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Abstract: Routing in Mobile Ad Hoc Networks (MANET) presents 

significant challenges due to the dynamic nature of network topology. 

Optimal route selection and efficient route discovery are matched by 

effective routing in MANET. This study proposes a Hybrid Optimization to 

Trust-Enhanced Secure Routing Optimization (HO-TESRO) designed to 

address these challenges in IoT environments by integrating metrics such as 

link stability, bandwidth, energy, and trust. The HO-TESRO model employs 

the Improved Artificial Bee Colony (IABC) algorithm to select optimal 

routes and utilizes the Chaotic Grey Wolf Adaptive Algorithm (CGWAA) 

algorithm in combination with the Advanced Encryption Standard (AES) to 

ensure secure communication. The trust-based CGWAA algorithm evaluates 

and selects the most secure and efficient multiple paths, while the AES-

CGWAA mechanism validates node keys and shared codes for each data 

transfer, ensuring a safe connection. The proposed model was evaluated 

using extensive simulations in MATLAB, and its performance was compared 

against existing techniques. The findings show major improvements in 

detection rate, throughput, packet loss ratio, latency, and packet delivery 

ratio. These findings underscore the efficacy of HO-TESRO in providing a 

robust, secure, and energy-efficient routing solution for IoT-based MANET, 

addressing critical issues of resource allocation and secure routing. 
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Introduction 

In recent years, the rapid growth of Internet of Things 

(IoT) networks and wireless communication systems has 

led to an increased demand for secure, efficient, and 

reliable data transmission. As these networks expand, 

they face numerous challenges, including security 

vulnerabilities, dynamic network conditions, and the need 
for efficient resource allocation (Kaur and Kakkar, 2022). 

One of the critical issues in these networks is routing 

optimization, where selecting the best path for data 

transmission can directly impact network performance, 

security, and energy efficiency (Srilakshmi et al., 2022; 

Veeraiah et al., 2021). Traditional routing protocols often 

fail to address these challenges adequately, especially in 

dynamic environments where network conditions 

frequently change. To address these issues, hybrid 

optimization techniques have emerged as a promising 

approach, integrating various optimization algorithms to 

enhance routing performance while maintaining security 
and trust (Sun et al., 2019). Secure routing is essential for 

protecting data integrity, confidentiality, and availability 
in communication networks (Srilakshmi et al., 2021).  

In the IoT and other wireless networks, secure routing 

involves not only selecting optimal paths but also 
ensuring that these paths are trustworthy and resilient 

against potential threats (Vinitha et al., 2021). The 
incorporation of trust mechanisms into routing protocols 

helps to mitigate risks such as data tampering, 
eavesdropping, and denial-of-service attacks (Rodrigues, 

John, 2020). However, implementing trust-enhanced 
secure routing poses significant challenges due to the 

inherent complexity of evaluating trust levels, 
dynamically adapting to network changes, and optimizing 

multiple conflicting objectives simultaneously. This 
necessitates the use of advanced optimization techniques 

that can handle the multi-dimensional nature of routing 
problems while ensuring security and trust. Hybrid 

optimization combines multiple meta-heuristic 
algorithms, leveraging their individual strengths to 

achieve superior performance in solving complex 
optimization problems (Han et al., 2022). These 
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algorithms are designed to overcome the limitations of 
traditional optimization methods, such as slow 

convergence rates and susceptibility to local optima. By 
integrating different optimization strategies, hybrid 

algorithms provide a more robust and flexible framework 
for addressing the unique challenges of trust-enhanced 

secure routing (Kalidoss et al., 2020; Hu et al., 2022). The 
hybrid approach allows the system to explore a broader 

solution space and adapt more effectively to the dynamic 
conditions of IoT and wireless networks (Nagaraju et al., 

2020). In trust-enhanced secure routing, the integration 
of hybrid optimization techniques enables the dynamic 

evaluation and selection of routes based on multiple 
criteria, including trust levels, path reliability, energy 

efficiency, and overall security. Trust metrics can be 
derived from various sources, such as node behavior, 

historical data, and real-time network conditions, to 
assess the credibility of each route (Selvi et al., 2019; 

Mittal et al., 2021).  
Hybrid optimization helps in balancing these metrics, 

ensuring that the chosen route not only meets performance 

requirements but also adheres to security and trust 

standards. This approach enhances the overall robustness 

of the network by minimizing the likelihood of selecting 

compromised or unreliable routes (Ourouss et al., 2021). 

Moreover, hybrid optimization techniques facilitate 

adaptive routing decisions in real time, which is crucial 
for maintaining optimal performance in highly dynamic 

environments. As network conditions change, such as 

variations in node availability, traffic loads, and potential 

security threats, the optimization framework 

continuously updates its routing strategies to reflect the 

current state of the network. This adaptability is 

particularly valuable in IoT networks, where nodes often 

have limited resources, and environmental factors can 

significantly impact network performance. The proposed 

approach to trust-enhanced secure routing through hybrid 

optimization aims to address the complexities of modern 

communication networks by integrating advanced 
optimization techniques with security and trust assessment 

(Zhang et al., 2024). By leveraging the strengths of 

multiple algorithms, this approach seeks to enhance the 

reliability, security, and efficiency of data transmission, 

ultimately supporting the growing demands of IoT and 

other next-generation networks (Shende and Sonavane, 

2020). The hybrid optimization framework offers a 

comprehensive solution to the multifaceted challenges of 

secure routing, paving the way for more resilient and 

trustworthy communication systems in the future. 

The contributions of this study are manifested below: 
 
 This study introduces the HO-TESRO model, which 

integrates multiple optimization techniques to 
enhance secure routing in IoT-based MANET 

 This study employs the IABC algorithm to optimize 

route selection based on key metrics such as link 

stability, bandwidth, and energy, thereby improving 

overall route discovery and selection processes in 

dynamic network environments 

 This study develops a trust-based routing mechanism 

using CGWAA to evaluate and select the most secure 

and reliable routes, addressing critical security 

challenges associated with dynamic and 

decentralized MANET 

 This study incorporates AES in combination with 

CGWAA to ensure secure data transmission, 

validating node keys and shared codes for each data 

transfer, which significantly enhances the security of 

communications in MANET 
 

Novelty: The proposed HO-TESRO model 

demonstrates scientific novelty by integrating the 

Improved Artificial Bee Colony (IABC) algorithm with 

the Chaotic Grey Wolf Adaptive Algorithm (CGWAA) 

for trust-based, energy-efficient routing in MANETs, a 

novel combination not explored in prior studies. Unique 

features include AES-CGWAA for secure key validation 
and the trust metric's dynamic evaluation for route 

optimization. This approach enhances routing by 

simultaneously addressing security, resource allocation, 

and energy efficiency. Broader implications include its 

potential application in IoT-enabled smart cities, disaster 

recovery networks, and military communications, where 

secure, reliable, and adaptive routing is critical to 

managing dynamic environments effectively. 

Literature Review 

To improve safe data routing, (Khot and Naik, 2021) 
presented the Particle-Water Wave Optimization (P-
WWO) method in 2021. This technique combines 
Particle Swarm Optimization (PSO) with Water Wave 
Optimization (WWO). The P-WWO method minimizes 
distance and time while guaranteeing dependable packet 
transmission through a route maintenance procedure. It 
chooses cluster heads based on a fitness metric that takes 
into account energy, delay, trust, consistency, and 
maintainability. Veeraiah and Krishna (2022) used a new 
multipath routing protocol in 2022 to address energy 
optimization and security in MANETs. This technique 

selects the cluster head and detects intrusions by 
combining fuzzy clustering with fuzzy Naive Bayes 
(fuzzy NB). The routing method successfully thwarts 
assaults like flooding, black holes, and selective packet 
drops by using the BSWOA to choose routes efficiently 
based on connection, energy, trust, and throughput. 

Wang et al. (2020) created a cloud architecture to 
manage fuzzy metrics by combining Fuzzy Petri Nets 
(FPN) for node credibility evaluation with a trust 
reasoning approach. In order to improve Quality of 
Service (QoS), their trust entropy-based routing 
algorithm chooses routes by decreasing trust entropy 

while taking into account both route hops and node trust 
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values. Tangade et al. (2020) suggested a hybrid 
cryptography (TMHC)-based trust management plan to 
enhance Vehicular Ad-hoc Network (VANET) security. 
For strong authentication and trust management, this 
approach uses symmetric Hash Message Authentication 
Codes (HMAC) and asymmetric identity-based digital 
signatures. These are evaluated by an Agent Trusted 
Authority (ATA) and a trusted Roadside Unit (RSU) 
using reward points. Awan et al. (2022) presented a 

blockchain-based encryption and trust assessment 
paradigm that used public and private blockchains to 
authenticate Aggregator Nodes (AN) and Sensor Nodes 
(SN). Using the RSA cryptosystem for data security, this 
model detects and eliminates rogue nodes that take 
advantage of network resources, achieving secure routing 
based on residual energy and trust values. 

By determining the shortest path with the lowest 

communication costs, the Enhanced Hybrid Ant Colony 

Optimization Routing Protocol (EHACORP), introduced 

by Ramamoorthy and Thangavelu (2022), increased 

routing efficiency. Vehicle distance calculations and ant 

colony optimization are the two stages of the protocol's 

operation. In order to guarantee safe routing and 

worldwide optimization, Shi et al. (2019) created a secure 

routing protocol in 2019 that integrates residual energy 

and distance and evaluates each relay node's trust value 

based on historical packet-forwarding behavior. When 

compared to the Reputation-Based Mechanism to 

Stimulate Cooperation (RBMSC), this enhanced Dijkstra 

algorithm produces routes with better delivery ratios and 

less packet loss. Deebak and Al-Turjman (2020) 

presented a secure routing and monitoring system that 

used an Authentication and Encryption Model (ATE) and 

the Two-Fish (TF) symmetric key technique. Ad hoc On-

Demand Multipath Distance Vector (AOMDV) and 

Multipath Optimized Link State Routing (OLSR) 

protocols are used in this technique to improve 

monitoring and fortify against mobile threats. 

The Energy-Aware Trust and Opportunity-depending 

Routing (ETOR) method was used by Hajiee et al. (2021) 

in 2021. They used a hybrid fitness function to choose 

opportunistic and secure nodes for routing depending on 

tolerance. Using variables including energy, trust, QoS, 

connection, distance, hop count, and network traffic, the 

algorithm optimizes routes. Lastly, And and Darwish 

(2021) improved routing security in Wireless Sensor 

Networks (WSNs) in 2021 by combining deep blockchain 

with Markov Decision Processes (MDPs). Their method 

ensures safe message forwarding by using Proof of 

Authority (PoA) for node authentication and deep 

learning to make validation group selection easier. 

Problem Statement 

The increasing complexity and scale of modern 

networks necessitate advanced optimization techniques to 

address security and efficiency challenges in routing. 

Traditional routing algorithms often fail to adapt to 

dynamic network conditions and trust-related issues, 

leading to suboptimal performance and increased 

vulnerability to attacks. Hybrid optimization approaches, 

which combine multiple heuristic and meta-heuristic 

algorithms, offer a promising solution by leveraging 

their complementary strengths to enhance routing 

security and efficiency. This study aims to develop a 

hybrid optimization approach to trust-enhanced secure 

routing optimization, integrating various optimization 

techniques to improve trust-based decision-making and 

secure data transmission in complex network 

environments. The proposed methodology seeks to 

address critical issues such as trust management, routing 

security, and optimization of network resources, 

ultimately contributing to more reliable and secure 

network operations in the face of evolving threats and 

dynamic conditions. 

Materials and Methods  

This section outlines the computational environment, 

simulation setup, and key parameters used to evaluate the 

proposed model. The simulation was conducted using 

MATLAB R2023a, leveraging optimization and deep 

learning toolboxes for implementation. The experiments 

were executed on a system with an Intel Core i7-12700K 

processor, 32GB DDR5 RAM, and Windows 11 64-bit 

OS. A dynamic network topology with 50 to 100 nodes 
was simulated, where each node maintained a predefined 

transmission range and followed mobility patterns 

reflecting real-world scenarios. The simulation was run 

for 25 seconds, capturing network performance at regular 

intervals. Key performance metrics considered for 

evaluation include: 

 

 Delay: Measures the time taken for data to traverse 

the network 

 Detection Rate: Assesses the accuracy of identifying 

network anomalies or failures 

 

Proposed Methodology  

The proposed HO-TESRO methodology addresses 

critical routing challenges in MANETs by overcoming 

inefficiencies and security vulnerabilities found in 

traditional approaches. Conventional routing algorithms 

often struggle with dynamic network conditions, leading 

to suboptimal route selection and frequent breaks. HO-

TESRO tackles this by using the Improved Artificial Bee 

Colony (IABC) algorithm, which optimizes routes based 

on link stability, bandwidth, and energy, ensuring 

efficient and stable paths. Additionally, the lack of trust 

and security in MANET routing is a major concern, as 
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these networks are prone to malicious attacks. To counter 

this, HO-TESRO integrates the Chaotic Grey Wolf 

Adaptive Algorithm (CGWAA) to evaluate the 

trustworthiness of nodes, select secure routes, and 

enhance overall network reliability and safety. The 

overall proposed methodology is shown in Fig. (1). 

Define Network Parameters 

To effectively implement HO-TESRO in MANET, 

defining the network parameters, along with the 
initialization steps for setting up the network topology 
and node parameters: 

 

 Link stability measures the likelihood of maintaining 
a connection between two nodes over time, which is 
crucial in MANETs due to the dynamic nature of the 
topology. The formula is represented as per Eq. (1): 

 

𝑙𝑠𝑖𝑗 =
𝑡𝑢𝑝

𝑡𝑢𝑝+𝑡𝑑𝑜𝑤𝑛
 (1) 

 

where, 𝑙𝑠𝑖𝑗  is the link stability between nodes 𝑖 and 𝑗, 

𝑡𝑢𝑝 is the Total time the link between nodes 𝑖 and 𝑗 is up, 

and 𝑡𝑑𝑜𝑤𝑛 represents the total time the link is down: 

 

 Bandwidth refers to the available data transmission 

capacity on a route, which impacts the route’s ability 

to handle traffic. The formula is represented as per 

Eq. (2): 

 

𝑏𝑤𝑖𝑗 = min (𝑏𝑤𝑖 , 𝑏𝑤𝑗) (2) 

 

where, 𝑏𝑤𝑖𝑗  is the bandwidth available between nodes 𝑖 

and 𝑗, 𝑎𝑛𝑑 𝑏𝑤𝑖  and 𝑏𝑤𝑗 are the Bandwidth capacities of 

nodes 𝑖 and 𝑗: 
 

 Energy refers to the remaining battery power of 

nodes, which is critical for maintaining 

communication without interruptions. The formula is 

represented as per Eq. (3): 

 
𝑒𝑟𝑒𝑠 = 𝑒𝑖𝑛𝑖𝑡 − 𝑒𝑐𝑜𝑛𝑠 (3) 

 

where, 𝑒𝑟𝑒𝑠 is the residual energy of a node, 𝑒𝑖𝑛𝑖𝑡 is the 

initial energy of the node, and 𝑒𝑐𝑜𝑛𝑠  is the energy 

consumed during communication and computation: 

 

 Trust evaluates the reliability and security of nodes 

based on past interactions and behaviors. The 

formula is represented as per Eq. (4): 
 
𝑡𝑖𝑗 = 𝛼 × 𝑡𝑑𝑖𝑟 + (1 − 𝛼) × 𝑡𝑖𝑛𝑑𝑖𝑟  (4) 
 

 Initialization: Define the number of nodes 𝑁 and 

their positions within a simulation area of size 𝑋 ×

𝑌. Nodes are typically placed randomly, and their 

movement can be modeled using mobility models 
like the Random Waypoint Model 

 Position vector: Initialize node positions as (𝑥𝑖 , 𝑦𝑖) 

where 𝑖 = 1,2, … 𝑁 and represented using Eq. (5): 

 
(𝑥𝑖 , 𝑦𝑖) = 𝑅𝑎𝑛𝑑𝑜𝑚(0, 𝑋), 𝑅𝑎𝑛𝑑𝑜𝑚(0, 𝑌) (5) 

 

 Velocity vector: Define the speed and direction of 

each node, 𝑣𝑖 and represented using Eq. (6): 

 

𝑣𝑖 = 𝑣𝑥, 𝑣𝑦 (6) 

 

 Transmission Range: Define the maximum distance 

within which nodes can communicate and 

represented using Eq. (7): 

 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
 (7) 

 

 Node State Variables: Initialize each node with 

parameters such as initial energy, available 

bandwidth, and trust values. Figure (1) depicts the 

overall proposed architecture. 

 

 
 
Fig. 1: Overall proposed architecture flow 
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Route Discovery-IABC 

ABC algorithm is a metaheuristic optimization 

inspired by honey bees' foraging behavior. It consists of 

employed, onlookers, and scout bees. Employed bees 

scout food sources and share data with onlooker bees, 

who probabilistically select sources based on quality. 

Meanwhile, scout bees emerge from employed bees, 

exploring new regions when abandoning their current 

sources, adding an exploration element to prevent local 

optima entrapment. The ABC algorithm efficiently 

emulates social cooperation and intelligent foraging to 

iteratively refine solutions in the search space for optimal 
or near-optimal outcomes, making it applicable to diverse 

optimization challenges. 

In the ABC algorithm, the swarm consists of 

employed and onlooker bees, each comprising half of the 

total swarm size, which equals the number of solutions. It 

starts with a randomly distributed population of 𝑠𝑠 

solutions (food sources), where 𝑠𝑠  is the swarm size. 

Each solution, 𝐴𝑖 = {𝑎𝑖,1,  𝑎𝑖,2, … , 𝑎𝑖,𝑑𝑠}, with 𝑑𝑠  as the 

dimension size, generates candidate solutions 𝐶𝑖  in its 

neighborhood to optimize as per Eq. (8): 

 

𝑐𝑖,𝑗 = 𝑎𝑖,𝑗 + ∅𝑖,𝑗 ∙ (𝑎𝑖,𝑗 − 𝑎𝑘,𝑗) (8) 

 

The algorithm randomly selects a candidate solution 𝐴𝑘 

(where  𝐼 ≠  𝑘 ) and a dimension index 𝑗  from 

{1, 2, . . . , 𝑑𝑠}, then determines random number ∅𝑖,𝑗 within 

[-1, 1]. Using these, a new candidate solution  𝐶𝑖 , is 

generated. If 𝐶𝑖  fitness surpasses 𝐴𝑖, 𝐴𝑖is will be updated; 
otherwise, it will remain unchanged. Employed bees share 

their food source info through dances with onlooker bees. 

Onlookers evaluate this information and choose a food 

source probabilistically based on nectar amount, akin to 

roulette wheel selection as Eq. (9) suggests: 

 

𝑟𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑗
𝑠𝑠
𝑗=1

⊕ 𝐿𝑒𝑣𝑦(𝛽)  (9) 

 

In the ABC algorithm, incorporating Lévy flight 

enhances resource search efficiency by enabling a 

random walk during the employed bee phase. This novel 

mechanism generates new solutions around the best food 

source, improving search direction and algorithm 

performance. The selection probability of the 𝑖𝑡ℎ food 

source is determined by its fitness value, denoted as 𝑓𝑖𝑡𝑖. 

A higher fitness value indicates a higher probability of 

selecting the 𝑟𝑖𝑔ℎt food source. If a position cannot be 

enhanced within a predefined number of cycles (referred 

to as the limit), the food source is abandoned. In such 

cases, denoted by 𝐴𝑖, the scout bee identifies a new food 

source to replace it, as per Eq. (10): 

 

𝐴𝑖,𝑗 = 𝑙𝑜𝑏𝑗 + 𝑟𝑎(0,1) ∙ (𝑢𝑝𝑏𝑗 − 𝑙𝑜𝑏𝑗)  (10) 

Within the range [0, 1], a normal distribution is used 

to create the random number 𝑟𝑎(0,1). The lower and 

upper bounds of the 𝑗𝑡ℎ dimension are denoted by the 

symbols 𝑙𝑜𝑏 and 𝑢𝑝, respectively. 

Trust Evaluation-CGWAA 

The Chaotic Grey Wolf Adaptive Algorithm 

(CGWAA) is an advanced optimization technique that 

combines the Grey Wolf Optimizer (GWO) with chaotic 

maps to enhance search efficiency and avoid local optima. 

In CGWAA, grey wolves simulate leadership and social 
hierarchy to explore and exploit the solution space, while 

chaotic sequences introduce randomness, improving 

convergence speed and precision. This adaptive 

mechanism helps balance exploration and exploitation, 

making CGWAA effective in complex optimization 

problems, including secure routing and resource 

management in dynamic network environments. The 

GWO algorithm is inspired by the social structure and 

hunting strategies of grey wolves, modeling the top three 

wolves α, β and δ as leaders guiding the pack (ω wolves) 

towards optimal solutions. The algorithm mimics the 
wolves’ hunting process through three main phases: 

Encircling the prey, collaboratively hunting, and attacking 

to capture the prey. These steps drive the pack towards the 

global optimum, balancing exploration and exploitation to 

solve complex optimization problems efficiently. 
 

 In the GWO algorithm, the encircling behavior of grey 

wolves is mathematically modeled using equations 

that update the positions of wolves relative to the prey. 
Eq. (11) calculates the distance between a wolf and 

prey, while Eq. (12) updates the wolf's position, 

simulating encircling to move closer to the target. 
 

Distance calculation: 
 
𝑑𝑖𝑠 = 𝑐 × 𝑥𝑝(𝑡) − 𝑥(𝑡) (11) 
 

Position update: 
 
𝑥(𝑡 + 1) = 𝑥𝑝(𝑡) − 𝑎 × 𝑑𝑖𝑠 (12) 
 

Here, 𝑥𝑝  represents the position of the prey, and 𝑋 

denotes the position vector of a grey wolf. 𝑡 is the current 

iteration, while 𝑐 and 𝑎 are coefficient vectors that guide 

the wolves' movement, calculated using Eq. (13): 
 

𝑎 = 2𝑎𝑟𝑎1 − 𝐴(𝑡) (13) 
 

Incorporating the logistic chaotic map into the Grey 

Wolf Optimizer (GWO) enhances the encircling 

behavior by introducing chaotic dynamics, thereby 

improving population diversity and avoiding premature 

convergence. The logistic map is defined by proposed 

Eqs. (14-15): 
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𝑐 = 2𝑟𝑎2 × 𝑚𝑡+1 (14) 
 
𝑚𝑡+1 = 𝛿 × 𝑚𝑡 × (1 − 𝑚𝑡) (15) 
 
where, t represents time, 𝑚 is the number of critical points 

within the interval [0, 1], and δ is the control parameter, 

adding nonlinearity to the search process. When δ is set 

between 3.5 and 4, the map exhibits chaotic behavior, 
which can be used to update the positions of wolves in 

GWO’s encircling phase. In the encircling behavior, the 

chaotic map introduces random perturbations in wolf 

positions, enhancing exploration by dynamically 

adjusting the distance dis  and position vectors. This 

chaotic influence helps in maintaining a balance between 

exploration and exploitation by preventing wolves from 

settling prematurely into suboptimal areas, thus 

improving the overall performance of the GWO 

algorithm; 𝑟𝑎1 and 𝑟𝑎2 are random vectors within the 

range; the elements of vector 𝐴 decrease linearly from 2-

0 over the iterations, as shown by Eq. (16): 
 

𝐴(𝑡) = 2 −
2𝑡

𝑇
 (16) 

 
Here, 𝑡 is the current iteration, and 𝑇 is the maximum 

number of iterations: 
 
 In the GWO algorithm, the hunting behavior is modeled 

by assuming that the α, β, and δ wolves possess the best 
knowledge of the prey’s location. These top three 
wolves guide the search process, and their positions 
represent the best solutions for the current situation. The 
remaining ω wolves update their positions based on the 
guidance of these leader wolves, gradually converging 

toward the prey (optimal solution). Eqs. (17-19) 
mathematically describe this behavior, calculating 
the new positions of ω wolves by averaging the 
influence of α, β and δ wolves, thereby refining the 
search and ensuring a coordinated approach toward 
finding the global optimum: 

 
𝑑𝑖𝛼 = |𝑐1 × 𝑥𝛼 − 𝑥(𝑡)| (17) 
 
𝑑𝑖𝑠𝛽 = |𝑐2 × 𝑥𝛽 − 𝑥(𝑡)| (18) 
 
𝑑𝑖𝑠𝛾 = |𝑐3 × 𝑥𝛾 − 𝑥(𝑡)| (19) 
 
Where 𝑐1, 𝑐2, and 𝑐3 are calculated using Eq. (14): 
 
𝑥𝑖1(𝑡) = 𝑥𝛼(𝑡) − 𝑎𝑖1 × 𝑑𝑖𝑠𝛼(𝑡) (20) 
 
𝑥𝑖2(𝑡) = 𝑥𝛽(𝑡) − 𝑎𝑖2 × 𝑑𝑖𝑠𝛽(𝑡) (21) 
 
𝑥𝑖3(𝑡) = 𝑥𝛾(𝑡) − 𝑎𝑖3 × 𝑑𝑖𝑠𝛾(𝑡) (22) 
 

From Eqs. (20–22), 𝑥𝛼 , 𝑥𝛽  and 𝑥𝛾  are the top three 

solutions, with 𝑎1 , 𝑎2 , 𝑎3 , 𝑑𝑖𝑠𝛼 , 𝑑𝑖𝑠𝛽 , and 

𝑑𝑖𝑠𝛾  calculated accordingly using Eq. (24): 
 

𝑥(𝑡 + 1) =
𝑥𝑖1(𝑡)+𝑥𝑖2(𝑡)+𝑥𝑖3(𝑡)

3
 (24) 

 In GWO, the attacking phase starts when wolves 
converge on the prey, marking the hunt's end. This 
phase is governed by the parameter 𝑎, which decreases 
linearly from 2-0 over iterations, balancing 
exploration and exploitation. During the first half of 
the iterations, the focus is on exploration and 
diversifying the search, while the second half 
emphasizes exploitation and honing in on optimal 
areas. Wolves adjust their positions randomly between 

their current location and the prey's position, refining 
their approach to achieve the global optimum 

 

In order to attain the maximum iterations (maxiter), 

GWO iteratively encircles, hunts, and attacks. The search 
is guided by the optimal wolves (α, β, and δ), who are 

constantly updating their positions during this procedure. 

Even though GWO works well, it frequently encounters 

problems like low population diversity and an unbalanced 

exploration-exploitation ratio. These issues can cause 

premature convergence and make it difficult to find the 

global optimum, particularly in complex problems where 

preserving diversity and striking a balance between 

search tactics are essential for best results.  

Secure Communication-AES 

In 2001, the U.S. National Institute of Standards and 

Technology (NIST) created the Advanced Encryption 

Standard (AES) for electronic data encryption. Its greater 

security over its predecessor, the Data Encryption 

Standard (DES), and its variations, such as Triple DES 

(3DES), is why it is so popular today. AES encrypts data 

in fixed-size blocks and functions as a block cipher. The 

key sizes that it takes are 128, 192, or 256 bits. There are 

several rounds to the encryption process, and each round 

consists of four primary steps: 
 
 SubBytes: Each byte in the block is substituted 

with another byte using a predefined substitution 
table (S-box) 

 ShiftRows: The rows of the block are shifted 
cyclically to the left 

 MixColumns: Each column of the block is 

transformed using a matrix multiplication operation 
 AddRoundKey: Each byte of the block is combined 

with a byte of the round key using bitwise XOR 
 

The key size determines how many rounds are 

completed: A 128-bit key is subjected to 10 rounds, a 

192-bit key to 12 rounds, and a 256-bit key to 14 rounds. 

AES encryption ensures data confidentiality and security, 

making it suitable for various applications such as 

wireless security, database encryption, secure 

communications, and file encryption. Its robustness 

against cryptographic attacks and its widespread adoption 

in both hardware and software implementations make it a 

cornerstone of modern cryptographic systems.  
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Algorithm 1 outlines the HO-TESRO methodology, 

integrating IABC for efficient route discovery, CGWAA 

for trust evaluation, and AES for secure communication. 
 

Algorithm 1: HO-TESRO 

1. Initialize network parameters: number of nodes, 

position, velocity, energy, bandwidth, and trust values. 

2. For each node in the network: 

a. Calculate link stability between nodes using Eq. (1). 

b. Calculate available bandwidth between nodes using 

Eq. (2). 

c. Calculate residual energy using Eq. (3). 

d. Evaluate the trustworthiness of the node using Eq. 

(4). 

3. Use Improved Artificial Bee Colony (IABC) 

algorithm for route discovery: 

a. Randomly initialize ss solutions (routes). 

b. Generate candidate solutions (routes) using Eq. (8). 

c. Select the best route based on fitness and Lévy flight 

enhancement (Eq. (9)). 

d. If there is no improvement after limit cycles, the 

scout bee searches for new routes. 

4. Use Chaotic Grey Wolf Adaptive Algorithm 

(CGWAA) for trust evaluation: 

a. Initialize wolf positions based on the trust values of 

nodes. 

b. Update wolf positions Eq. (12) to refine node 

trustworthiness. 

c. Introduce chaos using the logistic map to enhance 

exploration Eqs. (14-15). 

5. For selected routes, ensure secure communication 

using AES encryption 

Encrypt data packets using AES with a 128-bit key. 

b. Perform SubBytes, ShiftRows, MixColumns, and 

AddRoundKey steps. 

6. Transmit data through the selected and secure route. 

7. Repeat until all data is transmitted or max iterations 

are reached. 
 

Results and Discussion 

Experimental Setup 

Using MATLAB, the experiment assessed the 

Proposed model against Artificial Bee Colony (ABC), 

Grey Wolf Optimization (GWO), and Chaotic Grey Wolf 

Adaptive Algorithm (CGWAA). The Proposed model 

showed clear advantages in all key performance areas. It 

achieved lower delays, higher detection rates, and better 

energy efficiency compared to the other models. 

Additionally, it demonstrated reduced data loss, a longer 

network lifetime, improved routing accuracy, and higher 

throughput. These improvements are attributed to the 

advanced routing and security optimizations integrated 
into the Proposed model, which collectively enhanced its 

overall performance and effectiveness. 

Overall Performance Evaluation 

Tables (1-6) present the performance metrics of various 

existing optimization algorithms and a proposed model 

across six key performance indicators. The delay 

represents the time taken by each algorithm to complete a 

task. The Proposed model excels with the lowest delays, 

starting at three units at a time of 5 sec and increasing to 

4.562 units at a time of 25 sec. In comparison, GWO shows 

delays ranging from 17-33.630 units. The Proposed 

model's efficiency in reducing delay is evident across all 

time intervals. The detection Rate metric measures the 

accuracy of detection by the models. The Proposed model 
achieves the highest detection rates, peaking at 95% at time 

5 sec and remaining high at 90.992% at time 25 sec. 

GWO's detection rate declines significantly from 88-

63.964%. The Proposed model's consistently high 

detection rate indicates superior accuracy and reliability. 

Energy consumption reflects the efficiency of the 

algorithms' energy use. The Proposed model demonstrates 

superior energy efficiency, with values of 92 at time 5 sec 

and 87.992 at time 25 sec. GWO's energy consumption, in 

contrast, decreases from 84-48.234, highlighting the 

Proposed model's effectiveness in managing energy 
resources more efficiently. 
 
Table 1: Delay 

Time (sec) 5 10 15 20 25 

GWO 17 

20.943

2 

23.766

12 

24.0363

4 

33.630

82 

ABC 15 

15.395

16 

15.411

51 

15.4470

1 

15.596

76 

CGWAA 12 

14.081

76 

14.424

96 

16.5281

4 

17.042

83 

Proposed 3 

3.7126

93 

3.7411

45 4.00811 

4.5620

57 
 
Table 2: Detection rate 

Time (sec) 5 10 15 20 25 

GWO 88 71 67.0568 64.23388 63.96366 

ABC 90 75 74.60484 74.58849 74.55299 

CGWAA 92 80 77.91824 77.57504 75.47186 

Proposed 95 92 91.28731 91.25885 90.99189 
 
Table 3: Energy 

Time (sec) 5 10 15 20 25 

GWO 84 72 55 51.0568 48.23388 

ABC 86 71 70.60484 70.58849 70.55299 

CGWAA 89 77 74.91824 74.57504 72.47186 

Proposed 92 89 88.28731 88.25885 87.99189 

 
Table 4: Loss 

Time (sec) 5 10 15 20 25 

GWO 0.05 

0.182

797 

0.18852

2 0.21426 

0.2370

23 

ABC 0.01 

0.118

762 

0.12952

3 

0.17537

6 

0.1916

03 

CGWAA 0.02 

0.138

122 

0.15527

6 

0.18393

7 

0.1983

67 

Proposed 

0.00388

9 

0.109

634 

0.13985

3 

0.16245

3 

0.1745

63 
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Table 5: Network lifetime 

Time 
(sec) 5 10 15 20 25 

GWO 12 29 32.9432 35.76612 36.03634 

ABC 20 35 35.39516 35.41151 35.44701 

CGWAA 38 50 52.08176 52.42496 54.52814 

Proposed 55 58 58.71269 58.74115 59.00811 

 
Table 6: Throughput 

Time (sec) 5 10 15 20 25 

GWO 659 579 509 439 369 

ABC 774 694 624 554 484 

CGWAA 836 756 686 616 546 

Proposed 995 915 845 775 705 

 

Loss indicates the error or inefficiency in the model's 

output. The Proposed model has the lowest loss values, 

with a minimum of 0.003889 at time 5 sec and a 

maximum of 0.174563 at time 25 sec. GWO's loss values 

are higher, ranging from 0.05-0.237023. Lower loss 

values in the Proposed model reflect its higher accuracy 

and efficiency. Network lifetime measures the 

operational duration before system failure. The Proposed 

model leads with an increased network lifetime, from 55 

at time 5 sec to 59.008 at time 25 sec. GWO’s network 

lifetime is notably shorter, ranging from 12-36.036. This 

extended network lifetime signifies the robustness and 

durability of the Proposed model. Throughput gauges the 

rate of successful data transmission. The Proposed model 

achieves the highest throughput, with values like 995 at 

time 5 sec and 705 at time 25 sec. GWO's throughput 

ranges from 659-369, indicating that the Proposed model 

is more effective at handling high data rates. 

The Proposed model, which integrates IABC and 

AES-CGWAA, consistently outperforms the other 
algorithms across all performance metrics. Its notable 

achievements include lower delays, higher detection 

rates, better energy efficiency, minimal loss, extended 

network lifetime, and superior throughput. These 

improvements highlight the effectiveness of the advanced 

optimization strategies embedded in the Proposed model, 

making it a significant advancement over GWO, ABC, 

and CGWAA. 

The performance of the proposed model is 

graphically compared to that of the current models 

(GWO, ABC, and CGWAA) in Fig (2). It brings 
attention to important data, including throughput, 

energy consumption, loss, detection rate, latency, and 

network lifetime. The Proposed model consistently 

shows superior performance with lower delays, higher 

detection rates, and better energy efficiency. The 

graphical representation clearly illustrates the 

advantages of the Proposed model over the existing 

models, emphasizing its enhanced efficiency and 

effectiveness. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 
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(e) 

 

 
(f) 

 
Fig. 2: Proposed and existing model graphical representation 
 

Table (7) provides a comparative analysis of different 

methods, evaluating them based on key performance metrics 

such as packet loss, energy consumption, packet delivery 

ratio, throughput, and delay. The SN-TOCRP (Nirmaladevi 

and Prabha, 2023) method exhibits minimal packet loss 

(0.045 kbps) and a high packet delivery ratio (96%). 

However, it suffers from significantly high energy 

consumption (88%) and offers a moderate throughput (76 

kbps). On the other hand, the EBTM-Hyopt (Narayana et al., 

2023) approach demonstrates a higher packet loss (165.6 

kbps) and a considerably lower packet delivery ratio 

(46.34%). Despite these shortcomings, it achieves better 

throughput (297.99 kbps) and low energy consumption 

(13%), though it incurs a significant delay (67.49%). 

Finally, the HO-TESRO model outperforms both with a 

low packet loss (32 kbps), low energy consumption 

(10%), and a high packet delivery ratio (97%) while also 

delivering excellent throughput (320 kbps) and 

maintaining a moderate delay (35%). Overall, the 

proposed HO-TESRO model provides a balanced and 

efficient performance, optimizing energy and network 

efficiency while minimizing packet loss and delay. 
Figure (3) illustrates the comparison between the base 

paper methods and the proposed model, showcasing their 

performance across key metrics. The proposed model 

significantly outperforms the existing methods, 

particularly in packet delivery ratio, throughput, and 
energy efficiency, demonstrating improved overall 

system performance. 
 
Table 7: Base paper comparison with the proposed model 

Methods  Pkt 

Loss 

(kbps) 

Energy 

consump

tion (%) 

Pkt 

delivery 

ratio (%) 

Throu

ghput 

(kbps) 

Delay 

(%) 

SN-TOCRP 

(Nirmaladevi 

and Prabha, 

2023) 

0.045 88 96 76 0.425 

EBTM-

Hyopt 

(Narayana et 

al., 2023) 

165.6 13 46.34 297.9

9 

67.49 

HO-TESRO 32 10 97 320 35 
 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

 

 
(e) 

 
Fig. 3: Base paper comparison with the proposed model 
 

Conclusion 

In order to solve these issues in IoT environments, 

this article suggested HO-TESRO that integrates 

metrics including network stability, bandwidth, 

energy, and trust. The HO-TESRO model used the 

CGWA) in conjunction with the AES to provide secure 

communication. The IABC method was implemented 

to choose the best paths. The AES-CGWAA 

mechanism verified node keys and shared codes for 

every data transfer, guaranteeing a secure connection, 

while the trust-based CGWAA algorithm assessed and 

chose the most efficient and safe multiple pathways. 

Comprehensive MATLAB simulations were used to 

assess the suggested model, and its results were 

contrasted with those of other methods. Detection rate, 

packet loss ratio, packet delivery ratio, throughput, and 

latency all demonstrated significant improvements. 

These results demonstrated HO-TESRO's 

effectiveness in tackling the crucial problems of 

resource allocation and secure routing while offering 

an IoT-based MANET, a reliable, secure, and energy-

efficient routing solution. 

Acknowledgment 

Generalizability 

The evaluation of HO-TESRO can be extended to 

multiple use cases, including diverse IoT-enabled 

MANET scenarios like vehicular networks and 

healthcare systems, to demonstrate adaptability across 

varied conditions. This will showcase the model’s 

robustness under dynamic network topologies and 

traffic patterns. 

Acknowledgment of Limitations 

We acknowledge that the current study is limited to 

simulation-based analysis and lacks real-world 

deployment testing. Future work will address scalability 

and adaptability to highly dynamic IoT environments. 

Real-World Impact 

The findings are applicable to real-world scenarios, 

such as smart city infrastructure and IoT healthcare 

systems, where secure and efficient routing is critical. 

This underscores the relevance of HO-TESRO in 

addressing practical challenges like secure data 

transmission and energy management. 

Funding Information 

On behalf of all authors, the corresponding author 

states that they did not receive any funds for this project. 

Author’s Contributions 

Yuvaraja Panneer Selvam: Contributed in software, 

writing review and editing. 

Suganthi Perumal: Involved in conceptualization, 

formal analysis and writing original draft. 

Ethics 

This article is original and contains unpublished 

material. The corresponding author confirms that all of 

the other authors have read and approved the manuscript 

and that no ethical issues are involved. 

Conflicts of Interest 

The authors declare that we have no conflict of 

interest. 

Data Availability  

All the data is collected from the simulation reports of 

the software and tools used by the authors. Authors are 

working on implementing the same using real-world data 

with appropriate permissions. 



Panneer Selvam and Suganthi Perumal / Journal of Computer Science 2025, 21 (4): 928.939 

DOI: 10.3844/jcssp.2025.928.939 

 

938 

References 

And, I. A. A. E.-M., & Darwish, S. M. (2021). Towards 

Designing a Trusted Routing Scheme in Wireless 

Sensor Networks: A New Deep Blockchain 

Approach. IEEE Access, 9, 103822–103834. 

https://doi.org/10.1109/access.2021.3098933 

Awan, S., Javaid, N., Ullah, S., Khan, A. U., Qamar, A. 

M., & Choi, J.-G. (2022). Blockchain Based Secure 

Routing and Trust Management in Wireless Sensor 

Networks. Sensors, 22(2), 411. 

https://doi.org/10.3390/s22020411 

Deebak, B. D., & Al-Turjman, F. (2020). A hybrid secure 

routing and monitoring mechanism in IoT-based 

wireless sensor networks. Ad Hoc Networks, 97, 

102022. 

https://doi.org/10.1016/j.adhoc.2019.102022 

Hajiee, M., Fartash, M., & Osati Eraghi, N. (2021). An 

Energy-Aware Trust and Opportunity Based Routing 

Algorithm in Wireless Sensor Networks Using 

Multipath Routes Technique. Neural Processing 

Letters, 53(4), 2829–2852. 

https://doi.org/10.1007/s11063-021-10525-7 

Han, Y., Hu, H., & Guo, Y. (2022). Energy-Aware and 

Trust-Based Secure Routing Protocol for Wireless 

Sensor Networks Using Adaptive Genetic 

Algorithm. IEEE Access, 10, 11538–11550. 

https://doi.org/10.1109/access.2022.3144015 

Hu, H., Han, Y., Yao, M., & Song, X. (2022). Trust Based 

Secure and Energy Efficient Routing Protocol for 

Wireless Sensor Networks. IEEE Access, 10, 10585–

10596. https://doi.org/10.1109/access.2021.3075959 

Kalidoss, T., Rajasekaran, L., Kanagasabai, K., Sannasi, 

G., & Kannan, A. (2020). QoS Aware Trust Based 

Routing Algorithm for Wireless Sensor Networks. 

Wireless Personal Communications, 110(4), 1637–

1658. https://doi.org/10.1007/s11277-019-06788-y 

Kaur, G., & Kakkar, D. (2022). Hybrid optimization 

enabled trust-based secure routing with deep 

learning-based attack detection in VANET. Ad Hoc 

Networks, 136, 102961.  

 https://doi.org/10.1016/j.adhoc.2022.102961 

Khot, P. S., & Naik, U. (2021). Particle-Water Wave 

Optimization for Secure Routing in Wireless Sensor 

Network Using Cluster Head Selection. Wireless 

Personal Communications, 119(3), 2405–2429. 

https://doi.org/10.1007/s11277-021-08335-0 

Mittal, N., Singh, S., Singh, U., & Salgotra, R. (2021). 

Trust-aware energy-efficient stable clustering 

approach using fuzzy type-2 Cuckoo search 

optimization algorithm for wireless sensor networks. 

Wireless Networks, 27(1), 151–174. 

https://doi.org/10.1007/s11276-020-02438-5 

Nagaraju, R., C, V., J, K., G, M., Goyal, S. B., Verma, C., 

Safirescu, C. O., & Mihaltan, T. C. (2022). Secure 

Routing-Based Energy Optimization for IoT 

Application with Heterogeneous Wireless Sensor 

Networks. Energies, 15(13), 4777.  

https://doi.org/10.3390/en15134777 

Narayana, M. V., Pradeep Kumar, V., Kumar Nanda, A., 

Rao Jalla, H., & Reddy Chavva, S. (2023). Enhanced 

Energy Efficient with a Trust Aware in MANET for 

Real-Time Applications. Computers, Materials & 

Continua, 75(1), 587–607. 

https://doi.org/10.32604/cmc.2023.034773 

Nirmaladevi, K., & Prabha, K. (2023). A selfish node 

trust aware with Optimized Clustering for reliable 

routing protocol in Manet. Measurement: Sensors, 

26, 100680.  

 https://doi.org/10.1016/j.measen.2023.100680 

Ourouss, K., Naja, N., & Jamali, A. (2021). Defending 

Against Smart Grayhole Attack within MANETs: A 

Reputation-Based Ant Colony Optimization 

Approach for Secure Route Discovery in DSR 

Protocol. Wireless Personal Communications, 

116(1), 207–226. https://doi.org/10.1007/s11277-

020-07711-6 

Ramamoorthy, R., & Thangavelu, M. (2022). An 

enhanced hybrid ant colony optimization routing 

protocol for vehicular ad-hoc networks. Journal of 

Ambient Intelligence and Humanized Computing, 

13(8), 3837–3868. https://doi.org/10.1007/s12652-

021-03176-y 

Rodrigues, P., & John, J. (2020). Joint trust: an approach 

for trust-aware routing in WSN. Wireless Networks, 

26(5), 3553–3568. https://doi.org/10.1007/s11276-

020-02271-w 

Selvi, M., Thangaramya, K., Ganapathy, S., Kulothungan, 

K., Khannah Nehemiah, H., & Kannan, A. (2019). An 

Energy Aware Trust Based Secure Routing Algorithm 

for Effective Communication in Wireless Sensor 

Networks. Wireless Personal Communications, 

105(4), 1475–1490. https://doi.org/10.1007/s11277-

019-06155-x 

Shende, D. K., & Sonavane, S. S. (2020). CrowWhale-

ETR: CrowWhale optimization algorithm for energy 

and trust aware multicast routing in WSN for IoT 

applications. Wireless Networks, 26(6), 4011–4029. 

https://doi.org/10.1007/s11276-020-02299-y 

Shi, Q., Qin, L., Ding, Y., Xie, B., Zheng, J., & Song, L. 

(2019). Information-Aware Secure Routing in 

Wireless Sensor Networks. Sensors, 20(1), 165. 

https://doi.org/10.3390/s20010165 

Srilakshmi, U., Alghamdi, S. A., Vuyyuru, V. A., 

Veeraiah, N., & Alotaibi, Y. (2022). A Secure 

Optimization Routing Algorithm for Mobile Ad Hoc 

Networks. IEEE Access, 10, 14260–14269. 

https://doi.org/10.1109/access.2022.3144679 

https://doi.org/10.1109/access.2021.3098933
https://doi.org/10.3390/s22020411
https://doi.org/10.1016/j.adhoc.2019.102022
https://doi.org/10.1007/s11063-021-10525-7
https://doi.org/10.1109/access.2022.3144015
https://doi.org/10.1109/access.2021.3075959
https://doi.org/10.1007/s11277-019-06788-y
https://doi.org/10.1016/j.adhoc.2022.102961
https://doi.org/10.1007/s11277-021-08335-0
https://doi.org/10.1007/s11276-020-02438-5
https://doi.org/10.3390/en15134777
https://doi.org/10.32604/cmc.2023.034773
https://doi.org/10.1016/j.measen.2023.100680
https://doi.org/10.1007/s11277-020-07711-6
https://doi.org/10.1007/s11277-020-07711-6
https://doi.org/10.1007/s12652-021-03176-y
https://doi.org/10.1007/s12652-021-03176-y
https://doi.org/10.1007/s11276-020-02271-w
https://doi.org/10.1007/s11276-020-02271-w
https://doi.org/10.1007/s11277-019-06155-x
https://doi.org/10.1007/s11277-019-06155-x
https://doi.org/10.1007/s11276-020-02299-y
https://doi.org/10.3390/s20010165
https://doi.org/10.1109/access.2022.3144679


Panneer Selvam and Suganthi Perumal / Journal of Computer Science 2025, 21 (4): 928.939 

DOI: 10.3844/jcssp.2025.928.939 

 

939 

Srilakshmi, U., Veeraiah, N., Alotaibi, Y., Alghamdi, S. A., 

Khalaf, O. I., & Subbayamma, B. V. (2021). An 

Improved Hybrid Secure Multipath Routing Protocol 
for MANET. IEEE Access, 9, 163043–163053. 

https://doi.org/10.1109/access.2021.3133882 

Sun, Z., Wei, M., Zhang, Z., & Qu, G. (2019). Secure 

Routing Protocol based on Multi-objective Ant-

colony-optimization for wireless sensor networks. 

Applied Soft Computing, 77, 366–375. 

https://doi.org/10.1016/j.asoc.2019.01.034 

Tangade, S., Manvi, S. S., & Lorenz, P. (2020). Trust 

Management Scheme Based on Hybrid 

Cryptography for Secure Communications in 

VANETs. IEEE Transactions on Vehicular 
Technology, 69(5), 5232–5243.  

 https://doi.org/10.1109/tvt.2020.2981127 

Veeraiah, N., & Krishna, B. T. (2022). An approach for 

optimal-secure multipath routing and intrusion 

detection in MANET. Evolutionary Intelligence, 

15(2), 1313–1327. 

https://doi.org/10.1007/s12065-020-00388-7 

Veeraiah, N., Ibrahim Khalaf, O., Prasad, C. V. P. R., 

Alotaibi, Y., Alsufyani, A., Alghamdi, S. A., & 

Alsufyani, N. (2021). Trust Aware Secure Energy 

Efficient Hybrid Protocol for MANET. IEEE Access, 9, 

120996–121005. 
https://doi.org/10.1109/access.2021.3108807 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Vinitha, A., Rukmini, M. S. S., & Dhirajsunehra. 

(2022). Secure and energy aware multi-hop routing 

protocol in WSN using Taylor-based hybrid 
optimization algorithm. Journal of King Saud 

University - Computer and Information Sciences, 

34(5), 1857–1868. 

https://doi.org/10.1016/j.jksuci.2019.11.009 

Wang, X., Zhang, P., Du, Y., & Qi, M. (2020). Trust 

Routing Protocol Based on Cloud-Based Fuzzy Petri 

Net and Trust Entropy for Mobile Ad hoc Network. 

IEEE Access, 8, 47675–47693. 

https://doi.org/10.1109/access.2020.2978143 

Zhang, X., Deng, H., Xiong, Z., Liu, Y., Rao, Y., Lyu, Y., 

Li, Y., Hou, D., & Li, Y. (2024). Secure Routing 
Strategy Based on Attribute-Based Trust Access 

Control in Social-Aware Networks. Journal of 

Signal Processing Systems, 96(2), 153–168. 

https://doi.org/10.1007/s11265-023-01908-1 

https://doi.org/10.1109/access.2021.3133882
https://doi.org/10.1016/j.asoc.2019.01.034
https://doi.org/10.1109/tvt.2020.2981127
https://doi.org/10.1007/s12065-020-00388-7
https://doi.org/10.1109/access.2021.3108807
https://doi.org/10.1016/j.jksuci.2019.11.009
https://doi.org/10.1109/access.2020.2978143
https://doi.org/10.1007/s11265-023-01908-1

