
 

 

© 2025 Meryem Cherrate, My Abdelouahed Sabri, Ali Yahyaouy and Abdellah Aarab. This open-access article is 

distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 

Journal of Computer Science 
 

 

 

 

Research Article 

Recognizing Sign Language Gestures Using a Hybrid Spatio-

Temporal Deep Learning Model 
 

Meryem Cherrate, My Abdelouahed Sabri, Ali Yahyaouy and Abdellah Aarab 

 
Department of Computer Science, Faculty of Sciences Dhar-Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco 

 
Article history 

Received: 08-02-2025 

Revised: 29-06-2025 

Accepted: 06-07-2025 

 

Corresponding Author: 

Meryem Cherrate  

Department of Computer 

Science, Faculty of Sciences 

Dhar-Mahraz, University Sidi 

Mohamed Ben Abdellah, Fez, 

Morocco 

Email: 

meryem.cherrate@usmba.ac.ma 

Abstract: Recognizing gestures in American Sign Language (ASL) from 

video data presents significant challenges due to the intricate combination of 

hand gestures, facial cues, and body motion. In this work, we introduce a 

hybrid deep learning framework that integrates Convolutional Neural 

Networks (CNNs) for extracting spatial characteristics with Long Short-

Term Memory (LSTM) networks for capturing temporal sequences. The 

model was trained and evaluated on a subset of 25 classes from the WLASL 

dataset, a comprehensive video collection comprising over 2,000 labeled 

ASL signs. Achieving an accuracy of 96%, the proposed system 

demonstrates superior performance compared to traditional methods. These 

findings underscore the strength of spatio-temporal modeling in sign 

language recognition. With a design geared toward scalability and real-time 

deployment, the approach shows strong potential to support communication 

and accessibility for individuals with hearing impairments. Future 

developments will aim to mitigate class imbalance, broaden applicability to 

other sign languages, and assess the benefits of Transformer-based models 

for enhanced recognition. 
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Introduction 

American Sign Language (ASL) is a fully developed 

visual language widely used by deaf and hard-of-hearing 

communities in the United States and beyond. It relies on 

a complex combination of hand shapes, movements, 

facial expressions, and body posture to express meaning 

and grammatical structure naturally and expressively. 

Despite its complexity and expressive power, the absence 

of mutual intelligibility between ASL users and non-

signers continues to hinder communication, contributing 

to social, educational, and professional disparities. The 

development of automated, real-time ASL recognition 

and translation systems presents a promising avenue for 

enhancing accessibility and fostering inclusive interaction 

between individuals who are hearing and those who are 

deaf or hard of hearing (Pun et al., 2011). Progress in 

Artificial Intelligence (AI) and computer vision has 

opened up new opportunities for automating ASL 

recognition. By leveraging video-based datasets, machine 

learning models can now analyze and classify complex 

gesture sequences (Abdelouahed et al., 2022; Adeyanju et 

al., 2021). Despite these advancements, the field of ASL 

recognition faces significant challenges, including the 

variability of gestures across individuals, nuanced 

communication styles, and the need to capture 

spatiotemporal dynamics from unstructured video data. 

Traditional approaches, such as hardware-based solutions 

using connected gloves and sensors, have demonstrated 

limited scalability and usability (O’Connor et al., 2017; 

Lee and Lee, 2018). Recent advances have emphasized 

software-driven approaches leveraging deep learning to 

tackle the challenges inherent in dynamic gesture 

recognition. Specifically, models that integrate 

Convolutional Neural Networks (CNNs) to capture spatial 

details along with Long Short-Term Memory (LSTM) 

networks for managing temporal relationships have 

shown remarkable effectiveness in understanding 

intricate, time-dependent gestures (Cherrate et al., 2025a; 

Hafeez et al., 2024). However, challenges such as 

imbalanced datasets, inter-individual variability, and 

annotation inconsistencies remain unresolved, 

necessitating further research (Xiong et al., 2025; Ur 

Rehman et al., 2022). This study proposes a hybrid deep 

learning framework that combines CNNs and LSTMs to 

process video sequences comprehensively. The 
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integration of these architectures enables the system to 

capture both spatial details (e.g., hand shapes and 

positions) and temporal dependencies (e.g., motion 

trajectories and gesture sequences). To validate the 

effectiveness of our approach, we utilize the Word-Level 

American Sign Language (WLASL) dataset, a large-scale 

video corpus containing over 100,000 annotated videos 

spanning more than 2,000 ASL signs (Baskoro, 2025). 

This study presents a hybrid deep learning framework 

for American Sign Language (ASL) recognition, designed 

to address the combined spatial and temporal complexity 

of sign gestures. Our primary contribution is the 

development of a robust CNN-LSTM architecture that 

captures both the spatial features and sequential dynamics 

inherent in ASL. The model is trained and evaluated using 

the WLASL dataset, enabling high recognition accuracy 

across a diverse subset of signs. Benchmarking against 

existing methods demonstrates a significant performance 

improvement, with our approach achieving 96% 

recognition accuracy on 25 sign classes, highlighting its 

superior accuracy and robustness. Beyond technical 

metrics, we discuss the practical implications of this work, 

including its potential application in next-generation 

accessibility tools, interactive educational resources, and 

assistive technologies for the deaf and hard-of-hearing 

community. 

This paper is structured as follows: We begin with a 

review of recent developments in sign language 

recognition, focusing on both hardware and software 

strategies with an emphasis on deep learning 

architectures. We then present the proposed method, 

describing dataset preparation, the hybrid CNN-LSTM 

model, and the training and evaluation protocols. The 

subsequent section reports the experimental results, 

followed by a comparative analysis with existing 

approaches. The paper concludes with a summary and 

recommendations for future research directions. 

Literature Review 

Sign language recognition has become an essential 

research field, as it plays a key role in enhancing 

communication and social inclusion for deaf and hard-of-

hearing people. The World Federation of the Deaf reports 

that more than 70 million individuals worldwide use sign 

language as their primary means of communication, and 

nearly 80% of them live in developing countries. By 2050, 

it is estimated that 2.5 billion people will be affected by 

hearing impairments to varying degrees, with at least 700 

million requiring rehabilitation services (WHO, 2025). 

Researchers have looked into both software- and 

hardware-based solutions to these problems. 

Solutions Based on Hardware 

Early attempts in sign language recognition focused on 

using wearable devices such as connected gloves and 

sensors to track hand and finger movements (Ji et al., 

2023). While these approaches provided some success in 

recognizing gestures, they lacked scalability and 

practicality for real-world applications. Moreover, they 

could not capture full-body gestures or facial expressions, 

both of which are essential components of sign language 

communication. 

Software-Based Solutions 

Recent progress in machine learning and computer vision 

has enabled software-based methods that utilize image and 

video datasets for recognizing gestures. Static image 

datasets, such as the Kaggle ASL dataset (Cherrate et al., 

2025b), have been used for classifying hand signs 

representing the alphabet, and ASL Finger spelling 

(Geislinge, 2021; Pugeault and Bowden, 2011). However, 

these datasets are limited to static gestures and fail to capture 

the temporal dynamics required for recognizing words and 

phrases. Dynamic datasets, such as the ASL Lexicon Video 

Dataset (Athitsos et al., 2018; Kataoka and Yoon, 2024), 

offer video sequences annotated with specific words, 

enabling more realistic modeling of ASL gestures. However, 

challenges such as gesture variability, inter-individual 

differences, and annotation inconsistencies persist. 

The WLASL dataset (Li et al., 2020; Shen et al., 2024) 

represents a significant advancement in this field. With 

over 100,000 annotated videos spanning more than 2,000 

signs, it provides a comprehensive resource for training 

deep learning models that can recognize spatio-temporal 

patterns. The diversity and scale of WLASL make it a 

valuable tool for developing robust and scalable ASL 

recognition systems. 

Deep Learning in Gesture Recognition 

Recent progress in deep learning has further improved 

the accuracy of sign language recognition systems. CNNs 

are widely used for extracting spatial features from 

images, while LSTMs and other recurrent networks model 

temporal dependencies (Toro-Ossaba et al., 2022; Huang 

and Chouvatut, 2024; Sivaraman et al., 2024; Omarkhan 

et al., 2021; Shi, 2015; Tran et al., 2015). Transformer-

based models have also been explored, treating video 

sequences as temporal data, and have achieved promising 

results (Li et al., 2020; Hafeez et al., 2024). However, 

challenges such as data imbalance, computational 

complexity, and generalization to real-world scenarios 

remain active areas of research. 

Comparative Overview 

Table 1 presents a comparison of different sign language 

recognition approaches, highlighting their datasets, methods, 

and associated challenges. 
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Table 1: Comparison of Sign Language Recognition Approaches: Datasets, Techniques, and Challenges 

Approach Datasets Used Techniques Challenges 

Hardware-based Not dataset-dependent Connected gloves and 

sensors 

Limited scalability; no full-body or facial 

gesture recognition 

Kaggle ASL Dataset 87,028 images of ASL alphabet  CNN-based classification Static gestures only; no temporal 

modeling 

ASL Finger 

Spelling 

Over 500 images per sign  CNN-based recognition Complex backgrounds; limited word 

recognition 

ASL Lexicon Video Dynamic videos of ASL words 

and phrases  

CNN for visual features Annotation inconsistencies; gesture 

variability 

WLASL Dataset 2,000 signs; 100,000+ videos  CNN + RNN/Transformer Temporal dependencies; large-scale 

training complexity 

Proposed Approach Subset of WLASL (25 classes; 

175 videos)  

Hybrid CNN + LSTM 

architecture 

Efficient spatio-temporal modeling with 

96% recognition accuracy 
 

Despite the progress achieved, limitations such as dataset 

imbalance, inter-class variability, and computational 

overhead persist. Our study addresses these challenges by 

leveraging a hybrid CNN-LSTM model trained on a subset 

of the WLASL dataset, achieving significant improvements 

in accuracy and scalability. 

Methodology Research 

The proposed method for recognizing American Sign 

Language uses deep learning techniques to effectively 

process and understand video sequences. This part 

furnishes an in-depth explanation of the choices made for 

the dataset, the preprocessing steps taken, the architecture 

of the model, the training approach, and the metrics used 

for evaluating the system's performance. 

Dataset 

This study utilizes the Word-Level American Sign 

Language (WLASL) dataset, a large-scale video corpus 

containing over 100,000 annotated videos covering more 

than 2,000 distinct ASL signs. For this work, we selected 

a subset of 25 classes, totaling 175 videos, to enable 

controlled experimentation and effective evaluation of our 

proposed CNN-LSTM architecture. 

The subset was carefully chosen based on two primary 

criteria: Semantic diversity and data quality. Specifically, 

the selected signs span five meaningful thematic 

categories: “Emotions, family, colors, politeness, and 

greetings”, which include commonly used signs and 

represent a broad range of hand configurations, motion 

dynamics, and semantic contexts. Furthermore, the 

selected classes were those for which visually clear and 

sufficiently numerous samples were available, ensuring a 

balanced and reliable setup for training and testing. 

This focused selection allowed us to fine-tune the model 

and assess its ability to learn spatio-temporal features 

effectively. The current study serves as a foundational phase 

for future research involving larger subsets or the full 

WLASL dataset, where we aim to address additional 

challenges such as class imbalance, signer variability, and 

scalability of the proposed architecture. 

Dataset Preparation 

Preprocessing: Each video was split into frames, 

resized to 64×64 pixels, and normalized for uniform input.  

To improve model generalization, data augmentation 

methods such as horizontal flipping and random cropping 

were used. 

Data Split: To ensure a fair assessment of model 

performance across classes, the dataset was split into 80% 

training and 20% testing. 

The characteristics of the selected ASL dataset subset 

are summarized in Table 2. 
 
Table 2: Summary of the Selected ASL Dataset Subset 

Category Class Class ID Number of videos 

Emotions Angry 0 12 

Confused 6 6 

Happy 12 9 

Sad 20 9 

Family Family 7 7 

Father 8 7 

Son 22 7 

GrandFather 9 9 

GrandMother 10 9 

Aunt 1 5 

Uncle 23 7 

Brother 4 6 

Sister 21 7 

Colors Black 2 5 

Blue 3 7 

Brown 5 6 

Green 11 7 

Orange 15 5 

Pink 16 6 

Purple 18 6 

Red 19 7 

Yellow 24 5 

Politeness Please 17 7 

Help 14 9 

Greetings Hello 13 5 

Model Architecture 

The proposed model combines Convolutional Neural 

Networks (CNN) with Long Short-Term Memory 

(LSTM) networks to capture significant spatio-temporal 

characteristics from video sequences. Its architecture is 

composed of the following key components. 
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Spatiotemporal Feature Extraction 

A ConvLSTM2D layer with 128 filters is employed to 

simultaneously extract spatial features from individual 

frames and temporal relationships across frames. 

Batch Normalization is applied to stabilize and 

accelerate training. 

A Dropout Layer mitigates overfitting by deactivating 

random neurons during training. 

Temporal Modeling: The outputs of the 

ConvLSTM2D layers are passed to a Gated Recurrent 

Unit (GRU) with 64 units, capturing sequential 

dependencies within the video. 

Classification Layer: Fully connected layers process 

the GRU output to produce high-level features. 

A Softmax Activation Function generates probability 

distributions for the 25 classes. 

Model Workflow 

The proposed architecture is illustrated in Fig. 1. 

Training Process 

The model underwent training for 50 epochs utilizing 

an NVIDIA GPU with a subset of the WLASL dataset. 

Early stopping was implemented with a patience 

parameter set to 5 epochs, determined by validation loss. 

The hyperparameters used in training are as follows: 

o Learning Rate: 0.001 

o Batch Size: 32 

o Optimizer: Adam 

o Loss Function: Categorical Cross-Entropy 

 

Evaluation Metrics 

To evaluate the performance of the model, several 

standard classification metrics were employed. 

Precision measures the proportion of correct 

predictions among all positive predictions, with its 

mathematical definition provided in Equation 1: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃+𝐹𝑃

𝑇𝑃
 (1) 

 

Recall reflects the model's ability to correctly identify 

all relevant positive instances, as detailed in Equation 2: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑟𝑒𝑐𝑎𝑙𝑙 𝑖𝑛

𝑖=1

𝑛
 (2) 

 

The F1-score, representing the harmonic mean of 

precision and recall, is particularly useful for datasets with 

imbalanced classes (Eq. 3): 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 

 

 
Fig. 1: Process of the Suggested Model for ASL Recognition 
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Accuracy provides the overall proportion of correctly 

classified samples relative to the total number of samples, 

as defined in Equation 4: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

 

Where: 

 

TP (True Positives) : Accurate predictions for the 

positive categories 

TN (True Negatives) : Accurate predictions for the 

negative categories 

FP (False Positives) : Incorrect predictions for the 

positive categories 

FN (False Negatives) : Incorrect predictions for the 

negative categories 

 

These metrics give an in-depth perspective on the 

model's effectiveness, assisting in assessing its 

advantages and drawbacks in identifying ASL gestures. 

Results and Discussion 

This section presents the results of the proposed CNN-

LSTM model when applied to the WLASL dataset. The 

assessment emphasizes classification effectiveness, 

training dynamics, and contrasts with current methods. 

Additionally, we explore the significance of these results 

and point out potential areas for enhancement. 

Dataset Description 

For the purpose of recognizing ASL and converting 

gestures into natural language, we utilized a subset of the 

WLASL dataset consisting of 25 classes and 175 videos. 

The data was split into 80% for training and 20% for 

testing, maintaining a balanced distribution across classes 

to ensure accurate evaluation. Additional information can 

be found in the “Dataset” section. 

Proposed Approach 

The suggested approach integrates Convolutional 

Neural Networks (CNN) for extracting spatial features 

and Long Short-Term Memory (LSTM) networks for 

modeling temporal aspects, allowing it to accurately 

capture the spatio-temporal relationships present in ASL 

gestures. The sections titled "Model Architecture" and 

“Training Process” provide a comprehensive overview of 

the model design and training methodology. 

Results 

Table 3 Shows the detailed performance of the 

proposed model in terms of precision, recall, F1-score, 

and accuracy for each class, as well as the macro and 

weighted averages. 

Table 3: Measures of Performance of Each Class 

 Precision  Recall F1-Score 

0 0.86 1.00 0.92 

1 1.00 0.50 0.67 

2 1.00 0.86 0.93 

3 0.90 1.00 0.95 

4 0.88 0.92 0.93 

5 1.00 0.60 0.75 

6 0.92 0.85 0.92 

7 0.94 1.00 0.96 

8 0.87 1.00 0.91 

9 0.94 0.78 0.85 

10 1.00 0.82 0.92 

11 0.89 1.00 0.99 

12 0.92 0.90 0.88 

13 0.94 0.72 0.78 

14 1.00 0.86 0.93 

15 0.95 1.00 0.92 

16 0.89 0.98 0.97 

17 1.00 0.58 0.73 

18 1.00 0.89 0.92 

19 0.90 0.97 0.97 

20 0.78 1.00 0.92 

21 1.00 0.98 0.92 

22 1.00 0.89 0.94 

23 0.91 1.00 0.96 

24 1.00 0.97 0.94 

Accuracy   0.96 

Marco avg 0.94 0.84 0.87 

Weighted avg 0.93 0.92 0.91 
 

The model attained an overall accuracy of 96%, 

indicating good performance in recognizing ASL 

movements. The classification model shows satisfactory 

overall performance with a high accuracy of 96%, reflecting 

a good ability to correctly predict the majority of classes. 

Weighted average metrics show precision of 93%, recall of 

92%, and F1-score of 91%, demonstrating balanced 

performance across majority and minority classes. 

However, analysis of performance by class reveals 
significant variations. Classes such as 7, 11, 19, 23, and 24 
show F1-scores above 0.95, indicating that the model 
recognizes these classes with high precision and near-perfect 
recall. In contrast, some classes, such as 1, 5, 9, and 17, show 
lower F1-scores, due to reduced recall (≤ 0.78), suggesting 
difficulties for the model to effectively detect these signs. 
Class 1, for example, has a particularly low recall of 0.50 
despite perfect precision, indicating a potential problem of 
data imbalance or visual similarities with other classes. The 
macro averages (Precision: 94%, Recall: 84%, F1-score: 
87%) confirm that the performance of minority or difficult 
classes slightly drags down the overall metrics. 

The training and validation results are illustrated 
through accuracy and loss curves. The first graph depicts 
the progression of training and validation accuracy across 
epochs, while the second shows the corresponding 
training and validation loss trends. Together, these curves 
offer valuable insights into the model’s learning 
dynamics, stability, and generalization capability. 

The evolution of training and validation accuracy is 

presented in Fig. 2. 



Meryem Cherrate et al. / Journal of Computer Science 2025, 21 (12): 2965.2974 

DOI: 10.3844/jcssp.2025.2965.2974 

 

2970 

 
 
Fig. 2: Training Accuracy vs Total Validation Accuracy 
 

As shown in Fig. 3, both training and validation loss 

decrease steadily, indicating that the model is learning 

effectively without overfitting. 
 

 
 
Fig. 3: Evolution of Training vs. Validation Loss over Epochs 
 

The results obtained during the training and validation 

phases on the 25 classes from the WLASL dataset 

demonstrate consistent improvement in both accuracy and 

loss over the epochs. In the first graph, the training 

accuracy (blue curve) steadily increases, reaching 

approximately 90%, while the validation accuracy (red 

curve) quickly converges to a similar level. This indicates 

strong generalization without significant overfitting. This 

observation is further supported by the second graph, 

where the training loss (blue curve) and validation loss 

(red curve) decrease smoothly and converge to similar 

values. The minimal gap between the curves, both for 

accuracy and loss, suggests that the CNN-LSTM model is 

effectively trained to capture the spatial and temporal 

patterns present in the videos of the dataset. These results 

highlight the efficiency of the model architecture and 

training strategy in recognizing the 25 classes of signs 

within the context of ASL. 

To further analyze the performance of our model, we 

present the confusion matrix for the 25 ASL classes in Fig. 

4. The confusion matrix illustrates the distribution of 

correct and incorrect predictions across all classes. Most 

predictions are concentrated along the diagonal, 

indicating correct classifications. However, some 

confusion is observed between visually similar signs, 

particularly in classes such as [e.g., Class 1 vs Class 5], 

which may share overlapping visual features. This 

analysis highlights areas where the model could benefit 

from additional data or attention mechanisms to better 

distinguish between similar gestures. 

The confusion matrix indicates that certain signs are 

more susceptible to misclassification, often due to visual 

similarities or a limited number of training samples. For 

instance, the sign “Aunt” (Class 1) is frequently 

misclassified as “Sister” (Class 4), while “Help” (Class 

5) is often confused with “Please” (Class 14). These 

errors likely stem from overlapping hand configurations 

or similar motion trajectories, underscoring the need to 

enrich the dataset for ambiguous classes and to 

investigate advanced techniques, such as attention-based 

mechanisms, to better distinguish subtle gesture 

differences. To further assess the stability and robustness 

of the proposed CNN-LSTM architecture, we repeated 

the training process five times using different random 

seeds. The model consistently achieved high 

performance across all runs, with an average accuracy of 

96% and standard deviations below 1.5% for precision, 

recall, and F1-score. These results confirm that the 

model's performance remains stable regardless of 

initialization, reinforcing its reliability for real-world 

deployment. 

 

 
 
Fig. 4: Confusion matrix showing the classification 

performance of the proposed CNN-LSTM model on 25 

ASL classes 
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Comparative Analysis 

In this comparative study, we evaluate the 

effectiveness of our proposed approach for sign language 

recognition using the WLASL dataset against existing 

state-of-the-art methods. Our model employs 

ConvLSTM2D for spatio-temporal feature extraction and 

GRU layers for temporal sequence learning, offering a 

robust yet computationally efficient solution for dynamic 

gesture recognition. 

Achieving an impressive 96% accuracy on a 25-class 

subset with 175 videos, our method significantly 

outperforms prior works in similar settings. While 

WLASL (Baskoro, 2025) research achieves up to 62.63% 

top-10 accuracy with pose-based and holistic visual 

approaches on 2,000 words, our model excels even on a 

smaller subset, demonstrating superior performance in 

spatio-temporal modeling. Compared to the ASLLVD 

study, which emphasizes linguistic annotations and 

employs a HandShapes Bayesian Network (HSBN) for 

handshape transitions, our approach focuses on practical 

and scalable recognition without requiring intricate 

linguistic details. Our method demonstrates the ability to 

effectively model spatio-temporal dynamics in small-

scale datasets, offering a scalable framework for real-time 

applications. 

Table 4 Presents a comparison between the proposed 

approach and two referenced works, based on several 

performance criteria. 

From experimental results presented in Table 2, we 

can conclude that our proposed approach outperforms 

these methods in accuracy, demonstrating its 

effectiveness in capturing spatio-temporal patterns with 

fewer computational resources.  

The combination of ConvLSTM2D and GRU enables 

the proposed model to achieve a balance between 

accuracy and computational efficiency, making it suitable 

for real-time and resource-constrained applications. 

Ablation Study 

To gain deeper insight into the role of each component 

within the hybrid CNN-LSTM model, an ablation study 

was performed by evaluating the model’s performance 

under three distinct configurations: 

 

o CNN-only Model: This configuration includes only 

the convolutional layers followed by fully connected 

layers for classification. It captures spatial features 

from individual frames but does not model temporal 

dependencies 

o LSTM-only Model: In this setup, hand-crafted spatial 

features extracted from individual frames are fed into 

an LSTM network to model temporal dynamics. No 

convolutional layers are used 

o Hybrid CNN-LSTM Model: This is the full proposed 

model where CNN extracts spatial features and 

LSTM/GRU layers capture temporal dependencies 
 
Table 4: Comparative Analysis of Sign Language Recognition Approaches 

Criterion Our Approach (CNN + LSTM) WLASL Dataset Approach ASLLVD Dataset Approach 

Accuracy 96% (on 25 classes) Up to 62.63% top-10 Not specified, focuses on 

linguistic annotations and 

handshape transitions 

Main Method ConvLSTM2D for spatio-

temporal feature extraction and 

GRU for temporal sequence 

learning 

Visual appearance-based approach 

and Pose-TGCN (Temporal Graph 

Convolution Networks) 

Handshapes Bayesian Network 

(HSBN) for handshape 

transitions in lexical signs 

Dataset Used WLASL (25 classes, 175 

videos) 

WLASL (2,000 words) ASLLVD (3,300 signs, 9,800 

tokens) 

Approach Single-stream model 

(simplified and efficient) 

Pose-based and appearance-based 

models 

Bayesian network model for 

handshape transitions 

Performance 

Evaluation 

Top-1 accuracy, learning 

curves, computational 

efficiency 

Top-10 accuracy (up to 62.63%) Handshape transition analysis, 

but no direct performance was 

reported 

Advantages of the 

Approach 

High accuracy and efficiency, 

even on a smaller dataset 

Robust approach on a large dataset, 

but lower accuracy 

Linguistic model integrating 

detailed sign information 

Training and 

Inference Time 

Low training and inference time 

due to a lighter approach 

More computationally expensive, 

especially with large datasets 

Can be more complex due to 

detailed annotations 

 
Table 5: Performance Comparison of CNN, LSTM, and Combined CNN-LSTM Architecture 

Model Configuration Accuracy Precision Recall F1-Score 

CNN-only 78% 76% 74% 75% 

LSTM-only 65% 62% 61% 61% 

CNN + LSTM (proposed approach) 96% 93% 92% 91% 
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As presented in Table 5, the combined CNN-LSTM 

architecture outperforms standalone CNN and LSTM. 

Models, confirming the benefits of integrating spatial and 

temporal feature extraction. The results clearly show that 

both components are essential for robust gesture 

recognition. The CNN-only model is limited by its 

inability to model temporal changes across video frames, 

while the LSTM-only model suffers from the lack of 

spatial abstraction. The hybrid approach significantly 

outperforms both baselines, demonstrating the advantage 

of combining spatial and temporal modeling. 

Discussion 

The results indicate that the hybrid CNN-LSTM 

architecture effectively addresses the challenges of ASL 

recognition. Key observations include. 

Strong Performance across Classes: The model 

achieves high precision and recall in most classes, with an 

F1-score above 0.90 for many. 

Challenges in Certain Classes: Classes such as 1 

(Aunt) and 5 (Help) exhibit lower recall due to 

potential data imbalances or visual similarities with 

other classes. 

Generalization: The minimal gap between training and 

validation metrics suggests strong generalization 

capabilities. 

Limitations 

The model's performance in imbalanced or low-data 

classes highlights the need for data augmentation or 

advanced techniques, such as dynamic attention 

mechanisms. 

Summary of Results 

The proposed CNN-LSTM model demonstrates state-

of-the-art performance in recognizing ASL gestures from 

the WLASL dataset subset. While achieving high 

accuracy, it highlights the importance of balancing 

datasets and addressing inter-class variability. Future 

work can focus on incorporating attention mechanisms 

and Transformer architectures to further improve 

performance. 

Conclusion 

This study introduces a hybrid deep learning model 

designed to recognize ASL gestures from video 

sequences, utilizing a selected subset of the Word-Level 

American Sign Language (WLASL) dataset. By 

integrating Convolutional Neural Networks (CNNs) for 

extracting spatial features with Long Short-Term Memory 

(LSTM) networks to capture temporal dependencies, the 

model achieved a classification accuracy of 96% across 

25 gesture categories. 

The findings demonstrate the effectiveness of spatio-

temporal modeling in ASL gesture recognition, with the 

proposed method outperforming comparable approaches 

under similar experimental setups. The model 

successfully captures subtle hand shapes and motion 

dynamics inherent in ASL gestures while maintaining 

computational efficiency. These results suggest promising 

applications for real-time ASL translation, educational 

tools, and assistive communication technologies for 

individuals who are deaf or hard of hearing. 

Nonetheless, the study also highlights certain 

challenges, particularly in recognizing gestures with 

limited training samples or those visually similar to 

others. Addressing these issues will be key to improving 

model robustness and ensuring reliable performance in 

practical deployment scenarios. 

Limitations and Future Work 

While the proposed ConvLSTM GRU architecture 

demonstrates high recognition accuracy and effective 

spatio-temporal modeling on a selected subset of the 

WLASL dataset, several limitations remain. 

Performance disparities across certain gesture classes 

persist, mainly due to class imbalance and visual 

similarities between signs, and will be addressed in 

future work through weighted loss functions, targeted 

data augmentation, and oversampling techniques. 

Although the model performs well under controlled 

experimental conditions, its robustness in real-world 

environments characterized by variations in lighting, 

occlusions, background complexity, and signer-

specific differences requires further improvement. 

To enhance generalization, future research will 

focus on integrating skeletal keypoint extraction, 

multimodal fusion with depth information, and more 

advanced spatio-temporal augmentation strategies. 

From an architectural perspective, extensions of the 

current ConvLSTM GRU framework will explore the 

incorporation of attention mechanisms, 3D 

convolutional layers, and transformer-based 

components to better capture long-range temporal 

dependencies and subtle gesture dynamics. Finally, to 

support the practical deployment objectives outlined in 

this study, lightweight and computationally efficient 

versions of the model will be developed for real-time 

implementation on resource-constrained devices such 

as smartphones and wearable systems. 
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