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Abstract: Recognizing gestures in American Sign Language (ASL) from
video data presents significant challenges due to the intricate combination of
hand gestures, facial cues, and body motion. In this work, we introduce a
hybrid deep learning framework that integrates Convolutional Neural
Networks (CNNs) for extracting spatial characteristics with Long Short-
Term Memory (LSTM) networks for capturing temporal sequences. The
model was trained and evaluated on a subset of 25 classes from the WLASL
dataset, a comprehensive video collection comprising over 2,000 labeled
ASL signs. Achieving an accuracy of 96%, the proposed system
demonstrates superior performance compared to traditional methods. These
findings underscore the strength of spatio-temporal modeling in sign
language recognition. With a design geared toward scalability and real-time
deployment, the approach shows strong potential to support communication
and accessibility for individuals with hearing impairments. Future
developments will aim to mitigate class imbalance, broaden applicability to
other sign languages, and assess the benefits of Transformer-based models
for enhanced recognition.
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Introduction

American Sign Language (ASL) is a fully developed
visual language widely used by deaf and hard-of-hearing
communities in the United States and beyond. It relies on
a complex combination of hand shapes, movements,
facial expressions, and body posture to express meaning
and grammatical structure naturally and expressively.
Despite its complexity and expressive power, the absence
of mutual intelligibility between ASL users and non-
signers continues to hinder communication, contributing
to social, educational, and professional disparities. The
development of automated, real-time ASL recognition
and translation systems presents a promising avenue for
enhancing accessibility and fostering inclusive interaction
between individuals who are hearing and those who are
deaf or hard of hearing (Pun et al., 2011). Progress in
Artificial Intelligence (Al) and computer vision has
opened up new opportunities for automating ASL
recognition. By leveraging video-based datasets, machine
learning models can now analyze and classify complex
gesture sequences (Abdelouahed et al., 2022; Adeyanju et
al., 2021). Despite these advancements, the field of ASL
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recognition faces significant challenges, including the
variability of gestures across individuals, nuanced
communication styles, and the need to capture
spatiotemporal dynamics from unstructured video data.
Traditional approaches, such as hardware-based solutions
using connected gloves and sensors, have demonstrated
limited scalability and usability (O’Connor et al., 2017;
Lee and Lee, 2018). Recent advances have emphasized
software-driven approaches leveraging deep learning to
tackle the challenges inherent in dynamic gesture
recognition.  Specifically, models that integrate
Convolutional Neural Networks (CNNs) to capture spatial
details along with Long Short-Term Memory (LSTM)
networks for managing temporal relationships have
shown remarkable effectiveness in understanding
intricate, time-dependent gestures (Cherrate et al., 2025g;
Hafeez et al., 2024). However, challenges such as
imbalanced datasets, inter-individual variability, and
annotation  inconsistencies  remain  unresolved,
necessitating further research (Xiong et al., 2025; Ur
Rehman et al., 2022). This study proposes a hybrid deep
learning framework that combines CNNs and LSTMs to
process video sequences comprehensively. The
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integration of these architectures enables the system to
capture both spatial details (e.g., hand shapes and
positions) and temporal dependencies (e.g., motion
trajectories and gesture sequences). To validate the
effectiveness of our approach, we utilize the Word-Level
American Sign Language (WLASL) dataset, a large-scale
video corpus containing over 100,000 annotated videos
spanning more than 2,000 ASL signs (Baskoro, 2025).

This study presents a hybrid deep learning framework
for American Sign Language (ASL) recognition, designed
to address the combined spatial and temporal complexity
of sign gestures. Our primary contribution is the
development of a robust CNN-LSTM architecture that
captures both the spatial features and sequential dynamics
inherent in ASL. The model is trained and evaluated using
the WLASL dataset, enabling high recognition accuracy
across a diverse subset of signs. Benchmarking against
existing methods demonstrates a significant performance
improvement, with our approach achieving 96%
recognition accuracy on 25 sign classes, highlighting its
superior accuracy and robustness. Beyond technical
metrics, we discuss the practical implications of this work,
including its potential application in next-generation
accessibility tools, interactive educational resources, and
assistive technologies for the deaf and hard-of-hearing
community.

This paper is structured as follows: We begin with a
review of recent developments in sign language
recognition, focusing on both hardware and software
strategies with an emphasis on deep learning
architectures. We then present the proposed method,
describing dataset preparation, the hybrid CNN-LSTM
model, and the training and evaluation protocols. The
subsequent section reports the experimental results,
followed by a comparative analysis with existing
approaches. The paper concludes with a summary and
recommendations for future research directions.

Literature Review

Sign language recognition has become an essential
research field, as it plays a key role in enhancing
communication and social inclusion for deaf and hard-of-
hearing people. The World Federation of the Deaf reports
that more than 70 million individuals worldwide use sign
language as their primary means of communication, and
nearly 80% of them live in developing countries. By 2050,
it is estimated that 2.5 billion people will be affected by
hearing impairments to varying degrees, with at least 700
million requiring rehabilitation services (WHO, 2025).
Researchers have looked into both software- and
hardware-based solutions to these problems.

Solutions Based on Hardware

Early attempts in sign language recognition focused on

using wearable devices such as connected gloves and
sensors to track hand and finger movements (Ji et al.,
2023). While these approaches provided some success in
recognizing gestures, they lacked scalability and
practicality for real-world applications. Moreover, they
could not capture full-body gestures or facial expressions,
both of which are essential components of sign language
communication.

Software-Based Solutions

Recent progress in machine learning and computer vision
has enabled software-based methods that utilize image and
video datasets for recognizing gestures. Static image
datasets, such as the Kaggle ASL dataset (Cherrate et al.,
2025b), have been used for classifying hand signs
representing the alphabet, and ASL Finger spelling
(Geislinge, 2021; Pugeault and Bowden, 2011). However,
these datasets are limited to static gestures and fail to capture
the temporal dynamics required for recognizing words and
phrases. Dynamic datasets, such as the ASL Lexicon Video
Dataset (Athitsos et al., 2018; Kataoka and Yoon, 2024),
offer video sequences annotated with specific words,
enabling more realistic modeling of ASL gestures. However,
challenges such as gesture variability, inter-individual
differences, and annotation inconsistencies persist.

The WLASL dataset (Li et al., 2020; Shen et al., 2024)
represents a significant advancement in this field. With
over 100,000 annotated videos spanning more than 2,000
signs, it provides a comprehensive resource for training
deep learning models that can recognize spatio-temporal
patterns. The diversity and scale of WLASL make it a
valuable tool for developing robust and scalable ASL
recognition systems.

Deep Learning in Gesture Recognition

Recent progress in deep learning has further improved
the accuracy of sign language recognition systems. CNNs
are widely used for extracting spatial features from
images, while LSTMs and other recurrent networks model
temporal dependencies (Toro-Ossaba et al., 2022; Huang
and Chouvatut, 2024; Sivaraman et al., 2024; Omarkhan
et al., 2021; Shi, 2015; Tran et al., 2015). Transformer-
based models have also been explored, treating video
sequences as temporal data, and have achieved promising
results (Li et al., 2020; Hafeez et al., 2024). However,
challenges such as data imbalance, computational
complexity, and generalization to real-world scenarios
remain active areas of research.

Comparative Overview

Table 1 presents a comparison of different sign language
recognition approaches, highlighting their datasets, methods,
and associated challenges.
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Table 1: Comparison of Sign Language Recognition Approaches: Datasets, Techniques, and Challenges

Approach Datasets Used Techniques Challenges
Hardware-based Not dataset-dependent Connected gloves and Limited scalability; no full-body or facial
Sensors gesture recognition
Kaggle ASL Dataset 87,028 images of ASL alphabet CNN-based classification  Static gestures only; no temporal
modeling
ASL Finger Over 500 images per sign CNN-based recognition Complex backgrounds; limited word
Spelling recognition
ASL Lexicon Video  Dynamic videos of ASL words ~ CNN for visual features Annotation inconsistencies; gesture
and phrases variability

WLASL Dataset 2,000 signs; 100,000+ videos

Proposed Approach  Subset of WLASL (25 classes;

175 videos)

CNN + RNN/Transformer

Hybrid CNN + LSTM
architecture

Temporal dependencies; large-scale
training complexity

Efficient spatio-temporal modeling with
96% recognition accuracy

Despite the progress achieved, limitations such as dataset
imbalance, inter-class variability, and computational
overhead persist. Our study addresses these challenges by
leveraging a hybrid CNN-LSTM model trained on a subset
of the WLASL dataset, achieving significant improvements
in accuracy and scalability.

Methodology Research

The proposed method for recognizing American Sign
Language uses deep learning techniques to effectively
process and understand video sequences. This part
furnishes an in-depth explanation of the choices made for
the dataset, the preprocessing steps taken, the architecture
of the model, the training approach, and the metrics used
for evaluating the system's performance.

Dataset

This study utilizes the Word-Level American Sign
Language (WLASL) dataset, a large-scale video corpus
containing over 100,000 annotated videos covering more
than 2,000 distinct ASL signs. For this work, we selected
a subset of 25 classes, totaling 175 videos, to enable
controlled experimentation and effective evaluation of our
proposed CNN-LSTM architecture.

The subset was carefully chosen based on two primary
criteria: Semantic diversity and data quality. Specifically,
the selected signs span five meaningful thematic
categories: “Emotions, family, colors, politeness, and
greetings”, which include commonly used signs and
represent a broad range of hand configurations, motion
dynamics, and semantic contexts. Furthermore, the
selected classes were those for which visually clear and
sufficiently numerous samples were available, ensuring a
balanced and reliable setup for training and testing.

This focused selection allowed us to fine-tune the model
and assess its ability to learn spatio-temporal features
effectively. The current study serves as a foundational phase
for future research involving larger subsets or the full
WLASL dataset, where we aim to address additional
challenges such as class imbalance, signer variability, and
scalability of the proposed architecture.

Dataset Preparation

Preprocessing: Each video was split into frames,
resized to 64x64 pixels, and normalized for uniform input.

To improve model generalization, data augmentation
methods such as horizontal flipping and random cropping
were used.

Data Split: To ensure a fair assessment of model
performance across classes, the dataset was split into 80%
training and 20% testing.

The characteristics of the selected ASL dataset subset
are summarized in Table 2.

Table 2: Summary of the Selected ASL Dataset Subset

Category Class Class ID Number of videos
Emotions Angry 0 12
Confused 6 6
Happy 12 9
Sad 20 9
Family Family 7 7
Father 8 7
Son 22 7
GrandFather 9 9
GrandMother 10 9
Aunt 1 5
Uncle 23 7
Brother 4 6
Sister 21 7
Colors Black 2 5
Blue 3 7
Brown 5 6
Green 11 7
Orange 15 5
Pink 16 6
Purple 18 6
Red 19 7
Yellow 24 5
Politeness Please 17 7
Help 14 9
Greetings Hello 13 5

Model Architecture

The proposed model combines Convolutional Neural
Networks (CNN) with Long Short-Term Memory
(LSTM) networks to capture significant spatio-temporal
characteristics from video sequences. Its architecture is
composed of the following key components.
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Spatiotemporal Feature Extraction

A ConvLSTM2D layer with 128 filters is employed to
simultaneously extract spatial features from individual
frames and temporal relationships across frames.

Batch Normalization is applied to stabilize and
accelerate training.

A Dropout Layer mitigates overfitting by deactivating
random neurons during training.

Temporal Modeling: The outputs of the
ConvLSTM2D layers are passed to a Gated Recurrent
Unit (GRU) with 64 units, capturing sequential
dependencies within the video.

Classification Layer: Fully connected layers process
the GRU output to produce high-level features.

A Softmax Activation Function generates probability
distributions for the 25 classes.

Model Workflow
The proposed architecture is illustrated in Fig. 1.
Training Process

The model underwent training for 50 epochs utilizing
an NVIDIA GPU with a subset of the WLASL dataset.
Early stopping was implemented with a patience
parameter set to 5 epochs, determined by validation loss.
The hyperparameters used in training are as follows:

Single image convolution
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Evaluation Metrics

To evaluate the performance of the model, several
standard classification metrics were employed.

Precision measures the proportion of correct
predictions among all positive predictions, with its
mathematical definition provided in Equation 1:

TP+FP
o )

Precision =

Recall reflects the model's ability to correctly identify
all relevant positive instances, as detailed in Equation 2:

Recall = Zizurecalli r:m” : )

The F1-score, representing the harmonic mean of
precision and recall, is particularly useful for datasets with
imbalanced classes (Eq. 3):

PrecisionxRecall (3)
Precision +Recall
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Fig. 1: Process of the Suggested Model for ASL Recognition
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Accuracy provides the overall proportion of correctly
classified samples relative to the total number of samples,
as defined in Equation 4:

TP+TN (4)

Accuracy = ——
Y = TP+TN+FP+FN

Where:

TP (True Positives) : Accurate predictions for the
positive categories
TN (True Negatives) : Accurate predictions for the
negative categories
. Incorrect predictions for the
positive categories
FN (False Negatives) : Incorrect predictions for the

negative categories

FP (False Positives)

These metrics give an in-depth perspective on the
model's effectiveness, assisting in assessing its
advantages and drawbacks in identifying ASL gestures.

Results and Discussion

This section presents the results of the proposed CNN-
LSTM model when applied to the WLASL dataset. The
assessment emphasizes classification effectiveness,
training dynamics, and contrasts with current methods.
Additionally, we explore the significance of these results
and point out potential areas for enhancement.

Dataset Description

For the purpose of recognizing ASL and converting
gestures into natural language, we utilized a subset of the
WLASL dataset consisting of 25 classes and 175 videos.
The data was split into 80% for training and 20% for
testing, maintaining a balanced distribution across classes
to ensure accurate evaluation. Additional information can
be found in the “Dataset” section.

Proposed Approach

The suggested approach integrates Convolutional
Neural Networks (CNN) for extracting spatial features
and Long Short-Term Memory (LSTM) networks for
modeling temporal aspects, allowing it to accurately
capture the spatio-temporal relationships present in ASL
gestures. The sections titled "Model Architecture” and
“Training Process” provide a comprehensive overview of
the model design and training methodology.

Results

Table 3 Shows the detailed performance of the
proposed model in terms of precision, recall, F1-score,
and accuracy for each class, as well as the macro and
weighted averages.

Table 3: Measures of Performance of Each Class

Precision Recall F1-Score

0 0.86 1.00 0.92

1 1.00 0.50 0.67

2 1.00 0.86 0.93

3 0.90 1.00 0.95

4 0.88 0.92 0.93

5 1.00 0.60 0.75

6 0.92 0.85 0.92

7 0.94 1.00 0.96

8 0.87 1.00 0.91

9 0.94 0.78 0.85

10 1.00 0.82 0.92

11 0.89 1.00 0.99

12 0.92 0.90 0.88

13 0.94 0.72 0.78

14 1.00 0.86 0.93

15 0.95 1.00 0.92

16 0.89 0.98 0.97

17 1.00 0.58 0.73

18 1.00 0.89 0.92

19 0.90 0.97 0.97

20 0.78 1.00 0.92

21 1.00 0.98 0.92

22 1.00 0.89 0.94

23 091 1.00 0.96

24 1.00 0.97 0.94
Accuracy 0.96
Marco avg 0.94 0.84 0.87
Weighted avg 0.93 0.92 0.91

The model attained an overall accuracy of 96%,
indicating good performance in recognizing ASL
movements. The classification model shows satisfactory
overall performance with a high accuracy of 96%, reflecting
a good ability to correctly predict the majority of classes.
Weighted average metrics show precision of 93%, recall of
92%, and Fl-score of 91%, demonstrating balanced
performance across majority and minority classes.

However, analysis of performance by class reveals
significant variations. Classes such as 7, 11, 19, 23, and 24
show F1-scores above 0.95, indicating that the model
recognizes these classes with high precision and near-perfect
recall. In contrast, some classes, suchas 1, 5, 9, and 17, show
lower Fl-scores, due to reduced recall (< 0.78), suggesting
difficulties for the model to effectively detect these signs.
Class 1, for example, has a particularly low recall of 0.50
despite perfect precision, indicating a potential problem of
data imbalance or visual similarities with other classes. The
macro averages (Precision: 94%, Recall: 84%, F1-score:
87%) confirm that the performance of minority or difficult
classes slightly drags down the overall metrics.

The training and validation results are illustrated
through accuracy and loss curves. The first graph depicts
the progression of training and validation accuracy across
epochs, while the second shows the corresponding
training and validation loss trends. Together, these curves
offer valuable insights into the model’s learning
dynamics, stability, and generalization capability.

The evolution of training and validation accuracy is
presented in Fig. 2.
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Training Accuracy vs Total Validation Accuracy
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Fig. 2: Training Accuracy vs Total Validation Accuracy

As shown in Fig. 3, both training and validation loss
decrease steadily, indicating that the model is learning
effectively without overfitting.

Total Training Loss vs Total Validation Loss

— loss

0.9 1 — val_loss

0.5 1

0.4

0.3 1

0 2 4 6 8
Fig. 3: Evolution of Training vs. Validation Loss over Epochs

The results obtained during the training and validation
phases on the 25 classes from the WLASL dataset
demonstrate consistent improvement in both accuracy and
loss over the epochs. In the first graph, the training
accuracy (blue curve) steadily increases, reaching
approximately 90%, while the validation accuracy (red
curve) quickly converges to a similar level. This indicates
strong generalization without significant overfitting. This
observation is further supported by the second graph,
where the training loss (blue curve) and validation loss
(red curve) decrease smoothly and converge to similar
values. The minimal gap between the curves, both for
accuracy and loss, suggests that the CNN-LSTM model is
effectively trained to capture the spatial and temporal
patterns present in the videos of the dataset. These results
highlight the efficiency of the model architecture and
training strategy in recognizing the 25 classes of signs
within the context of ASL.

To further analyze the performance of our model, we
present the confusion matrix for the 25 ASL classes in Fig.
4. The confusion matrix illustrates the distribution of
correct and incorrect predictions across all classes. Most
predictions are concentrated along the diagonal,
indicating correct classifications. However, some
confusion is observed between visually similar signs,
particularly in classes such as [e.g., Class 1 vs Class 5],
which may share overlapping visual features. This
analysis highlights areas where the model could benefit
from additional data or attention mechanisms to better
distinguish between similar gestures.

The confusion matrix indicates that certain signs are
more susceptible to misclassification, often due to visual
similarities or a limited number of training samples. For
instance, the sign “Aunt” (Class 1) is frequently
misclassified as “Sister” (Class 4), while “Help” (Class
5) is often confused with “Please” (Class 14). These
errors likely stem from overlapping hand configurations
or similar motion trajectories, underscoring the need to
enrich the dataset for ambiguous classes and to
investigate advanced techniques, such as attention-based
mechanisms, to better distinguish subtle gesture
differences. To further assess the stability and robustness
of the proposed CNN-LSTM architecture, we repeated
the training process five times using different random
seeds. The model consistently achieved high
performance across all runs, with an average accuracy of
96% and standard deviations below 1.5% for precision,
recall, and Fl1-score. These results confirm that the
model's performance remains stable regardless of
initialization, reinforcing its reliability for real-world
deployment.

Confuslon Matrix for ASL Gesture Recognition (25 Classes) 2

7 6 5 4 3 2 1
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B8
||
=
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0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Predicted Label

Fig. 4: Confusion  matrix  showing the classification
performance of the proposed CNN-LSTM model on 25
ASL classes
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Comparative Analysis

In this comparative study, we evaluate the
effectiveness of our proposed approach for sign language
recognition using the WLASL dataset against existing
state-of-the-art  methods. Our  model employs
ConvLSTM2D for spatio-temporal feature extraction and
GRU layers for temporal sequence learning, offering a
robust yet computationally efficient solution for dynamic
gesture recognition.

Achieving an impressive 96% accuracy on a 25-class
subset with 175 videos, our method significantly
outperforms prior works in similar settings. While
WLASL (Baskoro, 2025) research achieves up to 62.63%
top-10 accuracy with pose-based and holistic visual
approaches on 2,000 words, our model excels even on a
smaller subset, demonstrating superior performance in
spatio-temporal modeling. Compared to the ASLLVD
study, which emphasizes linguistic annotations and
employs a HandShapes Bayesian Network (HSBN) for
handshape transitions, our approach focuses on practical
and scalable recognition without requiring intricate
linguistic details. Our method demonstrates the ability to
effectively model spatio-temporal dynamics in small-
scale datasets, offering a scalable framework for real-time
applications.

Table 4 Presents a comparison between the proposed
approach and two referenced works, based on several
performance criteria.

From experimental results presented in Table 2, we
can conclude that our proposed approach outperforms
these methods in accuracy, demonstrating its
effectiveness in capturing spatio-temporal patterns with
fewer computational resources.

The combination of ConvLSTM2D and GRU enables
the proposed model to achieve a balance between
accuracy and computational efficiency, making it suitable
for real-time and resource-constrained applications.

Ablation Study

To gain deeper insight into the role of each component
within the hybrid CNN-LSTM model, an ablation study
was performed by evaluating the model’s performance
under three distinct configurations:

o CNN-only Model: This configuration includes only
the convolutional layers followed by fully connected
layers for classification. It captures spatial features
from individual frames but does not model temporal
dependencies

o LSTM-only Model: In this setup, hand-crafted spatial
features extracted from individual frames are fed into
an LSTM network to model temporal dynamics. No
convolutional layers are used

o Hybrid CNN-LSTM Model: This is the full proposed
model where CNN extracts spatial features and
LSTM/GRU layers capture temporal dependencies

Table 4: Comparative Analysis of Sign Language Recognition Approaches

Criterion Our Approach (CNN + LSTM)  WLASL Dataset Approach ASLLVD Dataset Approach

Accuracy 96% (on 25 classes) Up to 62.63% top-10 Not specified, focuses on
linguistic annotations and
handshape transitions

Main Method ConvLSTM2D for spatio- Visual appearance-based approach Handshapes Bayesian Network

temporal feature extraction and
GRU for temporal sequence

learning
Dataset Used WLASL (25 classes, 175
videos)
Approach Single-stream model
(simplified and efficient) models
Performance Top-1 accuracy, learning
Evaluation curves, computational
efficiency
Advantages of the  High accuracy and efficiency,
Approach even on a smaller dataset
Training and Low training and inference time

Inference Time due to a lighter approach

and Pose-TGCN (Temporal Graph
Convolution Networks)

WLASL (2,000 words)

Pose-based and appearance-based
Top-10 accuracy (up to 62.63%)
Robust approach on a large dataset,
but lower accuracy

More computationally expensive,
especially with large datasets

(HSBN) for handshape
transitions in lexical signs

ASLLVD (3,300 signs, 9,800
tokens)

Bayesian network model for
handshape transitions
Handshape transition analysis,
but no direct performance was
reported

Linguistic model integrating
detailed sign information

Can be more complex due to
detailed annotations

Table 5: Performance Comparison of CNN, LSTM, and Combined CNN-LSTM Architecture

Model Configuration Accuracy Precision Recall F1-Score
CNN-only 78% 76% 74% 75%
LSTM-only 65% 62% 61% 61%
CNN + LSTM (proposed approach) 96% 93% 92% 91%
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As presented in Table 5, the combined CNN-LSTM
architecture outperforms standalone CNN and LSTM.
Models, confirming the benefits of integrating spatial and
temporal feature extraction. The results clearly show that
both components are essential for robust gesture
recognition. The CNN-only model is limited by its
inability to model temporal changes across video frames,
while the LSTM-only model suffers from the lack of
spatial abstraction. The hybrid approach significantly
outperforms both baselines, demonstrating the advantage
of combining spatial and temporal modeling.

Discussion

The results indicate that the hybrid CNN-LSTM
architecture effectively addresses the challenges of ASL
recognition. Key observations include.

Strong Performance across Classes: The model
achieves high precision and recall in most classes, with an
F1-score above 0.90 for many.

Challenges in Certain Classes: Classes such as 1
(Aunt) and 5 (Help) exhibit lower recall due to
potential data imbalances or visual similarities with
other classes.

Generalization: The minimal gap between training and
validation metrics suggests strong generalization
capabilities.

Limitations

The model's performance in imbalanced or low-data
classes highlights the need for data augmentation or
advanced techniques, such as dynamic attention
mechanisms.

Summary of Results

The proposed CNN-LSTM model demonstrates state-
of-the-art performance in recognizing ASL gestures from
the WLASL dataset subset. While achieving high
accuracy, it highlights the importance of balancing
datasets and addressing inter-class variability. Future
work can focus on incorporating attention mechanisms
and Transformer architectures to further improve
performance.

Conclusion

This study introduces a hybrid deep learning model
designed to recognize ASL gestures from video
sequences, utilizing a selected subset of the Word-Level
American Sign Language (WLASL) dataset. By
integrating Convolutional Neural Networks (CNNs) for
extracting spatial features with Long Short-Term Memory
(LSTM) networks to capture temporal dependencies, the
model achieved a classification accuracy of 96% across
25 gesture categories.

The findings demonstrate the effectiveness of spatio-
temporal modeling in ASL gesture recognition, with the
proposed method outperforming comparable approaches
under similar experimental setups. The model
successfully captures subtle hand shapes and motion
dynamics inherent in ASL gestures while maintaining
computational efficiency. These results suggest promising
applications for real-time ASL translation, educational
tools, and assistive communication technologies for
individuals who are deaf or hard of hearing.

Nonetheless, the study also highlights certain
challenges, particularly in recognizing gestures with
limited training samples or those visually similar to
others. Addressing these issues will be key to improving
model robustness and ensuring reliable performance in
practical deployment scenarios.

Limitations and Future Work

While the proposed ConvLSTM GRU architecture
demonstrates high recognition accuracy and effective
spatio-temporal modeling on a selected subset of the
WLASL dataset, several limitations remain.
Performance disparities across certain gesture classes
persist, mainly due to class imbalance and visual
similarities between signs, and will be addressed in
future work through weighted loss functions, targeted
data augmentation, and oversampling techniques.
Although the model performs well under controlled
experimental conditions, its robustness in real-world
environments characterized by variations in lighting,
occlusions, background complexity, and signer-
specific differences requires further improvement.

To enhance generalization, future research will
focus on integrating skeletal keypoint extraction,
multimodal fusion with depth information, and more
advanced spatio-temporal augmentation strategies.
From an architectural perspective, extensions of the
current ConvLSTM GRU framework will explore the
incorporation  of  attention  mechanisms, 3D
convolutional layers, and  transformer-based
components to better capture long-range temporal
dependencies and subtle gesture dynamics. Finally, to
support the practical deployment objectives outlined in
this study, lightweight and computationally efficient
versions of the model will be developed for real-time
implementation on resource-constrained devices such
as smartphones and wearable systems.
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