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Abstract: Accurate diabetes prediction is vital for early intervention, 

optimized resource allocation, and minimizing long-term complications. 

This study presents a comparative evaluation of traditional and advanced 

machine learning models for diabetes classification using a structured 

clinical dataset. Seven baseline algorithms were assessed against five 

advanced ensemble methods: CatBoost, LightGBM, XGBoost, Voting 

Ensemble, and Stacking Ensemble. To improve algorithm learning, the 

Synthetic Minority Over-sampling Technique (SMOTE) and feature 

normalization were employed. The algorithm’s effectiveness was carefully 

evaluated using accuracy, precision, recall, and the F1 score. Results show 

that advanced models substantially outperformed traditional ones, with 

CatBoost achieving the highest F1 score of 0.7625. Feature importance 

analysis identified glucose, BMI, and age as the most influential indicators, 

consistent with clinical evidence. These findings demonstrate the potential 

of ensemble learning and boosting strategies for building interpretable, 

scalable, and effective diagnostic support tools in healthcare settings. 
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Introduction 

Diabetes mellitus is a persistent metabolic disorder 

characterized by elevated blood glucose levels, known as 

hyperglycemia. This occurs due to a complete lack of 

insulin (absolute insulin deficiency) or a reduced response 

to insulin (insulin resistance), both of which disrupt 

glucose regulation and lead to various health 

complications (Roglic, 2016). This prolonged elevation in 

blood glucose levels poses serious health risks, as it 

contributes to a host of debilitating complications, 

including diabetic retinopathy. These complications 

significantly impair organ function, diminish quality of 

life, and elevate both morbidity and mortality rates 

(DeFronzo et al., 2015). Early identification and 

prediction of diabetes and its associated complications are 

therefore crucial for enabling timely clinical interventions 

and optimizing long-term disease management strategies. 

Recently, Machine Learning (ML) and Deep Learning 

(DL) methods have been proposed in medical predictive 

analytics, particularly for chronic diseases such as 

diabetes. These approaches excel at capturing non-linear, 

high-dimensional relationships within complex datasets, 

often outperforming traditional statistical models. 

Empirical studies have confirmed the efficacy of deep 

learning in detecting various diabetes-related outcomes 

(Thotad et al., 2023), cardiovascular complications 

(Longato et al., 2021), and diabetic nephropathy (Vidhya 

and Shanmugalakshmi, 2020). Moreover, integrating 

domain-specific constraints, data augmentation, and 

regularization techniques has enhanced model robustness 

and generalizability (Liang et al., 2021). Despite 

significant progress, incorporating structured domain 

knowledge, such as medical ontologies and knowledge 

graphs, into ML pipelines for predicting diabetic 

complications remains a relatively unexplored area. Only 

a few notable studies, such as Diao et al. (2021); Li et al. 

(2023), have attempted to combine knowledge graph 

embeddings with predictive modeling. These early 

findings suggest that knowledge-guided deep learning 

holds great promise for improving both predictive 

accuracy and interpretability, thereby contributing to the 
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development of explainable AI (XAI) in diabetes care. 

One persistent challenge in applying ML to healthcare is 

the black-box nature of many predictive algorithms, 

which limits their transparency and hinders their adoption 

in clinical settings. Particularly in high-stakes 

environments, such as diabetes management, clinician 

trust and model interpretability are crucial for real-world 

implementation. To address this, researchers have 

increasingly adopted explainable Machine Learning 

(XML) approaches that aim to maintain high predictive 

performance while providing interpretable insights. 

Examples include decision trees, random forests with 

feature importance analysis, gradient boosting machines 

enhanced with SHAP (SHapley Additive exPlanations) 

values, and attention-based neural networks capable of 

highlighting key input features. 

In this paper, we compare traditional and advanced 

explainable ML models for predicting diabetes and its 

complications. Using a structured clinical dataset that 

includes physical examination metrics and medical 

history, we evaluate multiple models for accuracy, 

interpretability, and scalability. Our primary objective is 

to identify models that balance predictive accuracy and 

clinical transparency, making them suitable for real-world 

decision-support systems. 

Related Work 

Early research on diabetes prediction has primarily 

focused on applying traditional machine learning 

techniques to clinical datasets, typically derived from 

physical examinations and biochemical tests. Pioneering 

work by Lindström and Tuomilehto (2003) introduced 

multiple Logistic Regression (LR) models to develop a 

risk-scoring system for identifying individuals at risk of 

type 2 diabetes. Building on this foundation, (Tanaka et 

al., 2013) used a multistate Cox proportional hazards 

model to estimate the likelihood of macrovascular and 

microvascular complications in diabetic patients. In a 

noteworthy study, (Yu et al., 2010) effectively used an 

SVM to classify individuals into three categories: Those 

with diabetes, those at risk of developing diabetes 

(prediabetes), and those without the condition, across the 

diverse U.S. population. Meanwhile, (Priya et al., 2020) 

employed a Naïve Bayes (NB) classifier, utilizing clinical 

data from over 1,800 patients to accurately predict 

diabetes-related outcomes. For those interested in a 

comprehensive overview of how ML is applied in 

diabetes research and its associated complications, the 

detailed reviews in Kee et al. (2023) are highly 

recommended. Although these traditional models have 

demonstrated reasonable predictive capabilities, many are 

limited in their generalization due to their reliance on 

individual classifiers and their lack of robustness across 

diverse datasets. Researchers have explored ensemble 

learning techniques to enhance predictive performance 

and address concerns about overfitting. For example, 

(VijiyaKumar et al., 2019; Wang et al., 2020) used 

ensemble models for diabetes prediction tasks, reporting 

improvements in both accuracy and the algorithm's 

generalization. Jian et al. (2021) expanded their analysis 

by exploring various classifiers, each with its unique 

strengths. They carefully evaluated Logistic Regression 

(LR), which accurately models probabilities; SVM, 

recognized for its ability to handle complex datasets with 

significant precision; Decision Trees (DT), which offer 

intuitive and interpretable pathways for classification; 

Random Forest (RF), an ensemble algorithm that 

combines multiple DT for greater reliability; AdaBoost, 

which focuses on correcting the errors made by weak 

classifiers; and XGBoost, a powerful and efficient 

algorithm optimized for high performance. Together, 

these classifiers were utilized to predict the onset of seven 

distinct types of diabetic complications, highlighting the 

vast potential of machine learning in healthcare. Their 

findings confirmed that ensemble-based models 

significantly outperform standalone algorithms. Another 

notable contribution by Hasan et al. (2020) introduced a 

weighted fusion strategy to combine multiple classifiers, 

further boosting prediction reliability. Nonetheless, 

selecting the optimal combination of classifiers remains a 

computationally complex, NP-hard problem. Given the 

inherent limitations of conventional ML algorithms, such 

as susceptibility to overfitting and limited generalization, 

recent studies have shifted toward using DL methods for 

diabetes-related prediction tasks (Pal et al., 2022). Ayon 

et al. (2019) introduced a DNN trained on the Pima 

Indians Diabetes (PID) dataset, demonstrating improved 

diagnostic accuracy. Deep learning’s capacity to model 

nonlinear data distributions has also proven beneficial. In 

a compelling study, (Swapna et al., 2018) harnessed the 

power of CNN to meticulously extract intricate temporal 

features from Heart Rate Variability (HRV) data. This 

advanced technique enabled them to uncover patterns 

hidden within the data's fluctuations. Following this 

meticulous extraction process, they employed SVM to 

classify these features, ultimately providing a valuable 

tool for enhancing diabetes diagnosis. Deep learning has 

been widely applied to medical imaging to predict 

diabetes complications. Gargeya and Leng (2017) 

proposed an innovative multi-level deep fusion network 

specifically designed to identify retinal abnormalities in 

Optical Coherence Tomography (OCT) images. This 

advanced network demonstrated remarkable classification 

accuracy, even when patients showed only subtle signs of 

retinal damage, demonstrating its potential to detect 

critical issues in the very earliest stages of eye health 

deterioration. Likewise, (Gulshan et al., 2016) 

demonstrated the potential of DNNs for identifying 

diabetic retinopathy from fundus photographs. Despite 

the promising advances in deep learning, challenges such 
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as variability in medical data quality and insufficient 

incorporation of domain-specific knowledge, particularly 

structured diabetes-related information, continue to 

undermine the reliability and interpretability of these 

models (Zhu et al., 2021). To address these challenges, it 

is crucial to integrate external knowledge representations 

and to enhance model explainability. This will create a 

strong foundation for prediction systems that are both 

resilient and widely accepted in clinical settings. As the 

amount of healthcare data continues to grow rapidly, 

Knowledge Graph (KG) technology has been employed 

as a transformative tool in intelligent medical systems. It 

provides a dynamic, interconnected approach to 

leveraging information and insights across the healthcare 

landscape. Its ability to represent complex medical 

relationships with semantic clarity and logical consistency 

has been recognized across various applications, 

including disease risk assessment, treatment 

recommendation, and quality control in healthcare 

services (Zhang et al., 2022). Numerous prestigious 

institutions are embarking on groundbreaking initiatives 

to create intricate medical knowledge graphs. Notable 

examples include the Traditional Chinese Medicine 

knowledge graph developed at Shanghai Shuguang 

Hospital and the innovative knowledge architecture 

pioneered by IBM Watson Health in the United States. In 

the realm of diabetes care, these knowledge graphs are 

seamlessly integrated into predictive frameworks, 

significantly improving diagnostic accuracy (Cheng et al., 

2023). One remarkable approach involves a cutting-edge 

model that synergistically merges knowledge extension 

mechanisms with CNN, paving the way for enhanced 

diabetes prediction and management. More broadly, 

recent studies have explored the integration of domain 

knowledge into DL models for various health-related 

predictions, including hypertension management (Xi et al., 

2021), Parkinson’s disease classification (Balaji et al., 

2021), pediatric COVID-19 severity assessment (Gao et al., 

2022), Alzheimer’s disease progression tracking (Nian et al., 

2022), and prediction of hospital mortality and 

readmission (Jiang et al., 2024). These works 

demonstrated that embedding structured medical 

knowledge helps compensate for data limitations and 

guides the learning process, improving model robustness 

and interpretability (Gandhi and Mishra, 2021). Despite 

this progress, research on leveraging knowledge graphs 

for predicting diabetic complications remains limited. Lu 

and Uddin (2022) developed a stacking-based prediction 

model for 30-day hospitalizations in diabetic patients, 

incorporating XAI to highlight feature contributions and 

improve transparency. Their comparative evaluation 

demonstrated superior performance, and LIME was 

employed to provide localized explanations for individual 

cases. Similarly, (Vishwarupe et al., 2022) utilized the 

ELI5 library in conjunction with LIME and SHAP to 

analyze clinical data and identify patterns of feature 

importance. Another study proposed a Bayesian-

optimized explainable TabNet (BO-TabNet) model that 

leverages attention mechanisms alongside SHAP and 

LIME to provide both global and local explanations for 

diabetes classification. The model showcased 

outstanding performance in both the PIDD and the 

Early-Stage Diabetes Risk Prediction Dataset 

(ESDRPD). Its exceptional ability to accurately identify 

risk factors and predict outcomes highlighted its 

advanced capabilities in addressing complex health 

challenges. Additional works also emphasize model 

transparency. For instance, a community-based 

classifier using LIME visualization achieved 81% 

accuracy (Uysal, 2023), demonstrating how XAI can 

clarify the influence of each feature in a prediction. 

Uysal (2023) found that SVM and random forest models 

performed best for diabetes classification, with SHAP 

plots revealing that glucose, age, and BMI were the top 

predictors. Lee et al. (2024) applied SHAP to gradient 

boosting models and confirmed its effectiveness in 

highlighting both expected features (e.g., glucose, BMI, 

age) and underrecognized predictors (e.g., blood 

pressure, pregnancy count). These insights aligned with 

clinical knowledge and revealed new patterns relevant to 

personalized risk assessment. The study summarized 

advances in XAI for diabetes prediction, with a 

particular emphasis on model-agnostic tools such as 

LIME, SHAP, and ELI5. ELI5, which utilizes 

permutation importance to assess feature influence, 

further enhances interpretability in machine learning 

models. Sharia et al. (2025) introduced DeepNetX2, a 

DNN trained using features selected via Spearman’s 

correlation. They applied LIME and SHAP for model 

interpretation across three datasets, achieving robust 

predictive and explanatory performance. Recently, a 

study utilized six machine learning algorithms: LR, DT, 

RF, SVM, KNN, and Gradient Boosting Machines 

(GBM). Additionally, it included a lesser-known but 

effective method called Multivariate Adaptive 

Regression Splines (MARS). To address the “black-

box” nature of these algorithms, the study utilized 

Shapley values to visualize and interpret learned 

patterns. Color-based visualization highlighted key 

predictive attributes and reinforced the practical utility 

of XAI in real-world diabetes prediction tasks. Table 1 

provides a comprehensive overview of the key features 

of this study. 

Research Contributions 

This research highlights the role of machine learning 

in predicting diabetes and enhancing clinical decision-

making, demonstrating how data-driven methods can lead 

to more accurate and timely interventions in diabetes 

management. 
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Table 1: A comprehensive overview of the relevant research, highlighting both the significant contributions made and the inherent 

limitations associated with each study 

Study Techniques Used Limitations 

Lindstrom and 

Tuomilehto (2003) 

Logistic Regression (LR) for 

diabetes risk scoring Limited generalization; relies on clinical risk factors. 

Tanaka et al. (2013) 

Multi-state Cox proportional 

hazards for complication risk Complex model; limited to macro/microvascular events. 

Yu et al. (2010) SVM for classification Dataset-specific, low adaptability to diverse Populations. 

Priya et al. (2020) NB for outcome prediction Simple classifier; limited to structured clinical data. 

Hasan et al. (2020) 

Weighted fusion ensemble of 

multiple classifiers Model selection is NP-hard; it may increase \computation cost. 

Ayon et al. (2019) DNN on PID dataset Data-limited; lacks interpretability 

Swapna et al. (2018) 

CNN for HRV feature extraction + 

SVM Requires high-quality temporal HRV data; small Dataset. 

Gargeya and Leng 

(2017) 

Multi-level deep fusion network on 

OCT images Focuses only on imaging; ignores other clinical Features. 

Gulshan et al. (2016) 

DNN for diabetic retinopathy on 

fundus images Dependent on labeled imaging data, a black-box Model. 

Diao et al. (2021) 

Temporal Knowledge Graph + 

LSTM Complex temporal modeling; limited scalability. 

Li et al. (2023) 

KG embedding with correlation-

based reasoning 

Partial knowledge integration; complex dependencies not fully 

captured. 

Lu and Uddin (2022) 

Stacking-based model + LIME 

(XAI) 

Needs domain knowledge for interpretation; computational 

overhead. 

Vishwarupe et al. (2022) 

LIME & SHAP with ELI5 for 

feature importance Relies on local interpretability; may miss global Trends. 

Lee et al. (2024) 

SHAP on Gradient Boosting for 

feature analysis 

SHAP focuses on known predictors; it has limited new feature 

discovery. 

Tanim et al. (2025) 

DeepNetX2 + LIME & SHAP for 

interpretation Black-box DNN; interpretability relies on post-hoc XAI. 

 

Comprehensive Comparative Analysis 

We present a systematic comparison between 

traditional ML classifiers and advanced ensemble 

methods (e.g., CatBoost, LightGBM, XGBoost, Voting 

Ensemble, and Stacking Ensemble). This side-by-side 

evaluation, conducted under a unified experimental 

framework, provides new insights into the relative strengths, 

weaknesses, and clinical applicability of each model type. 

Integration of Data Balancing and Normalization 

Techniques 

To address common challenges in clinical datasets, 

such as class imbalance and heterogeneous feature scales, 

we implement a robust preprocessing pipeline that 

includes the Synthetic Minority Over-Sampling 

Technique (SMOTE) and feature normalization. This 

ensures fair model evaluation and improves performance, 

particularly for distance-based and tree-based algorithms. 

Demonstration of CatBoost as a High-Performing 

Model 

We demonstrate that CatBoost outperforms other 

models in terms of F1 score, highlighting its ability to 

capture complex feature interactions and manage 

categorical variables effectively without extensive 

manual encoding. 

Explainable Feature Importance Analysis 

By using model-intrinsic feature importance metrics, 

we identify glucose level, BMI, and age as the most 

predictive features. These findings are consistent with 

established clinical knowledge, improving the 

interpretability of the models and reinforcing their 

credibility for medical use. 

Materials and Methods 

Database Description 

This study utilized the PIDD from the National 

Institute of Diabetes and Digestive and Kidney Diseases 

(NIDDK), available at the UCI-ML Repository (Roglic, 

2016). It comprises 768 records, each representing a 

distinct patient case, with 8 input features and a single 

binary target variable indicating whether the patient has 

type 2 diabetes (1) or not (0). All patients are Pima Indian 

females aged 21 and older, a group historically at high risk 

for diabetes, making this dataset significant for predictive 

studies. The dataset’s attributes encompass a mixture of 

demographic, anthropometric, and biochemical 

measurements, each of which has been independently 

associated with diabetes onset and progression in clinical 

research. A comprehensive description of each feature is 

provided below: 
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1. Pregnancies: Represents the total number of 

pregnancies a patient has had. While not a direct causal 

factor, gestational history has been linked to higher 

diabetes risk 

2. Glucose: Denotes the plasma glucose concentration 

measured in mg/dL. Elevated glucose levels are a 

hallmark of impaired insulin regulation and a primary 

diagnostic marker of diabetes 

3. Blood Pressure: Refers to the diastolic blood pressure 

(mm Hg) recorded at the time of clinical examination. 

Hypertension is a common comorbidity in diabetic 

patients and has predictive value for cardiovascular 

complications 

4. Skin Thickness: Measures the triceps skinfold 

thickness (mm), which indirectly reflects 

subcutaneous fat. Abnormal adipose tissue 

distribution is often associated with metabolic 

disorders, including insulin resistance 

5. Insulin: Represents the 2-hour post-load serum insulin 

level (μU/mL), offering insights into the patient's 

insulin response, crucial for differentiating between 

type 1 and type 2 diabetes 

6. The Body Mass Index (BMI) is determined by taking 

an individual’s weight in kilograms and dividing it by 

the square of their height in meters. It is widely applied 

as an indicator of obesity, which is recognized as a 

significant risk factor for developing type 2 diabetes 

7. Diabetes Pedigree Function: This feature quantifies 

hereditary diabetes risk based on family history. It 

reflects the probability of diabetes occurrence due to 

genetic predisposition, calculated using a proprietary 

function that integrates the number of family members 

and the closeness of their relationships 

8. Age: Represents the patient’s age in years. The 

prevalence of type 2 diabetes typically increases with 

age, making this an essential predictor 

9. Outcome (Target): A binary variable where 1 indicates 

a positive diagnosis for diabetes, and 0 indicates no 

diagnosis. This serves as the dependent variable for 

classification 

 

The preliminary dataset examination indicated that the 

class distribution was skewed, with roughly 65% of the 

samples categorized as non-diabetic (class 0) and only 

about 35% as diabetic (class 1). This skewed distribution 

introduces a significant challenge for machine learning 

classifiers, as models tend to favor the majority class, 

thereby reducing sensitivity and recall in identifying 

diabetic cases. As such, addressing class imbalance was 

identified as a priority in this study. Furthermore, upon 

Exploratory Data Analysis (EDA), it was observed that 

certain physiological features contained zero values, 

which are clinically implausible and likely represent 

missing or improperly recorded data. These zero values 

were not uniformly distributed and could introduce bias in 

model learning if left unaddressed. A detailed 

preprocessing procedure was subsequently implemented 

to resolve these anomalies and ensure data integrity. 

Data Preprocessing 

Data preprocessing is a crucial step in the ML pipeline, 

particularly in the complex field of healthcare. Data 

quality is essential, as it significantly affects the accuracy 

and reliability of predictive models. By carefully 

cleaning, organizing, and refining the data, we can 

enhance the performance of these algorithms and bolster 

the trust we place in their results. This, in turn, has a direct 

impact on lives and healthcare decisions. In this study, 

multiple preprocessing procedures were meticulously 

applied to enhance the integrity, consistency, and 

modeling compatibility of the diabetes dataset. These 

steps included handling missing and anomalous values, 

normalizing feature scales, encoding class labels, and 

partitioning the dataset for training and evaluation. The 

primary goal was to prepare a clean, standardized dataset 

that could maximize the predictive performance of both 

traditional and advanced machine learning algorithms. 

Handling Missing and Implausible Values 

While the PIDD does not contain formally coded 

missing values, several features include zero entries that 

are physiologically implausible and likely indicate either 

missing data or recording errors. Specifically, the features 

Glucose, Blood Pressure, Skin Thickness, Insulin, and 

BMI contain zero values for some patients, which are not 

consistent with real-world clinical measurements. For 

example, a blood pressure reading of 0 mmHg or a BMI 

of 0 is medically invalid and indicates that no information 

has been recorded. 

To address this, we implemented a targeted imputation 

strategy. All zero values in these fields were replaced with 

the median value of the respective feature, computed from 

non-zero observations. Median imputation is particularly 

suitable for datasets with outliers or non-Gaussian 

distributions, as it preserves the data’s central tendency 

while minimizing the influence of extreme values. The 

decision to use the median rather than the mean was 

empirically validated by improved model stability in 

preliminary testing. The five features subjected to this 

imputation process are: Glucose, Blood Pressure, Skin 

Thickness, Insulin, and BMI. Following imputation, a 

data integrity check was conducted to verify the removal 

of implausible zero values and ensure the logical 

consistency of all observations across the dataset. 

Feature Normalization 

Following imputation, all numerical features were 

scaled to a standardized range of [0, 1] using Min-Max 

normalization, which is essential for maintaining 

numerical stability and consistency across features with 
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varying units and magnitudes (Akdeas et al., 2024). For 

instance, insulin levels (measured in μU/mL) can range 

into the hundreds, whereas the number of pregnancies is 

typically in single digits. Without normalization, models 

such as K-NN and ANN may give undue weight to 

features with larger absolute values during distance 

calculations or weight optimization. The Min-Max 

normalization transforms each feature x using the 

following Eq. (1): 

 

 min

max min

x - x
x =

x - x
 (1) 

 

Here, x denotes the original feature value, while xmin 

and xmax represent the minimum and maximum observed 

values of that feature within the dataset. The transformed 

value, x՜, corresponds to the normalized version of the 

feature. This technique preserves the shape of the original 

distribution while rescaling the values to the 0-1 interval, 

which is particularly beneficial for gradient-based 

optimization algorithms.  

Train-Test Partitioning 

To comprehensively evaluate the generalization 

capabilities of the trained models and to effectively reduce 

the risk of overfitting, the dataset was split into training 

and test sets. This division was carried out with precision, 

using a 70:30 stratified split to ensure that both subsets 

accurately reflected the overall data distribution. 

Stratification was applied to ensure that the ratio of 

diabetic to non-diabetic cases in each subgroup matched 

that of the entire dataset, thereby preserving the dataset’s 

representativeness. This approach is especially crucial in 

imbalanced datasets, as it prevents skewed evaluations 

caused by disproportionate class representation.  

Handling Class Imbalance Using SMOTE 

The Pima Indians Diabetes Dataset exhibits a class 

imbalance, with only about 35% of records belonging to 

the diabetic class. This imbalance can bias models 

towards the majority (non-diabetic) class, hindering the 

detection of positive cases. To address this, we applied 

SMOTE only to the training data after a 70:30 stratified 

train-test split. SMOTE generates synthetic samples for 

the minority class by linearly interpolating between a 

sample x and one of its k-nearest neighbors, xnn. The 

synthetic instance xnew is defined as in Eq. (2) (Akdeas 

et al., 2024): 

 

( )  −new nnx = x + x x  (2) 

 

Where  is a random number drawn from a uniform 

distribution. This method enhances the diversity of the 

minority class and prevents overfitting associated with 

simple duplication. This approach improves model 

sensitivity to diabetic cases and reduces bias toward the 

majority class. We used the imbalance library with 

default parameters (k = 5) to achieve a balanced 

training set.  

Prediction Based on Six Traditional ML Algorithms 

Naïve Bayes 

The NB algorithm uses Bayes’ Theorem and is 

effective for classification in high-dimensional feature 

spaces (Yi et al., 2024). It assumes that all features 

contribute independently to the outcome, an assumption 

known as feature independence. Despite this 

simplification, Naive Bayes often performs competitively 

in diabetes prediction methods. Given a data instance 

defined by a feature vector x = (x1, x2, x3,…,xn), and a set 

of possible classes {C1, C2, C3,…,Ck}, Bayes’ Theorem 

allows us to compute the posterior probability of a class 

Ck given the features x. It is defined as Eq. (3): 

 

( )
( )

( )
k k

k

P(C )×P x C
P C x =

P x
 (3) 

 

Where P(Ck|x) represents the posterior probability that 

a specific class, denoted as Ck, is associated with the 

observed features. This is influenced by P(Ck), the prior 

probability that reflects our initial belief in the occurrence 

of class Ck before any observation is made. Meanwhile, 

P(x|Ck) signifies the likelihood of witnessing the specific 

features x, conditional upon the assumption that we are 

indeed within the confines of class Ck. Lastly, P(x) serves 

as the evidence or marginal probability of the feature 

vector, encapsulating the overall likelihood of observing 

x across all possible classes. Together, these components 

weave a rich tapestry of probabilistic reasoning, enabling 

us to draw informed conclusions about data classification. 

To make this computation feasible, Naïve Bayes assumes 

conditional independence between features, which allows 

us to decompose the joint likelihood P(x|Ck) as the 

product of individual likelihoods, which are defined as in 

Eq. (4): 
 

( ) ( )
n

k i k
i=1

P x C = P x C  (4) 

 
Substituting Eq. (4) into Eq. (3), the classification 

decision selects the class with the highest posterior 

probability from Eq. (5). 

 

( )ˆ


 
 

 

n

k i k
Ck C i=1

C= arg max P(C )× P x C  (5) 

 

This rule selects the class Ck that maximizes the posterior 

probability. In the diabetes dataset, which has continuous 
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features, the likelihood P(xi|Ck) is typically modeled using 

the Gaussian distribution, as defined in Eq. (6). 

 

( )
( )



 
 
 
 

2
k

2

i k
i k 2

Ck,i

x - C1
P x C = exp -

22

 (6) 

 

Where kC represents the average value of the feature 

xi for a specific class, denoted as Ck. Additionally, it 

reflects the spread or variability of feature xi within that 

class, capturing the extent to which data points deviate 

from the mean. In this study, the following default 

parameter settings were employed: A small value was 

added to the variance to prevent division by zero, the class 

priors were learned from the training data, and the 

algorithm automatically adjusted the priors based on 

observed class frequencies. These settings were chosen 

due to their robustness in clinical datasets with continuous 

features.  

Artificial Neural Network (ANN) 

ANN algorithms are an intriguing ML approach 

inspired by biological neural systems, excelling in binary 

classification tasks where feature relationships are often 

nonlinear (Saravanan and Ramachandran, 2010). In our 

study, we developed a single hidden-layer feedforward 

neural network tailored for binary classification. Each 

neuron in layer l computes a net input as a weighted sum 

of outputs from the previous layer, adjusted by a bias 

term, as shown in Eq. (7): 

 


n

(l) (l) (l-1) (l)
j ji i j

i=1

Z = w +b  (7) 

 

In this formulation (l)
jZ represents the net input received 

by neuron j in layer l. The connection strength between 

neurons i in the preceding layer (𝑙−1) and neuron 𝑗 in the 

current layer 𝑙 is denoted as .(l)
jiw The symbol  (l-1)

i

corresponds to the activation value produced by neuron 𝑖 
in the previous layer. Additionally, (l)

jb indicates the bias 

term associated with neuron 𝑗 in layer 𝑙. Together, these 

components determine the input signal to the neuron 

before it is applied to the activation function. The 

neuron’s output is then passed through a nonlinear 

activation function. For hidden layers, activation 

functions such as ReLU or the sigmoid (Eq. 8) are often 

used to introduce nonlinearity and facilitate the learning 

of complex patterns: 

 

( ) (l) (l)
j j= f z  (8) 

 

In binary classification tasks, the output layer typically 

employs a sigmoid activation function, which transforms 

the raw model output into a probability score between 0 

and 1, as shown in Eq. (9): 

 

-z

1
ŷ = (z)

1+ e
  (9) 

 

In this case, ŷ denotes the predicted probability that an 

instance belongs to the positive class. During training, the 

model minimizes the binary cross-entropy loss, which 

evaluates the difference between the predicted probability 

ŷ and the true class label y, as expressed in Eq. (10): 

 

( ) ( ) ( )ˆ ˆ ˆL   y,y  = - ylog(y)+ 1- y log 1- y  (10) 

 

To minimize this loss, backpropagation is used to 

compute the gradients of the loss function with respect to 

the model parameters (weights and biases). These 

parameters are subsequently adjusted using gradient 

descent, as described in Eq. (11): 
 

( ) ( )

( )







l l
ji ji l

ji

L
w w -

w
 (11) 

 

Here, η represents the learning rate, while ( )
 

l
jiL w

denotes the gradient of the loss function with respect to 

the weight. These gradients are computed using the chain 

rule during backpropagation. For implementation, the 

ANN model utilized an MLP Classifier with a single 

hidden layer comprising 20 neurons, employing a logistic 

activation function and the Adam optimizer. The training 

setup included a learning rate of 0.001, a maximum of 500 

iterations, early stopping, and a fixed random state of 42 

to ensure reproducibility. 

K-Nearest Neighbors (K-NN) 

K-NN is a simple method that classifies observations 

based on the proximity of data points in feature space. It 

assumes similar points belong to the same category. When 

a new observation arrives, K-NN identifies the K nearest 

training samples and assigns the majority class to that 

point (Oliver et al., 2025). Let X Є Rn be a new, unlabeled 

input instance, and let the training dataset consist of m 

labeled samples. The initial stage of K-NN classification 

involves calculating the Euclidean distance between the 

data point x and each training sample xi. This distance, 

shown in Eq. (12), indicates how closely x resembles the 

samples in the training set: 
 

( ) ( )
n 2

i j ij
j=1

d x,x = x - x  (12) 

 

Where xj and xij represent the jth feature of the test and 

ith training instance, respectively. After computing 

distances, the algorithm identifies the K nearest 
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neighbors. The predicted class ŷ is then assigned through 

majority voting among the class labels of these neighbors, 

as shown in Eq. (13): 

 

( )ˆ
c C

i





k(x)

i
N

y=arg max y =c  (13) 

 

In this scenario, Nk(x) represents the index set of the K 

nearest neighbors of x. The indicator function І(∙) returns 

1 if the condition is met and 0 otherwise, where C denotes 

the collection of all class labels. The K-NN classifier was 

implemented using scikit-learn with K = 5, employing 

Euclidean distance as the similarity measure and leaving 

other parameters at their default values. Tables 2-3 

indicates that traditional machine learning models, 

including Naïve Bayes, ANN, and K-NN, performed 

moderately across all evaluation metrics. Naïve Bayes 

achieved the highest recall (0.7407), indicating its 

strength in detecting positive diabetic cases; however, its 

precision and F1 score were limited by its strong 

independence assumptions. The ANN model achieved the 

highest accuracy (0.7338) but showed only a marginal 

improvement in the F1 score (0.6606), likely due to its 

shallow network depth and limited capacity to model 

complex patterns. Meanwhile, K-NN yielded the lowest 

scores across most metrics, particularly in recall and F1 

score, which may be attributed to its sensitivity to feature 

scaling and local noise in the feature space. These results 

underscore the limitations of traditional algorithms in 

handling nonlinear relationships, imbalanced data, and 

multi-dimensional interactions inherent in clinical 

datasets. To address these shortcomings and enhance 

predictive robustness, this study explores advanced 

ensemble learning techniques, specifically, CatBoost, 

XGBoost, and a Voting Ensemble. These methods 

incorporate gradient boosting, regularization, and model 

aggregation, enabling them to learn from complex 

patterns while reducing overfitting and variance. In 

particular, CatBoost introduces ordered boosting and 

efficient handling of categorical features, while XGBoost 

utilizes second-order optimization and regularized trees. 

The Voting Ensemble, on the other hand, aggregates 

multiple learners to enhance generalization. The 

integration of these models aims to surpass the 

performance of traditional classifiers and produce 

clinically reliable predictions, as demonstrated in the 

following section. 

Advanced Machine Learning Methods (Proposed) 

To enhance classification accuracy and address the 

inherent challenges of imbalanced class distribution and 

complex feature interactions, we introduce a set of 

advanced ML models based on ensemble and boosting 

techniques. Specifically, this study evaluates the 

performance of three robust classifiers: CatBoost, 

Gradient Boosted Trees with Regularization (XGBoost), 

and a Voting Ensemble that integrates multiple base 

learners. These models incorporate mechanisms such as 

gradient-based optimization, L2 regularization, and 

model aggregation, allowing for improved learning from 

high-dimensional, non-linear, and imbalanced data. The 

implementation details and parameter configurations of 

these advanced methods are discussed in the following 

subsections. 

CatBoost Classifier 

CatBoost is an ensemble learning technique that 

creates a robust predictive algorithm by combining 

decision trees (Guilherme et al., 2022). Utilizing a 

gradient-boosting framework, it sequentially adds new 

trees to refine the errors of previous ones, enhancing 

predictions and effectively capturing the nuances of the 

data. At the core of CatBoost lies the objective of minimizing 

a regularized loss function, represented as Eq. (14): 
 

( )  i i
i=1

L(f)= y ,f(x ) + (f)
n

 (14) 

 

Table 2: Experimental results comparing Naïve Bayes, ANN, and K-NN in terms of Accuracy, Precision, Recall, and F1 Score for 

diabetes prediction 
Model Type Accuracy Precision Recall F1 Score 

Naive Bayes Probabilistic 0.7013 0.6355 0.7407 0.6842 

Artificial Neural Network Neural Network 0.7338 0.6600 0.6852 0.6606 

K-Nearest Neighbors Instance-Based 0.6948 0.6226 0.6481 0.6351 

 

Table 3: Comparative summary of advanced ML models with performance metrics for diabetes prediction 

Model Regularization  Accuracy  Precision Recall F1 Score Advantage  

CatBoost L2 + Ordered 

Boosting 

0.7772 0.7656 0.7593 0.7625 Handles categorical features well, 

reduces overfitting. 

XGBoost L2 + Tree Complexity 

Penalty 

0.7662 0.7544 0.7407 0.7475 Robust, accurate, and handles 

missing data well. 

Voting 

Ensemble 

Via base models (e.g., 

RF, LGBM, LR) 

0.7727 0.7711 0.7407 0.7556 Improves generalization, easy to 

implement 
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Where ( )i iy ,f(x ) is the pointwise loss function, (f)

is the regularization term that penalizes algorithm 

complexity to avoid overfitting, f(xi) is the predicted output 

for input xi, and yi is the target label. For a given categorical 

feature c, CatBoost computes as in Eq. (15): 
 

  







j i i
j<i

i
j i

j<i

(c = c ) y +a P

CatEncoded(c )=
(c = c )+a

 (15) 

 
Where t is the current observation index, a is a 

regularization parameter, P is the prior probability of the 

positive class, and I(·) is the indicator function. In this 

study, CatBoost was run with 1000 iterations, a learning 

rate of 0.03, a depth of 6, and a Logloss loss function. The 

verbosity was set to 0 to minimize output during training. 

Gradient Boosted Trees With Regularization 

(XGBoost) 

Gradient Boosted Trees (GBTs) are a powerful 

ensemble method that constructs predictive models in 

sequence by integrating multiple decision trees. Each new 

tree is trained to correct the residual errors of the ensemble 

constructed from previous trees (Yaoqi et al., 2025). The 

prediction function f(x) in XGBoost is modeled as an additive 

ensemble of K regression trees, as shown in Eq. (16): 
 

ˆ 
K

k i k
k=1

= f (x ),f Fiy  (16) 

 
Here, F represents the space of all possible trees with 

fixed structure and leaf weights, and each fk represents the 

k-th regression tree. The training process optimizes the 

model by minimizing a regularized objective function, as 

expressed in Eq. (17): 
 

ˆ +  
n K

i i k
i=1 k=1

L( )= l(y ,y ) (f )  (17) 

 
Where ˆi il(y ,y ) is a different convex loss function and 

 
T 2

jj=1
1(f)= T+ w2

is the regularization term that 

penalizes model complexity. In the regularization term, T 

denotes the total number of leaves in the tree, wj represents 

the weight assigned to leaf j, and γ along with λ function 

as regularization parameters that control the tree’s 

complexity and the magnitude of leaf weights. For 

efficient training, XGBoost applies a second-order Taylor 

expansion of the loss function, incorporating both the 

gradient (gi) and the Hessian (hi), as defined in Eq. (18): 
 

( ) ( )
 

 + + 
 


n

2(t)
i t i i t i t

i=1

l
L g f x h f x (f )

2
 (18) 

 
This approach accelerates convergence and enables 

precise estimation of split quality during tree construction. 

In this study, the classifier was initialized with a 

maximum depth of 6 to control tree complexity, a learning 

rate of 0.1 to balance model speed and performance, and 

100 estimators for the number of boosting rounds. 

Voting Ensemble With Regularization 

Ensemble learning combines the capabilities of 

multiple base models to enhance predictive accuracy, 

reduce variance, and enhance the model’s ability to 

generalize. This study employed a soft voting ensemble 

method, which combines the predicted probabilities from 

multiple classifiers rather than relying solely on their 

discrete class predictions. Let there be M base classifiers 

{h1(x), h2(x),…,hM(x)}, where each classifier outputs a 

probability distribution over the possible classes. In soft 

voting, the final predicted class ŷ for an input sample x 

is determined using Eq. (19): 
 

( )ˆ


 
 

 

M

m m
c C

m=1

y = arg max w P y = c x  (19) 

 

Where Pm (y = c|x) is the predicted probability for class 

c from the mth classifier, wm ε R is an optional weight 

assigned to the mth model, reflecting its relative 

importance, and C is the set of all class labels. In this 

study, we adopted equal weighting (wm = 1) for all base 

models, assuming that each contributes equally to the 

final decision. The ensemble comprised three diverse and 

complementary classifiers. This heterogeneous 

combination strikes a balance between interpretability, 

non-linearity, and boosting advantages. The soft voting 

ensemble was implemented using the Voting Classifier 

from the scikit-learn library. The base learners included: 

Logistic Regression with L2 regularization (default settings), 

Random Forest with 100 trees and Gini impurity, and Light 

GBM with default learning rate and 100 estimators. 

Results 

The results of this study offer a detailed and 

comprehensive evaluation of six machine learning 

algorithms applied to the Pima Indians Diabetes (PID) 

dataset, which serves as a widely recognized benchmark 

for diabetes prediction and clinical decision support 

modeling. The comparative analysis encompassed three 

conventional classifiers (Naïve Bayes (NB), Artificial 

Neural Network (ANN), and K-Nearest Neighbors (K-

NN)) and three advanced ensemble-based techniques 

(CatBoost, XGBoost, and a Voting Ensemble). Each 

model was trained and tested using a stratified 70:30 data 

split to ensure fair and unbiased evaluation, and four core 

performance metrics (Accuracy, Precision, Recall, and F1 

Score) were computed to assess predictive effectiveness 

and model generalization capability. Among the 

traditional models, the ANN classifier outperformed its 

counterparts, achieving the highest Accuracy of 0.7338 

and an F1 Score of 0.6606, confirming its ability to learn 
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complex, nonlinear relationships through its multi-layer 

feedforward architecture and backpropagation-driven 

optimization of connection weights. This superior 

performance highlights ANN’s ability to capture subtle 

interactions among variables such as glucose, BMI, and 

insulin, which are inherently nonlinear in their association 

with diabetes onset. The NB classifier, despite the 

simplifying assumption of conditional independence 

among features, achieved the highest Recall of 0.7407, 

indicating its ability to correctly identify diabetic patients 

a critical attribute in healthcare screening applications 

where minimizing false negatives is paramount. However, 

its relatively lower Precision suggests a tendency to 

misclassify non-diabetic instances as diabetic, resulting in 

a higher false positive rate. In contrast, the K-NN 

algorithm delivered the weakest results, with an Accuracy 

of 0.6948 and F1 Score of 0.6351, primarily due to its 

sensitivity to noise, feature scaling, and the curse of 

dimensionality, as well as the absence of an explicit learning 

phase, which limits its adaptability to complex datasets. 

In comparison, the advanced models demonstrated a 

marked improvement in all performance measures, 

underscoring the advantage of modern ensemble learning 

and regularization strategies in enhancing model stability, 

convergence, and predictive reliability. The CatBoost 

algorithm emerged as the best-performing model, 

achieving an Accuracy of 0.7772, Precision of 0.7656, 

Recall of 0.7593, and an F1 Score of 0.7625, clearly 

surpassing both traditional and other advanced models. Its 

superior results stem from its use of ordered boosting, 

which mitigates prediction shift and overfitting, and its 

efficient target-based encoding for categorical variables, 

which enhances generalization even in small and 

imbalanced datasets. XGBoost, another gradient-boosting 

variant, followed closely with an Accuracy of 0.7662 and 

F1 Score of 0.7475, benefiting from second-order 

optimization via Taylor expansion, regularized objective 

functions, and robust tree-pruning mechanisms that 

balance bias and variance effectively. The Voting 

Ensemble, integrating Logistic Regression, Random 

Forest, and LightGBM via soft voting, achieved an 

Accuracy of 0.7727, Precision of 0.7711, and F1 Score of 

0.7556, validating the effectiveness of aggregating 

diverse learners to improve prediction consistency and 

generalization. This ensemble approach successfully 

balanced interpretability with accuracy, providing an 

ideal model for practical deployment in healthcare 

environments where explainability is as critical as 

predictive performance. A comparative examination 

between the two groups of models (traditional versus 

advanced) revealed a consistent and significant 

performance advantage of ensemble-based approaches 

across all metrics. For instance, CatBoost improved the 

F1 Score by over 10% compared with the best traditional 

model (ANN), representing a major gain in the model’s 

ability to harmonize sensitivity and specificity. Such 

improvement has substantial clinical implications: Higher 

recall ensures that more diabetic patients are correctly 

identified, supporting timely interventions, while 

improved precision reduces the incidence of false alarms, 

thereby minimizing patient anxiety, unnecessary testing, 

and healthcare costs. Moreover, integrating data 

balancing via the Synthetic Minority Oversampling 

Technique (SMOTE) played an essential role in 

mitigating class imbalance, enabling all advanced models 

to converge reliably and avoid bias toward the majority 

(non-diabetic) class. Computationally, all ensemble 

models demonstrated efficient training behavior with 

manageable runtime and minimal overfitting, confirming 

their scalability and applicability in real-world predictive 

systems. The analysis of feature importance further 

reinforced the interpretability and clinical reliability of the 

proposed models. As shown in Figure 1, Glucose, BMI, 

Age, and Diabetes Pedigree Function consistently ranked 

as the most influential features across the ensemble 

models, aligning closely with established biomedical 

understanding of diabetes risk factors. These variables 

represent physiological and hereditary indicators that 

strongly correlate with disease development, and their 

dominance in the feature-importance hierarchy confirms 

the models’ ability to extract clinically meaningful 

patterns. The agreement between algorithmic findings and 

medical domain knowledge enhances trust and supports 

the potential integration of these models into clinical 

decision-making pipelines. Figure 2 further visualizes the 

comparative performance metrics of all models, clearly 

illustrating the consistent superiority of the advanced 

techniques over traditional classifiers in Accuracy, 

Precision, Recall, and F1 Score. Overall, the experimental 

results decisively demonstrate that advanced ensemble-

based algorithms, particularly CatBoost and the Voting 

Ensemble, offer a significant leap forward in predictive 

performance, interpretability, and robustness for diabetes 

diagnosis and risk assessment. 
 

 

 

Fig. 1: Feature importance scores from the voting ensemble 

model 
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Their ability to efficiently manage missing data, 

handle categorical variables, and maintain stability in 

imbalanced scenarios makes them ideal for healthcare 

applications where data heterogeneity and incomplete 

records are common. By integrating balanced data 

preprocessing, advanced gradient boosting optimization, 

and explainability through feature-importance analysis, 

this research validates the feasibility of deploying such 

models as reliable and interpretable decision-support tools 

in clinical environments. The findings affirm that a 

carefully optimized combination of ensemble learning, 

data balancing, and interpretability not only enhances 

predictive outcomes but also aligns machine learning 

solutions with practical healthcare needs bridging the gap 

between algorithmic accuracy and real-world medical 

usability.
 

 
 

Fig. 2: Comparative performance metrics of traditional vs. advanced ML models 

 

Discussion 

The discussion of this study underscores the superior 

performance and clinical relevance of advanced ensemble 

learning algorithms compared with traditional machine 

learning models for diabetes prediction using the Pima 

Indians Diabetes (PID) dataset. The findings revealed that 

ensemble-based approaches consistently outperformed 

traditional classifiers such as Naïve Bayes (NB), Artificial 

Neural Network (ANN), and K-Nearest Neighbors (K-

NN) across all key evaluation metrics, including 

Accuracy, Precision, Recall, and F1 Score. The 

remarkable predictive capability of the ensemble models 

can be attributed to their ability to capture complex 

nonlinear interactions between input variables, their 

inherent regularization mechanisms that prevent 

overfitting, and their robustness when handling 

imbalanced and heterogeneous clinical data. Specifically, 

CatBoost achieved the best overall performance, thanks to 

its ordered boosting strategy and efficient handling of 

categorical variables via target-based encoding. XGBoost 

also delivered strong results thanks to its second-order 

optimization and regularized objective function. At the 

same time, the Voting Ensemble effectively combined the 

strengths of diverse base learners, producing stable, 

balanced predictions. These outcomes not only 

demonstrate algorithmic superiority but also highlight the 

potential of ensemble methods as reliable decision-

support tools in clinical diagnostics. A deeper 

interpretation of the results reveals important implications 

for practical healthcare applications. The superior Recall 

values obtained by CatBoost and XGBoost indicate their 

enhanced ability to correctly identify diabetic patients, a 

critical advantage in medical screening, where false 

negatives can lead to delayed diagnosis and increased 

complications. Conversely, the Voting Ensemble 

achieved the highest Precision, minimizing false positives 

and thus reducing unnecessary anxiety, testing, and 

treatment costs for non-diabetic individuals. This balance 

between sensitivity and specificity is particularly crucial 

in the early detection of chronic diseases such as diabetes, 

where accurate and timely classification directly impacts 

patient outcomes and healthcare efficiency. The effective 

use of the Synthetic Minority Oversampling Technique 

(SMOTE) in data preprocessing also contributed 

significantly to model stability by correcting class 

imbalance and improving the representation of minority 

(diabetic) cases. Moreover, the feature importance 
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analysis confirmed that Glucose, Body Mass Index 

(BMI), Age, and Diabetes Pedigree Function were the 

most influential predictors across all ensemble models, 

aligning closely with established clinical evidence on 

diabetes risk factors. This alignment enhances the 

interpretability and credibility of the models, 

demonstrating that their predictive decisions are grounded 

in physiologically meaningful patterns. From a broader 

perspective, the study highlights how ensemble learning 

frameworks offer a promising pathway toward 

explainable artificial intelligence (XAI) in healthcare. 

Their integration of accuracy, interpretability, and 

computational efficiency makes them ideal candidates for 

real-world deployment in clinical decision-support 

systems. In conclusion, the results affirm that advanced 

ensemble methods, particularly CatBoost and Voting 

Ensemble, represent a transformative advancement in 

predictive healthcare analytics, bridging the gap between 

machine learning accuracy and clinical trust and laying 

the foundation for future applications in precision 

medicine and intelligent diagnostic systems. 

Conclusion 

The timely prediction of diabetes is a significant 

challenge in healthcare, where early detection can reduce 

disease burden and treatment costs. This study compared 

traditional and advanced machine learning algorithms using 

a structured clinical dataset to evaluate their effectiveness in 

predicting diabetes risk, focusing on metrics such as 

accuracy, precision, recall, and F1 score. Traditional 

algorithms, such as NB, KNN, and ANN, demonstrated 

moderate performance, with ANN achieving the highest F1 

score of 0.6606. However, its performance lagged behind 

modern ensemble models. NB demonstrated good recall for 

sensitive diagnostics but struggled with precision due to its 

independence assumptions, while K-NN was affected by 

feature scaling and noise. In contrast, advanced models such 

as CatBoost, XGBoost, and the Voting Ensemble 

significantly outperformed traditional classifiers, with 

CatBoost achieving the highest accuracy of 0.7772 and an F1 

score of 0.7625. The success of these models was partly due 

to class balancing using SMOTE and feature normalization 

for algorithms such as KNN. Feature importance analysis 

indicated that glucose, BMI, age, and diabetes pedigree were 

key predictors of the outcome. The proposed machine 

learning framework is scalable, interpretable, and suitable for 

real-world applications, including integration into Clinical 

Decision Support Systems (CDSS). These findings 

demonstrate the potential of ensemble and gradient-boosting 

techniques in predictive healthcare analytics. 

Future Work 

Future research aims to improve prediction accuracy 

by integrating EHRs, imaging, and genetics. Promising 

models, such as LSTM and attention networks, can 

forecast disease progression. Validating these methods 

across diverse populations will demonstrate their clinical 

impact, while AutoML frameworks will simplify model 

optimization, enabling broader healthcare adoption. 
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