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Abstract: Accurate diabetes prediction is vital for early intervention,
optimized resource allocation, and minimizing long-term complications.
This study presents a comparative evaluation of traditional and advanced
machine learning models for diabetes classification using a structured
clinical dataset. Seven baseline algorithms were assessed against five
advanced ensemble methods: CatBoost, LightGBM, XGBoost, Voting
Ensemble, and Stacking Ensemble. To improve algorithm learning, the
Synthetic Minority Over-sampling Technique (SMOTE) and feature
normalization were employed. The algorithm’s effectiveness was carefully
evaluated using accuracy, precision, recall, and the F1 score. Results show
that advanced models substantially outperformed traditional ones, with
CatBoost achieving the highest F1 score of 0.7625. Feature importance
analysis identified glucose, BMI, and age as the most influential indicators,
consistent with clinical evidence. These findings demonstrate the potential
of ensemble learning and boosting strategies for building interpretable,
scalable, and effective diagnostic support tools in healthcare settings.
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Introduction

Diabetes mellitus is a persistent metabolic disorder
characterized by elevated blood glucose levels, known as
hyperglycemia. This occurs due to a complete lack of
insulin (absolute insulin deficiency) or a reduced response
to insulin (insulin resistance), both of which disrupt
glucose regulation and lead to wvarious health
complications (Roglic, 2016). This prolonged elevation in
blood glucose levels poses serious health risks, as it
contributes to a host of debilitating complications,
including diabetic retinopathy. These complications
significantly impair organ function, diminish quality of
life, and elevate both morbidity and mortality rates
(DeFronzo et al., 2015). Early identification and
prediction of diabetes and its associated complications are
therefore crucial for enabling timely clinical interventions
and optimizing long-term disease management strategies.

Recently, Machine Learning (ML) and Deep Learning
(DL) methods have been proposed in medical predictive
analytics, particularly for chronic diseases such as
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diabetes. These approaches excel at capturing non-linear,
high-dimensional relationships within complex datasets,
often outperforming traditional statistical models.
Empirical studies have confirmed the efficacy of deep
learning in detecting various diabetes-related outcomes
(Thotad et al., 2023), cardiovascular complications
(Longato et al., 2021), and diabetic nephropathy (Vidhya
and Shanmugalakshmi, 2020). Moreover, integrating
domain-specific constraints, data augmentation, and
regularization techniques has enhanced model robustness
and generalizability (Liang et al., 2021). Despite
significant progress, incorporating structured domain
knowledge, such as medical ontologies and knowledge
graphs, into ML pipelines for predicting diabetic
complications remains a relatively unexplored area. Only
a few notable studies, such as Diao et al. (2021); Li et al.
(2023), have attempted to combine knowledge graph
embeddings with predictive modeling. These early
findings suggest that knowledge-guided deep learning
holds great promise for improving both predictive
accuracy and interpretability, thereby contributing to the
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development of explainable Al (XAI) in diabetes care.
One persistent challenge in applying ML to healthcare is
the black-box nature of many predictive algorithms,
which limits their transparency and hinders their adoption
in clinical settings. Particularly in high-stakes
environments, such as diabetes management, clinician
trust and model interpretability are crucial for real-world
implementation. To address this, researchers have
increasingly adopted explainable Machine Learning
(XML) approaches that aim to maintain high predictive
performance while providing interpretable insights.
Examples include decision trees, random forests with
feature importance analysis, gradient boosting machines
enhanced with SHAP (SHapley Additive exPlanations)
values, and attention-based neural networks capable of
highlighting key input features.

In this paper, we compare traditional and advanced
explainable ML models for predicting diabetes and its
complications. Using a structured clinical dataset that
includes physical examination metrics and medical
history, we evaluate multiple models for accuracy,
interpretability, and scalability. Our primary objective is
to identify models that balance predictive accuracy and
clinical transparency, making them suitable for real-world
decision-support systems.

Related Work

Early research on diabetes prediction has primarily
focused on applying traditional machine learning
techniques to clinical datasets, typically derived from
physical examinations and biochemical tests. Pioneering
work by Lindstrom and Tuomilehto (2003) introduced
multiple Logistic Regression (LR) models to develop a
risk-scoring system for identifying individuals at risk of
type 2 diabetes. Building on this foundation, (Tanaka et
al., 2013) used a multistate Cox proportional hazards
model to estimate the likelihood of macrovascular and
microvascular complications in diabetic patients. In a
noteworthy study, (Yu et al., 2010) effectively used an
SVM to classify individuals into three categories: Those
with diabetes, those at risk of developing diabetes
(prediabetes), and those without the condition, across the
diverse U.S. population. Meanwhile, (Priya et al., 2020)
employed a Naive Bayes (NB) classifier, utilizing clinical
data from over 1,800 patients to accurately predict
diabetes-related outcomes. For those interested in a
comprehensive overview of how ML is applied in
diabetes research and its associated complications, the
detailed reviews in Kee et al. (2023) are highly
recommended. Although these traditional models have
demonstrated reasonable predictive capabilities, many are
limited in their generalization due to their reliance on
individual classifiers and their lack of robustness across
diverse datasets. Researchers have explored ensemble
learning techniques to enhance predictive performance
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and address concerns about overfitting. For example,
(VijiyaKumar et al., 2019; Wang et al., 2020) used
ensemble models for diabetes prediction tasks, reporting
improvements in both accuracy and the algorithm's
generalization. Jian et al. (2021) expanded their analysis
by exploring various classifiers, each with its unique
strengths. They carefully evaluated Logistic Regression
(LR), which accurately models probabilities; SVM,
recognized for its ability to handle complex datasets with
significant precision; Decision Trees (DT), which offer
intuitive and interpretable pathways for classification;
Random Forest (RF), an ensemble algorithm that
combines multiple DT for greater reliability; AdaBoost,
which focuses on correcting the errors made by weak
classifiers; and XGBoost, a powerful and efficient
algorithm optimized for high performance. Together,
these classifiers were utilized to predict the onset of seven
distinct types of diabetic complications, highlighting the
vast potential of machine learning in healthcare. Their
findings confirmed that ensemble-based models
significantly outperform standalone algorithms. Another
notable contribution by Hasan ef al. (2020) introduced a
weighted fusion strategy to combine multiple classifiers,
further boosting prediction reliability. Nonetheless,
selecting the optimal combination of classifiers remains a
computationally complex, NP-hard problem. Given the
inherent limitations of conventional ML algorithms, such
as susceptibility to overfitting and limited generalization,
recent studies have shifted toward using DL methods for
diabetes-related prediction tasks (Pal et al., 2022). Ayon
et al. (2019) introduced a DNN trained on the Pima
Indians Diabetes (PID) dataset, demonstrating improved
diagnostic accuracy. Deep learning’s capacity to model
nonlinear data distributions has also proven beneficial. In
a compelling study, (Swapna ef al., 2018) harnessed the
power of CNN to meticulously extract intricate temporal
features from Heart Rate Variability (HRV) data. This
advanced technique enabled them to uncover patterns
hidden within the data's fluctuations. Following this
meticulous extraction process, they employed SVM to
classify these features, ultimately providing a valuable
tool for enhancing diabetes diagnosis. Deep learning has
been widely applied to medical imaging to predict
diabetes complications. Gargeya and Leng (2017)
proposed an innovative multi-level deep fusion network
specifically designed to identify retinal abnormalities in
Optical Coherence Tomography (OCT) images. This
advanced network demonstrated remarkable classification
accuracy, even when patients showed only subtle signs of
retinal damage, demonstrating its potential to detect
critical issues in the very earliest stages of eye health
deterioration. Likewise, (Gulshan et al., 2016)
demonstrated the potential of DNNs for identifying
diabetic retinopathy from fundus photographs. Despite
the promising advances in deep learning, challenges such
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as variability in medical data quality and insufficient
incorporation of domain-specific knowledge, particularly
structured diabetes-related information, continue to
undermine the reliability and interpretability of these
models (Zhu et al., 2021). To address these challenges, it
is crucial to integrate external knowledge representations
and to enhance model explainability. This will create a
strong foundation for prediction systems that are both
resilient and widely accepted in clinical settings. As the
amount of healthcare data continues to grow rapidly,
Knowledge Graph (KG) technology has been employed
as a transformative tool in intelligent medical systems. It
provides a dynamic, interconnected approach to
leveraging information and insights across the healthcare
landscape. Its ability to represent complex medical
relationships with semantic clarity and logical consistency
has been recognized across various applications,
including  disease  risk  assessment, treatment
recommendation, and quality control in healthcare
services (Zhang et al., 2022). Numerous prestigious
institutions are embarking on groundbreaking initiatives
to create intricate medical knowledge graphs. Notable
examples include the Traditional Chinese Medicine
knowledge graph developed at Shanghai Shuguang
Hospital and the innovative knowledge architecture
pioneered by IBM Watson Health in the United States. In
the realm of diabetes care, these knowledge graphs are
seamlessly integrated into predictive frameworks,
significantly improving diagnostic accuracy (Cheng et al.,
2023). One remarkable approach involves a cutting-edge
model that synergistically merges knowledge extension
mechanisms with CNN, paving the way for enhanced
diabetes prediction and management. More broadly,
recent studies have explored the integration of domain
knowledge into DL models for various health-related
predictions, including hypertension management (Xi et al.,
2021), Parkinson’s disease classification (Balaji et al.,
2021), pediatric COVID-19 severity assessment (Gao et al.,
2022), Alzheimer’s disease progression tracking (Nian et al.,
2022), and prediction of hospital mortality and
readmission (Jiang ef al., 2024). These works
demonstrated that embedding structured medical
knowledge helps compensate for data limitations and
guides the learning process, improving model robustness
and interpretability (Gandhi and Mishra, 2021). Despite
this progress, research on leveraging knowledge graphs
for predicting diabetic complications remains limited. Lu
and Uddin (2022) developed a stacking-based prediction
model for 30-day hospitalizations in diabetic patients,
incorporating XAl to highlight feature contributions and
improve transparency. Their comparative evaluation
demonstrated superior performance, and LIME was
employed to provide localized explanations for individual
cases. Similarly, (Vishwarupe et al., 2022) utilized the
ELIS5 library in conjunction with LIME and SHAP to
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analyze clinical data and identify patterns of feature
importance. Another study proposed a Bayesian-
optimized explainable TabNet (BO-TabNet) model that
leverages attention mechanisms alongside SHAP and
LIME to provide both global and local explanations for
diabetes  classification. The model showcased
outstanding performance in both the PIDD and the
Early-Stage Diabetes Risk Prediction Dataset
(ESDRPD). Its exceptional ability to accurately identify
risk factors and predict outcomes highlighted its
advanced capabilities in addressing complex health
challenges. Additional works also emphasize model
transparency. For instance, a community-based
classifier using LIME visualization achieved 81%
accuracy (Uysal, 2023), demonstrating how XAI can
clarify the influence of each feature in a prediction.
Uysal (2023) found that SVM and random forest models
performed best for diabetes classification, with SHAP
plots revealing that glucose, age, and BMI were the top
predictors. Lee et al. (2024) applied SHAP to gradient
boosting models and confirmed its effectiveness in
highlighting both expected features (e.g., glucose, BMI,
age) and underrecognized predictors (e.g., blood
pressure, pregnancy count). These insights aligned with
clinical knowledge and revealed new patterns relevant to
personalized risk assessment. The study summarized
advances in XAI for diabetes prediction, with a
particular emphasis on model-agnostic tools such as
LIME, SHAP, and ELIS. ELIS, which utilizes
permutation importance to assess feature influence,
further enhances interpretability in machine learning
models. Sharia et al. (2025) introduced DeepNetX2, a
DNN trained using features selected via Spearman’s
correlation. They applied LIME and SHAP for model
interpretation across three datasets, achieving robust
predictive and explanatory performance. Recently, a
study utilized six machine learning algorithms: LR, DT,
RF, SVM, KNN, and Gradient Boosting Machines
(GBM). Additionally, it included a lesser-known but
effective method called Multivariate Adaptive
Regression Splines (MARS). To address the “black-
box” nature of these algorithms, the study utilized
Shapley values to visualize and interpret learned
patterns. Color-based visualization highlighted key
predictive attributes and reinforced the practical utility
of XAI in real-world diabetes prediction tasks. Table 1
provides a comprehensive overview of the key features
of this study.

Research Contributions

This research highlights the role of machine learning
in predicting diabetes and enhancing clinical decision-
making, demonstrating how data-driven methods can lead
to more accurate and timely interventions in diabetes
management.
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Table 1: A comprehensive overview of the relevant research, highlighting both the significant contributions made and the inherent

limitations associated with each study

Study Techniques Used

Limitations

Lindstrom and
Tuomilehto (2003)

Logistic Regression (LR) for
diabetes risk scoring
Multi-state Cox proportional
hazards for complication risk
SVM for classification

NB for outcome prediction
Weighted fusion ensemble of
multiple classifiers

Tanaka et al. (2013)
Yu et al. (2010)
Priya et al. (2020)

Hasan et al. (2020)

Ayon et al. (2019) DNN on PID dataset

CNN for HRYV feature extraction +
Swapna et al. (2018) SVM
Gargeya and Leng Multi-level deep fusion network on
(2017) OCT images

DNN for diabetic retinopathy on
fundus images

Temporal Knowledge Graph +
LSTM

KG embedding with correlation-
based reasoning

Stacking-based model + LIME
(XA

LIME & SHAP with ELIS for
feature importance

SHAP on Gradient Boosting for
feature analysis

DeepNetX2 + LIME & SHAP for
interpretation

Gulshan et al. (2016)
Diao et al. (2021)

Li et al. (2023)

Lu and Uddin (2022)
Vishwarupe et al. (2022)
Lee et al. (2024)

Tanim et al. (2025)

Limited generalization,; relies on clinical risk factors.

Complex model; limited to macro/microvascular events.
Dataset-specific, low adaptability to diverse Populations.
Simple classifier; limited to structured clinical data.

Model selection is NP-hard; it may increase \computation cost.
Data-limited; lacks interpretability

Requires high-quality temporal HRV data; small Dataset.
Focuses only on imaging; ignores other clinical Features.
Dependent on labeled imaging data, a black-box Model.
Complex temporal modeling; limited scalability.

Partial knowledge integration; complex dependencies not fully
captured.

Needs domain knowledge for interpretation; computational
overhead.

Relies on local interpretability; may miss global Trends.
SHAP focuses on known predictors; it has limited new feature

discovery.

Black-box DNN; interpretability relies on post-hoc XAl

Comprehensive Comparative Analysis

We present a systematic comparison between
traditional ML classifiers and advanced ensemble
methods (e.g., CatBoost, LightGBM, XGBoost, Voting
Ensemble, and Stacking Ensemble). This side-by-side
evaluation, conducted under a unified experimental
framework, provides new insights into the relative strengths,
weaknesses, and clinical applicability of each model type.

Integration of Data Balancing and Normalization
Techniques

To address common challenges in clinical datasets,
such as class imbalance and heterogeneous feature scales,
we implement a robust preprocessing pipeline that
includes the Synthetic Minority Over-Sampling
Technique (SMOTE) and feature normalization. This
ensures fair model evaluation and improves performance,
particularly for distance-based and tree-based algorithms.

Demonstration of CatBoost as a High-Performing
Model

We demonstrate that CatBoost outperforms other
models in terms of F1 score, highlighting its ability to
capture complex feature interactions and manage
categorical variables effectively without extensive
manual encoding.
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Explainable Feature Importance Analysis

By using model-intrinsic feature importance metrics,
we identify glucose level, BMI, and age as the most
predictive features. These findings are consistent with
established clinical knowledge, improving the
interpretability of the models and reinforcing their
credibility for medical use.

Materials and Methods
Database Description

This study utilized the PIDD from the National
Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK), available at the UCI-ML Repository (Roglic,
2016). It comprises 768 records, each representing a
distinct patient case, with 8 input features and a single
binary target variable indicating whether the patient has
type 2 diabetes (1) or not (0). All patients are Pima Indian
females aged 21 and older, a group historically at high risk
for diabetes, making this dataset significant for predictive
studies. The dataset’s attributes encompass a mixture of
demographic,  anthropometricc and  biochemical
measurements, each of which has been independently
associated with diabetes onset and progression in clinical
research. A comprehensive description of each feature is
provided below:
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1. Pregnancies: Represents the total number of
pregnancies a patient has had. While not a direct causal
factor, gestational history has been linked to higher
diabetes risk

2. Glucose: Denotes the plasma glucose concentration
measured in mg/dL. Elevated glucose levels are a
hallmark of impaired insulin regulation and a primary
diagnostic marker of diabetes

3. Blood Pressure: Refers to the diastolic blood pressure
(mm Hg) recorded at the time of clinical examination.
Hypertension is a common comorbidity in diabetic
patients and has predictive value for cardiovascular
complications

4. Skin Thickness: Measures the triceps skinfold
thickness  (mm), which indirectly reflects
subcutaneous  fat. Abnormal adipose tissue
distribution is often associated with metabolic
disorders, including insulin resistance

5. Insulin: Represents the 2-hour post-load serum insulin
level (uU/mL), offering insights into the patient's
insulin response, crucial for differentiating between
type 1 and type 2 diabetes

6. The Body Mass Index (BMI) is determined by taking
an individual’s weight in kilograms and dividing it by
the square of their height in meters. It is widely applied
as an indicator of obesity, which is recognized as a
significant risk factor for developing type 2 diabetes

7. Diabetes Pedigree Function: This feature quantifies
hereditary diabetes risk based on family history. It
reflects the probability of diabetes occurrence due to
genetic predisposition, calculated using a proprietary
function that integrates the number of family members
and the closeness of their relationships

8. Age: Represents the patient’s age in years. The
prevalence of type 2 diabetes typically increases with
age, making this an essential predictor

9. Outcome (Target): A binary variable where 1 indicates
a positive diagnosis for diabetes, and 0 indicates no
diagnosis. This serves as the dependent variable for
classification

The preliminary dataset examination indicated that the
class distribution was skewed, with roughly 65% of the
samples categorized as non-diabetic (class 0) and only
about 35% as diabetic (class 1). This skewed distribution
introduces a significant challenge for machine learning
classifiers, as models tend to favor the majority class,
thereby reducing sensitivity and recall in identifying
diabetic cases. As such, addressing class imbalance was
identified as a priority in this study. Furthermore, upon
Exploratory Data Analysis (EDA), it was observed that
certain physiological features contained zero values,
which are clinically implausible and likely represent
missing or improperly recorded data. These zero values
were not uniformly distributed and could introduce bias in
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model learning if left unaddressed. A detailed
preprocessing procedure was subsequently implemented
to resolve these anomalies and ensure data integrity.

Data Preprocessing

Data preprocessing is a crucial step in the ML pipeline,
particularly in the complex field of healthcare. Data
quality is essential, as it significantly affects the accuracy
and reliability of predictive models. By carefully
cleaning, organizing, and refining the data, we can
enhance the performance of these algorithms and bolster
the trust we place in their results. This, in turn, has a direct
impact on lives and healthcare decisions. In this study,
multiple preprocessing procedures were meticulously
applied to enhance the integrity, consistency, and
modeling compatibility of the diabetes dataset. These
steps included handling missing and anomalous values,
normalizing feature scales, encoding class labels, and
partitioning the dataset for training and evaluation. The
primary goal was to prepare a clean, standardized dataset
that could maximize the predictive performance of both
traditional and advanced machine learning algorithms.

Handling Missing and Implausible Values

While the PIDD does not contain formally coded
missing values, several features include zero entries that
are physiologically implausible and likely indicate either
missing data or recording errors. Specifically, the features
Glucose, Blood Pressure, Skin Thickness, Insulin, and
BMI contain zero values for some patients, which are not
consistent with real-world clinical measurements. For
example, a blood pressure reading of 0 mmHg or a BMI
of 0 is medically invalid and indicates that no information
has been recorded.

To address this, we implemented a targeted imputation
strategy. All zero values in these fields were replaced with
the median value of the respective feature, computed from
non-zero observations. Median imputation is particularly
suitable for datasets with outliers or non-Gaussian
distributions, as it preserves the data’s central tendency
while minimizing the influence of extreme values. The
decision to use the median rather than the mean was
empirically validated by improved model stability in
preliminary testing. The five features subjected to this
imputation process are: Glucose, Blood Pressure, Skin
Thickness, Insulin, and BMI. Following imputation, a
data integrity check was conducted to verify the removal
of implausible zero values and ensure the logical
consistency of all observations across the dataset.

Feature Normalization

Following imputation, all numerical features were
scaled to a standardized range of [0, 1] using Min-Max
normalization, which is essential for maintaining
numerical stability and consistency across features with
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varying units and magnitudes (Akdeas et al., 2024). For
instance, insulin levels (measured in pU/mL) can range
into the hundreds, whereas the number of pregnancies is
typically in single digits. Without normalization, models
such as K-NN and ANN may give undue weight to
features with larger absolute values during distance
calculations or weight optimization. The Min-Max
normalization transforms each feature x using the
following Eq. (1):

X-X

’
x =

min

X

(1

max min

Here, x denotes the original feature value, while X
and Xuqc represent the minimum and maximum observed
values of that feature within the dataset. The transformed
value, X, corresponds to the normalized version of the
feature. This technique preserves the shape of the original
distribution while rescaling the values to the 0-1 interval,
which is particularly beneficial for gradient-based
optimization algorithms.

Train-Test Partitioning

To comprehensively evaluate the generalization
capabilities of the trained models and to effectively reduce
the risk of overfitting, the dataset was split into training
and test sets. This division was carried out with precision,
using a 70:30 stratified split to ensure that both subsets
accurately reflected the overall data distribution.
Stratification was applied to ensure that the ratio of
diabetic to non-diabetic cases in each subgroup matched
that of the entire dataset, thereby preserving the dataset’s
representativeness. This approach is especially crucial in
imbalanced datasets, as it prevents skewed evaluations
caused by disproportionate class representation.

Handling Class Imbalance Using SMOTE

The Pima Indians Diabetes Dataset exhibits a class
imbalance, with only about 35% of records belonging to
the diabetic class. This imbalance can bias models
towards the majority (non-diabetic) class, hindering the
detection of positive cases. To address this, we applied
SMOTE only to the training data after a 70:30 stratified
train-test split. SMOTE generates synthetic samples for
the minority class by linearly interpolating between a
sample x and one of its k-nearest neighbors, x,,. The
synthetic instance x,.» is defined as in Eq. (2) (Akdeas
et al.,2024):

X

new

:X—l—ﬁ-(xnn—x) 2)

Where [ is a random number drawn from a uniform
distribution. This method enhances the diversity of the
minority class and prevents overfitting associated with

66

simple duplication. This approach improves model
sensitivity to diabetic cases and reduces bias toward the
majority class. We used the imbalance library with
default parameters (k = 5) to achieve a balanced
training set.

Prediction Based on Six Traditional ML Algorithms
Naive Bayes

The NB algorithm uses Bayes’ Theorem and is
effective for classification in high-dimensional feature
spaces (Yi et al., 2024). It assumes that all features
contribute independently to the outcome, an assumption
known as feature independence. Despite this
simplification, Naive Bayes often performs competitively
in diabetes prediction methods. Given a data instance
defined by a feature vector x = (x1, x2, X3,...,X,), and a set
of possible classes {Ci, (>, Cs,...,Ci}, Bayes’ Theorem
allows us to compute the posterior probability of a class
Cy given the features x. It is defined as Eq. (3):

P(C,)xP(x|C,)

P(x)

)

P(Ck‘x):

Where P(Cy|x) represents the posterior probability that
a specific class, denoted as Cj, is associated with the
observed features. This is influenced by P(Cx), the prior
probability that reflects our initial belief in the occurrence
of class Ck before any observation is made. Meanwhile,
P(x|Cy) signifies the likelihood of witnessing the specific
features x, conditional upon the assumption that we are
indeed within the confines of class Ci. Lastly, P(x) serves
as the evidence or marginal probability of the feature
vector, encapsulating the overall likelihood of observing
x across all possible classes. Together, these components
weave a rich tapestry of probabilistic reasoning, enabling
us to draw informed conclusions about data classification.
To make this computation feasible, Naive Bayes assumes
conditional independence between features, which allows
us to decompose the joint likelihood P(x|Ci) as the
product of individual likelihoods, which are defined as in

Eq. (4):

P(x[C,)=11P(x/[C,) )

Substituting Eq. (4) into Eq. (3), the classification
decision selects the class with the highest posterior
probability from Eq. (5).

6))

CkeC

C=arg max(P(Ck)x ﬁlP(Xi |Ck )j

This rule selects the class Ck that maximizes the posterior
probability. In the diabetes dataset, which has continuous
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features, the likelihood P(xi|Ck) is typically modeled using
the Gaussian distribution, as defined in Eq. (6).

(6)

P(x.

(x _ka)g]

2
20¢,

1
C )= _
) ot Xp[

Where £C, represents the average value of the feature

x; for a specific class, denoted as Ci. Additionally, it
reflects the spread or variability of feature xi within that
class, capturing the extent to which data points deviate
from the mean. In this study, the following default
parameter settings were employed: A small value was
added to the variance to prevent division by zero, the class
priors were learned from the training data, and the
algorithm automatically adjusted the priors based on
observed class frequencies. These settings were chosen
due to their robustness in clinical datasets with continuous
features.

Artificial Neural Network (ANN)

ANN algorithms are an intriguing ML approach
inspired by biological neural systems, excelling in binary
classification tasks where feature relationships are often
nonlinear (Saravanan and Ramachandran, 2010). In our
study, we developed a single hidden-layer feedforward
neural network tailored for binary classification. Each
neuron in layer 1 computes a net input as a weighted sum
of outputs from the previous layer, adjusted by a bias
term, as shown in Eq. (7):

W) — ) (1)
2~
i=1

5 % O]

()
+b;

In this formulation Z§1>represents the net input received

by neuron j in layer /. The connection strength between
neurons { in the preceding layer (I—1) and neuron j in the

current layer | is denoted as WE?. The symbol o

corresponds to the activation value produced by neuron i
in the previous layer. Additionally, bgl) indicates the bias

term associated with neuron j in layer l. Together, these
components determine the input signal to the neuron
before it is applied to the activation function. The
neuron’s output is then passed through a nonlinear
activation function. For hidden layers, activation
functions such as ReLU or the sigmoid (Eq. 8) are often
used to introduce nonlinearity and facilitate the learning
of complex patterns:

®)

In binary classification tasks, the output layer typically
employs a sigmoid activation function, which transforms
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the raw model output into a probability score between 0
and 1, as shown in Eq. (9):

©)

N 1
=0(z)——
Y ()1+e’7

In this case, § denotes the predicted probability that an

instance belongs to the positive class. During training, the
model minimizes the binary cross-entropy loss, which
evaluates the difference between the predicted probability
y and the true class label y, as expressed in Eq. (10):

(10)

L(y.5)=-[ylog() +(1-y)log(1-¥)]

To minimize this loss, backpropagation is used to
compute the gradients of the loss function with respect to
the model parameters (weights and biases). These
parameters are subsequently adjusted using gradient
descent, as described in Eq. (11):

(1)

ji

0
—w; -7 PO

ji

(11

W

Here, 5 represents the learning rate, while 8L/ GWEP

denotes the gradient of the loss function with respect to
the weight. These gradients are computed using the chain
rule during backpropagation. For implementation, the
ANN model utilized an MLP Classifier with a single
hidden layer comprising 20 neurons, employing a logistic
activation function and the Adam optimizer. The training
setup included a learning rate of 0.001, a maximum of 500
iterations, early stopping, and a fixed random state of 42
to ensure reproducibility.

K-Nearest Neighbors (K-NN)

K-NN is a simple method that classifies observations
based on the proximity of data points in feature space. It
assumes similar points belong to the same category. When
a new observation arrives, K-NN identifies the K nearest
training samples and assigns the majority class to that
point (Oliver ef al., 2025). Let X € R" be a new, unlabeled
input instance, and let the training dataset consist of m
labeled samples. The initial stage of K-NN classification
involves calculating the Euclidean distance between the
data point x and each training sample xi. This distance,
shown in Eq. (12), indicates how closely x resembles the
samples in the training set:

(12)

Where x; and x;; represent the j feature of the test and

i training instance, respectively. After computing

distances, the algorithm identifies the K nearest
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neighbors. The predicted class ¥ is then assigned through

majority voting among the class labels of these neighbors,
as shown in Eq. (13):

y=argmax }’ 1(y,=c) (13)

iEI\'k(‘\)

In this scenario, Ni(x) represents the index set of the K
nearest neighbors of x. The indicator function /(-) returns
1 if the condition is met and 0 otherwise, where C denotes
the collection of all class labels. The K-NN classifier was
implemented using scikit-learn with K = 5, employing
Euclidean distance as the similarity measure and leaving
other parameters at their default values. Tables 2-3
indicates that traditional machine learning models,
including Naive Bayes, ANN, and K-NN, performed
moderately across all evaluation metrics. Naive Bayes
achieved the highest recall (0.7407), indicating its
strength in detecting positive diabetic cases; however, its
precision and F1 score were limited by its strong
independence assumptions. The ANN model achieved the
highest accuracy (0.7338) but showed only a marginal
improvement in the F1 score (0.66006), likely due to its
shallow network depth and limited capacity to model
complex patterns. Meanwhile, K-NN yielded the lowest
scores across most metrics, particularly in recall and F1
score, which may be attributed to its sensitivity to feature
scaling and local noise in the feature space. These results
underscore the limitations of traditional algorithms in
handling nonlinear relationships, imbalanced data, and
multi-dimensional interactions inherent in clinical
datasets. To address these shortcomings and enhance
predictive robustness, this study explores advanced
ensemble learning techniques, specifically, CatBoost,
XGBoost, and a Voting Ensemble. These methods
incorporate gradient boosting, regularization, and model
aggregation, enabling them to learn from complex
patterns while reducing overfitting and variance. In

particular, CatBoost introduces ordered boosting and
efficient handling of categorical features, while XGBoost
utilizes second-order optimization and regularized trees.
The Voting Ensemble, on the other hand, aggregates
multiple learners to enhance generalization. The
integration of these models aims to surpass the
performance of traditional classifiers and produce
clinically reliable predictions, as demonstrated in the
following section.

Advanced Machine Learning Methods (Proposed)

To enhance classification accuracy and address the
inherent challenges of imbalanced class distribution and
complex feature interactions, we introduce a set of
advanced ML models based on ensemble and boosting
techniques. Specifically, this study evaluates the
performance of three robust classifiers: CatBoost,
Gradient Boosted Trees with Regularization (XGBoost),
and a Voting Ensemble that integrates multiple base
learners. These models incorporate mechanisms such as
gradient-based optimization, L2 regularization, and
model aggregation, allowing for improved learning from
high-dimensional, non-linear, and imbalanced data. The
implementation details and parameter configurations of
these advanced methods are discussed in the following
subsections.

CatBoost Classifier

CatBoost is an ensemble learning technique that
creates a robust predictive algorithm by combining
decision trees (Guilherme et al., 2022). Utilizing a
gradient-boosting framework, it sequentially adds new
trees to refine the errors of previous ones, enhancing
predictions and effectively capturing the nuances of the
data. At the core of CatBoost lies the objective of minimizing
a regularized loss function, represented as Eq. (14):

L) = 323, f05) + 40 (14)

Table 2: Experimental results comparing Naive Bayes, ANN, and K-NN in terms of Accuracy, Precision, Recall, and F1 Score for

diabetes prediction

Model Type Accuracy Precision Recall F1 Score
Naive Bayes Probabilistic 0.7013 0.6355 0.7407 0.6842
Artificial Neural Network Neural Network 0.7338 0.6600 0.6852 0.6606
K-Nearest Neighbors Instance-Based 0.6948 0.6226 0.6481 0.6351

Table 3: Comparative summary of advanced ML models with performance metrics for diabetes prediction

Model Regularization Accuracy Precision Recall ~ F1 Score  Advantage

CatBoost L2 + Ordered 0.7772 0.7656 0.7593  0.7625 Handles categorical features well,
Boosting reduces overfitting.

XGBoost L2 + Tree Complexity 0.7662 0.7544 0.7407  0.7475 Robust, accurate, and handles
Penalty missing data well.

Voting Via base models (e.g., 0.7727 0.7711 0.7407  0.7556 Improves generalization, easy to

Ensemble RF, LGBM, LR) implement
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Where ¢(y,, f(x,)) is the pointwise loss function, €(f)

is the regularization term that penalizes algorithm

complexity to avoid overfitting, f{x;) is the predicted output

for input x;, and y; is the target label. For a given categorical

feature ¢, CatBoost computes as in Eq. (15):
ZI(C, =¢)'y;,+a-P

CatEncoded(c,) = e
Z:l(ci =c¢)+a
=

(15)

Where ¢ is the current observation index, a is a
regularization parameter, P is the prior probability of the
positive class, and /(*) is the indicator function. In this
study, CatBoost was run with 1000 iterations, a learning
rate of 0.03, a depth of 6, and a Logloss loss function. The
verbosity was set to 0 to minimize output during training.

Gradient Boosted Trees With Regularization

(XGBoost)

Gradient Boosted Trees (GBTs) are a powerful
ensemble method that constructs predictive models in
sequence by integrating multiple decision trees. Each new
tree is trained to correct the residual errors of the ensemble
constructed from previous trees (Yaoqi et al., 2025). The
prediction function f{x) in XGBoost is modeled as an additive
ensemble of K regression trees, as shown in Eq. (16):

K

g, = ka(xi)7flc eF

k=1

(16)

Here, F represents the space of all possible trees with
fixed structure and leaf weights, and each f; represents the
k™ regression tree. The training process optimizes the
model by minimizing a regularized objective function, as
expressed in Eq. (17):

L) = 2105,3)+2.000) (a7)

Where 1(y,,y,)is a different convex loss function and
Q(f) = ;/T+%Z_T \w? is the regularization term that
J=

penalizes model complexity. In the regularization term, 7
denotes the total number of leaves in the tree, w; represents
the weight assigned to leaf j, and y along with A function
as regularization parameters that control the tree’s
complexity and the magnitude of leaf weights. For
efficient training, XGBoost applies a second-order Taylor
expansion of the loss function, incorporating both the
gradient (g;) and the Hessian (%;), as defined in Eq. (18):

(18)

n

10 ~ z{glﬂ (x,)+%h,fl(x,)2} +Q(t)

This approach accelerates convergence and enables
precise estimation of split quality during tree construction.
In this study, the classifier was initialized with a
maximum depth of 6 to control tree complexity, a learning
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rate of 0.1 to balance model speed and performance, and
100 estimators for the number of boosting rounds.

Voting Ensemble With Regularization

Ensemble learning combines the capabilities of
multiple base models to enhance predictive accuracy,
reduce variance, and enhance the model’s ability to
generalize. This study employed a soft voting ensemble
method, which combines the predicted probabilities from
multiple classifiers rather than relying solely on their
discrete class predictions. Let there be M base classifiers
{hi(x), ha(x),...,hm(x)}, where each classifier outputs a
probability distribution over the possible classes. In soft
voting, the final predicted class ¥ for an input sample x

is determined using Eq. (19):

(19)

M
SR

Where P,, (v = c|x) is the predicted probability for class
¢ from the m™ classifier, w, & R is an optional weight
assigned to the m™ model, reflecting its relative
importance, and C is the set of all class labels. In this
study, we adopted equal weighting (w,, = 1) for all base
models, assuming that each contributes equally to the
final decision. The ensemble comprised three diverse and
complementary  classifiers. =~ This  heterogeneous
combination strikes a balance between interpretability,
non-linearity, and boosting advantages. The soft voting
ensemble was implemented using the Voting Classifier
from the scikit-learn library. The base learners included:
Logistic Regression with L2 regularization (default settings),
Random Forest with 100 trees and Gini impurity, and Light
GBM with default learning rate and 100 estimators.

Results

The results of this study offer a detailed and
comprehensive evaluation of six machine learning
algorithms applied to the Pima Indians Diabetes (PID)
dataset, which serves as a widely recognized benchmark
for diabetes prediction and clinical decision support
modeling. The comparative analysis encompassed three
conventional classifiers (Naive Bayes (NB), Artificial
Neural Network (ANN), and K-Nearest Neighbors (K-
NN)) and three advanced ensemble-based techniques
(CatBoost, XGBoost, and a Voting Ensemble). Each
model was trained and tested using a stratified 70:30 data
split to ensure fair and unbiased evaluation, and four core
performance metrics (Accuracy, Precision, Recall, and F1
Score) were computed to assess predictive effectiveness
and model generalization capability. Among the
traditional models, the ANN classifier outperformed its
counterparts, achieving the highest Accuracy of 0.7338
and an F1 Score of 0.6606, confirming its ability to learn
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complex, nonlinear relationships through its multi-layer
feedforward architecture and backpropagation-driven
optimization of connection weights. This superior
performance highlights ANN’s ability to capture subtle
interactions among variables such as glucose, BMI, and
insulin, which are inherently nonlinear in their association
with diabetes onset. The NB classifier, despite the
simplifying assumption of conditional independence
among features, achieved the highest Recall of 0.7407,
indicating its ability to correctly identify diabetic patients
a critical attribute in healthcare screening applications
where minimizing false negatives is paramount. However,
its relatively lower Precision suggests a tendency to
misclassify non-diabetic instances as diabetic, resulting in
a higher false positive rate. In contrast, the K-NN
algorithm delivered the weakest results, with an Accuracy
of 0.6948 and F1 Score of 0.6351, primarily due to its
sensitivity to noise, feature scaling, and the curse of
dimensionality, as well as the absence of an explicit learning
phase, which limits its adaptability to complex datasets.

In comparison, the advanced models demonstrated a
marked improvement in all performance measures,
underscoring the advantage of modern ensemble learning
and regularization strategies in enhancing model stability,
convergence, and predictive reliability. The CatBoost
algorithm emerged as the best-performing model,
achieving an Accuracy of 0.7772, Precision of 0.7656,
Recall of 0.7593, and an F1 Score of 0.7625, clearly
surpassing both traditional and other advanced models. Its
superior results stem from its use of ordered boosting,
which mitigates prediction shift and overfitting, and its
efficient target-based encoding for categorical variables,
which enhances generalization even in small and
imbalanced datasets. XGBoost, another gradient-boosting
variant, followed closely with an Accuracy of 0.7662 and
F1 Score of 0.7475, benefiting from second-order
optimization via Taylor expansion, regularized objective
functions, and robust tree-pruning mechanisms that
balance bias and variance effectively. The Voting
Ensemble, integrating Logistic Regression, Random
Forest, and LightGBM via soft voting, achieved an
Accuracy of 0.7727, Precision of 0.7711, and F1 Score of
0.7556, validating the effectiveness of aggregating
diverse learners to improve prediction consistency and
generalization. This ensemble approach successfully
balanced interpretability with accuracy, providing an
ideal model for practical deployment in healthcare
environments where explainability is as critical as
predictive performance. A comparative examination
between the two groups of models (traditional versus
advanced) revealed a consistent and significant
performance advantage of ensemble-based approaches
across all metrics. For instance, CatBoost improved the
F1 Score by over 10% compared with the best traditional
model (ANN), representing a major gain in the model’s
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ability to harmonize sensitivity and specificity. Such
improvement has substantial clinical implications: Higher
recall ensures that more diabetic patients are correctly
identified, supporting timely interventions, while
improved precision reduces the incidence of false alarms,
thereby minimizing patient anxiety, unnecessary testing,
and healthcare costs. Moreover, integrating data
balancing via the Synthetic Minority Oversampling
Technique (SMOTE) played an essential role in
mitigating class imbalance, enabling all advanced models
to converge reliably and avoid bias toward the majority
(non-diabetic) class. Computationally, all ensemble
models demonstrated efficient training behavior with
manageable runtime and minimal overfitting, confirming
their scalability and applicability in real-world predictive
systems. The analysis of feature importance further
reinforced the interpretability and clinical reliability of the
proposed models. As shown in Figure 1, Glucose, BMI,
Age, and Diabetes Pedigree Function consistently ranked
as the most influential features across the ensemble
models, aligning closely with established biomedical
understanding of diabetes risk factors. These variables
represent physiological and hereditary indicators that
strongly correlate with disease development, and their
dominance in the feature-importance hierarchy confirms
the models’ ability to extract clinically meaningful
patterns. The agreement between algorithmic findings and
medical domain knowledge enhances trust and supports
the potential integration of these models into clinical
decision-making pipelines. Figure 2 further visualizes the
comparative performance metrics of all models, clearly
illustrating the consistent superiority of the advanced
techniques over traditional classifiers in Accuracy,
Precision, Recall, and F1 Score. Overall, the experimental
results decisively demonstrate that advanced ensemble-
based algorithms, particularly CatBoost and the Voting
Ensemble, offer a significant leap forward in predictive
performance, interpretability, and robustness for diabetes
diagnosis and risk assessment.

Glucose 0.2
BMI 0.16

0.18
Age - 0.16
DiabetesPedigree = 0.12 0.14
Insulin - 0.098
-0.12
BloodPressure 0.093
SkinThickness - 0.086 j 0-10
Pregnancies - 0.072 -0.08
Impor‘lance

Fig. 1: Feature importance scores from the voting ensemble
model
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Their ability to efficiently manage missing data,
handle categorical variables, and maintain stability in
imbalanced scenarios makes them ideal for healthcare
applications where data heterogeneity and incomplete
records are common. By integrating balanced data
preprocessing, advanced gradient boosting optimization,
and explainability through feature-importance analysis,
this research validates the feasibility of deploying such

models as reliable and interpretable decision-support tools
in clinical environments. The findings affirm that a
carefully optimized combination of ensemble learning,
data balancing, and interpretability not only enhances
predictive outcomes but also aligns machine learning
solutions with practical healthcare needs bridging the gap
between algorithmic accuracy and real-world medical
usability.

Performance Metrics of Traditional vs. Advanced Models

1.00

Metric
3 Accuracy
= Precision
= Recall
= F1 Score

0.95

0.90

0.85

0.80

Performance Score

0.75

0.70

0.65

0.60

Naive Bayes Artificial Neural Network

K-Nearest Neighbors

CatBoost XGBoost Voting Ensemble

Machine Learning Models

Fig. 2: Comparative performance metrics of traditional vs. advanced ML models

Discussion

The discussion of this study underscores the superior
performance and clinical relevance of advanced ensemble
learning algorithms compared with traditional machine
learning models for diabetes prediction using the Pima
Indians Diabetes (PID) dataset. The findings revealed that
ensemble-based approaches consistently outperformed
traditional classifiers such as Naive Bayes (NB), Artificial
Neural Network (ANN), and K-Nearest Neighbors (K-
NN) across all key evaluation metrics, including
Accuracy, Precision, Recall, and F1 Score. The
remarkable predictive capability of the ensemble models
can be attributed to their ability to capture complex
nonlinear interactions between input variables, their
inherent regularization mechanisms that prevent
overfitting, and their robustness when handling
imbalanced and heterogeneous clinical data. Specifically,
CatBoost achieved the best overall performance, thanks to
its ordered boosting strategy and efficient handling of
categorical variables via target-based encoding. XGBoost
also delivered strong results thanks to its second-order
optimization and regularized objective function. At the
same time, the Voting Ensemble effectively combined the
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strengths of diverse base learners, producing stable,
balanced predictions. These outcomes not only
demonstrate algorithmic superiority but also highlight the
potential of ensemble methods as reliable decision-
support tools in clinical diagnostics. A deeper
interpretation of the results reveals important implications
for practical healthcare applications. The superior Recall
values obtained by CatBoost and XGBoost indicate their
enhanced ability to correctly identify diabetic patients, a
critical advantage in medical screening, where false
negatives can lead to delayed diagnosis and increased
complications. Conversely, the Voting Ensemble
achieved the highest Precision, minimizing false positives
and thus reducing unnecessary anxiety, testing, and
treatment costs for non-diabetic individuals. This balance
between sensitivity and specificity is particularly crucial
in the early detection of chronic diseases such as diabetes,
where accurate and timely classification directly impacts
patient outcomes and healthcare efficiency. The effective
use of the Synthetic Minority Oversampling Technique
(SMOTE) in data preprocessing also contributed
significantly to model stability by correcting class
imbalance and improving the representation of minority
(diabetic) cases. Moreover, the feature importance
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analysis confirmed that Glucose, Body Mass Index
(BMI), Age, and Diabetes Pedigree Function were the
most influential predictors across all ensemble models,
aligning closely with established clinical evidence on
diabetes risk factors. This alignment enhances the
interpretability and credibility of the models,
demonstrating that their predictive decisions are grounded
in physiologically meaningful patterns. From a broader
perspective, the study highlights how ensemble learning
frameworks offer a promising pathway toward
explainable artificial intelligence (XAI) in healthcare.
Their integration of accuracy, interpretability, and
computational efficiency makes them ideal candidates for
real-world deployment in clinical decision-support
systems. In conclusion, the results affirm that advanced
ensemble methods, particularly CatBoost and Voting
Ensemble, represent a transformative advancement in
predictive healthcare analytics, bridging the gap between
machine learning accuracy and clinical trust and laying
the foundation for future applications in precision
medicine and intelligent diagnostic systems.

Conclusion

The timely prediction of diabetes is a significant
challenge in healthcare, where early detection can reduce
disease burden and treatment costs. This study compared
traditional and advanced machine learning algorithms using
a structured clinical dataset to evaluate their effectiveness in
predicting diabetes risk, focusing on metrics such as
accuracy, precision, recall, and F1 score. Traditional
algorithms, such as NB, KNN, and ANN, demonstrated
moderate performance, with ANN achieving the highest F1
score of 0.6606. However, its performance lagged behind
modern ensemble models. NB demonstrated good recall for
sensitive diagnostics but struggled with precision due to its
independence assumptions, while K-NN was affected by
feature scaling and noise. In contrast, advanced models such
as CatBoost, XGBoost, and the Voting Ensemble
significantly outperformed traditional classifiers, with
CatBoost achieving the highest accuracy of 0.7772 and an F1
score of 0.7625. The success of these models was partly due
to class balancing using SMOTE and feature normalization
for algorithms such as KNN. Feature importance analysis
indicated that glucose, BMI, age, and diabetes pedigree were
key predictors of the outcome. The proposed machine
learning framework is scalable, interpretable, and suitable for
real-world applications, including integration into Clinical
Decision Support Systems (CDSS). These findings
demonstrate the potential of ensemble and gradient-boosting
techniques in predictive healthcare analytics.

Future Work

Future research aims to improve prediction accuracy
by integrating EHRs, imaging, and genetics. Promising
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models, such as LSTM and attention networks, can
forecast disease progression. Validating these methods
across diverse populations will demonstrate their clinical
impact, while AutoML frameworks will simplify model
optimization, enabling broader healthcare adoption.
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