased
use of fossil fuels, deforestation, the development of new
technologies and population growth have all contributed
to increased CO2 in the atmosphere, which continues to
affect the planet’s climate. In this context, the used
predictive model indicates a continuous increase in

industrial revolution flags, reaching its zenith towards
the latter half of the 21st century. The Figure 8 depicts
the predicted CO2 emissions and the trend of industrial
revolution flags over time.

The R-squared value for CO2 Emissions (0.9911)
shows that approximately 99.11% of the variance in CO2
emissions can be explained by the predictors included in
the model. This high R-squared value indicates that the
model fits the data very well and has strong predictive
power for CO2 emissions. On the other hand, the R-
squared value for the Industrial Revolution Flag (0.9741)
indicates that around 97.41% of the variance in the
occurrence of industrial revolutions can be explained by

http://192.168.1.15/data/13185/fig7.png
http://192.168.1.15/data/13185/fig7.png
http://192.168.1.15/data/13185/fig8.png
http://192.168.1.15/data/13185/fig8.png
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the predictors in the model. This proves that the model
also fits the data well for predicting industrial revolution
events based on the provided features.

Table 6 presents the R-squared values which indicate
that the models have high explanatory power and are
able to capture a significant portion of the variability in
the respective target variables.
Table 6: R-squared Values

Variable R-squared Value
CO2 Emissions 0.9911
Industrial Revolution Flag 0.9741

Table 7 presents the RMSE values. For the CO2
emissions model, the RMSE is approximately 5026.25.
This value represents the average error between the
actual and predicted CO2 emissions. A relatively low
RMSE like this indicates that model performance is
good. For the Industrial Revolution Flag model, the
RMSE is approximately 11.56. Similarly, this indicates a
very small average error between the actual and
predicted values of the Industrial Revolution Flag,
proving ans excellent performance in predicting this
variable by the used model.
Table 7: R-squared Values

Variable RMSE Value
CO2 Emissions 5026.25
Industrial Revolution Flag 11.56

In our next main experiment, we use the current
values of the dataset until 2022 and the multivariate
polynomial regression to predict CO2 emissions based on
two flags: Pandemics Flag and Industrial Revolution
Flag. The Pandemics Flag indicates the occurrence of
pandemics, while the Industrial Revolution Flag signifies
the periods of industrial revolution. By incorporating
these two flags as features in our multivariate regression
model, we aim to capture their combined effect on CO2
emissions over time.

In this scenario of test, the calculated R-squared
value was 0.687. This value indicates that the model,
using the Pandemics Flag and Industrial Revolution Flag
as predictors, explains approximately 687% of the
variance in CO2 emissions. This proves that while the
presence of a pandemic flag may not directly cause a
decrease in CO2 emissions, it does not solely dictate the
trajectory of CO2 emissions. Indeed, other factors, such
as the industrial revolution flag, likely contribute to the
observed variability in CO2 emissions. The increase in
CO2 emissions despite the presence of a pandemic flag
could be influenced by various factors associated with
industrial activity, economic conditions, or policy
decisions that impact emission levels.

In summary, the model’s performance shows that
while pandemics may not directly lead to a decrease in
CO2 emissions, there are other influential factors at play
that affect emission trajectories. The Figure 9 presents

predicted CO2 Emissions with Multivariate Polynomial
Regression using Pandemics and Industrial Revolution
Flags.

Fig. 9: CO2 Emissions with Multivariate Polynomial
Regression using Pandemics and Industrial Revolution
Flags

To predict the future CO2 emissions using the same
methodology, we extended our forecasting model to
2050 as can be seen in the Figure 10. This last highlights
the limitation of relying solely on the pandemic factor for
precise predictions. Indeed, while pandemics may exert
short-term influences on CO2 emissions, long-term
trends indicate a multitude of interconnected factors
shaping emission trajectories. Thus, achieving accurate
forecasts necessitates a holistic approach that considers
diverse variables and their evolving dynamics over time.

Fig. 10: Forecasting the CO2 Emissions until 2050 with
Multivariate Polynomial Regression using Pandemics
and Industrial Revolution Flags with a regularization
parameter

The calculated value of the R-squared in this scenario
is of 0.992. This value indicates an exceptional level of
variance in CO2 emissions explained by the model,
showing an accurate fit to the data. This signifies that the
chosen predictors, including year, Pandemics Flag, and
flag industrial revolution, along with their polynomial
terms, effectively capture the underlying trends and
fluctuations in CO2 emissions.

In addition, with an RMSE of 6454.39, the used
model demonstrates promising accuracy in forecasting
CO2 emissions. This level of error is considered
acceptable within the context of our application, where
the model’s predictions are used to inform environmental

http://192.168.1.15/data/13185/fig9.png
http://192.168.1.15/data/13185/fig9.png
http://192.168.1.15/data/13185/fig10.png
http://192.168.1.15/data/13185/fig10.png
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policy decisions and guide sustainability initiatives.
While further refinement and validation may be
warranted in certain scenarios, the model’s performance
aligns well with our expectations and contributes
valuable insights towards understanding and mitigating
the impacts of CO2 emissions on our environment.

The presented results demonstrate a robust ability of
the used model / methodology to account for the intricate
interplay between historical events such as pandemics
and industrial revolutions, enabling precise predictions
of CO2 emissions over time. Overall, the model’s strong
predictive performance underscores its reliability for
understanding and forecasting CO2 emissions dynamics.

Discussion
In this study, we delved into the prediction of CO2

emissions using a Multivariate Regression model, while
taking into account major events like pandemics and
industrial revolutions. Surprisingly, The achieved results
challenge the common assumption that CO2 emissions
uniformly decline during pandemics; instead, various
factors may counterbalance, potentially leading to an
increase We highlighted the intricate impact of
pandemics on CO2 emissions, considering factors like
lockdown measures during the COVID-19 pandemic By
using regression flags to mark these events, we unveiled
the complex interplay between CO2 emissions and
external factors, crucial for refining models and shaping
effective emission mitigation policies in a changing
world While many studies focus solely on CO2
emissions in their forecasts, we argue for a broader
methodology as presented.

By considering various factors such as economic
indicators, industrial activities, and policy changes
alongside CO2 emissions, we gain a richer understanding
of emission dynamics. The multidimensional
methodology emphasizes the importance of recognizing
the interconnectedness of these factors for developing
robust prediction models and shaping effective climate
policies.

Conclusion
This paper explores the complex relationship between

historical events and their impact on CO2 emissions.
Employing a Multivariate Regression model, we
scrutinize the multifaceted dynamics underlying carbon
emissions. Our study underscores the significance of
accounting for significant historical events, such as
pandemics and industrial revolutions, in CO2 prediction
models. By integrating these events into our analysis, we
reveal nuanced insights into the complex relationship
between external factors and CO2 emissions. This
holistic methodology not only enhances our
understanding of carbon emission dynamics but also
furnishes valuable insights for policymakers and

stakeholders striving to devise effective strategies for
mitigating CO2 emissions and addressing climate change
challenges. Additionally, we evaluate the predictive
accuracy of the used model using metrics like the R-
squared and the RMSE, further enhancing the robustness
of achieved results.

In this context, this paper suggest the following
future perspectives: Implement real-time data integration
mechanisms to continuously update predictive models,
enabling timely adjustments in response to evolving
events such as pandemics and industrial shifts.
Additionally, explore the incorporation of machine
learning algorithms to further refine CO2 emission
predictions, leveraging their capacity to adapt to
changing datasets and capture complex relationships.
Such methodology hold the potential to enhance the
accuracy and reliability of CO2 forecasting models,
facilitating more effective decision-making in climate
mitigation efforts.
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