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Abstract: In some previous papers, the mechatronic module 3R, plan, is a 

basic module on which the complete, geometric, cinematic, dynamic 

calculation of the anthropomorphic robots, the most used today's industrial 

robots, is built. The importance of the study of anthropomorphic robots has 

also been signaled, being today the most widespread robots worldwide, due 

to its simple design, construction, implementation, operation and 

maintenance. In addition, anthropomorphic systems are simpler from a 

technological and cheaper point of view, performing a continuous, 

demanding, repetitive work without any major maintenance problems. The 

basic module of these robots was also presented geometrically, cinematically, 

of the forces, of its total static balancing and of the forces that arise within or 

after balancing. In the present paper, we want to highlight the dynamics of the 

already statically balanced total module. It has been presented in other works 

and studied matrix spatially, or more simply in a plan, but in this case, it is 

necessary to move from the working plane to the real space, or vice versa, 

passage that we will present in this study. In the basic plan module already 

presented in other geometric and cinematic works, we want to highlight some 

dynamic features such as static balancing, total balancing and determination 

of the strength of the module after balancing. Through a total static balancing, 

balancing the gravitational forces and moments generated by the forces of 

gravity is achieved, balancing the forces of inertia and the moments 

(couples) generated by the presence of inertial forces (not to be confused 

with the inertial moments of the mechanism, which appear separately 

from the other forces, being part of the inertial torsion of a mechanism 

and depending on both the inertial masses of the mechanism and its 

angular accelerations. Balancing the mechanism can be done through 

various methods. Partial balancing is achieved almost in all cases where 

the actuators (electric drive motors) are fitted with a mechanical 

reduction, a mechanical transmission, a sprocket, spiral gear, spool screw 

type. This results in a "forced" drive balancing from the transmission, 

which makes the operation of the assembly to be correct but rigid and 

with mechanical shocks. Such balancing is not possible when the 

actuators directly actuate the elements of the kinematic chain without 

using mechanical reducers. 

 

Keywords: Anthropomorphic Mechatronic Systems, Robots, Total Static 
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Introduction 

A In some previous papers, the mechatronic module 

3R, plan, is a basic module on which the complete, 

geometric, cinematic, dynamic calculation of the 

anthropomorphic robots, the most used today's industrial 

robots, is built. The importance of the study of 

anthropomorphic robots has also been signaled, being 

today the most widespread robots worldwide, due to its 

simple design, construction, implementation, operation 

and maintenance. In addition, anthromomorphic systems 

are simpler from a technological and cheaper point of 

view, performing a continuous, demanding, repetitive 

work without any major maintenance problems. The 

basic module of these robots was also presented 

geometrically, cinematically, of the forces, of its total 

static balancing and of the forces that arise within or 

after balancing. In the present paper we want to highlight 

the dynamics of the already statically balanced total 

module. It has been presented in other works and studied 

matrix spatially, or more simply in a plan, but in this 

case, it is necessary to move from the working plane to 

the real space, or vice versa, passage that we will present 

in this study. In the basic plan module already presented 

in other geometric and cinematic works, we want to 

highlight some dynamic features such as static 

balancing, total balancing and determination of the 

strength of the module after balancing. Through a total 

static balancing, balancing the gravitational forces and 

moments generated by the forces of gravity is achieved, 

balancing the forces of inertia and the moments 

(couples) generated by the presence of inertial forces 

(not to be confused with the inertial moments of the 

mechanism, which appear separately from the other 

forces, being part of the inertial torsion of a mechanism 

and depending on both the inertial masses of the 

mechanism and its angular accelerations. Balancing the 

mechanism can be done through various methods. Partial 

balancing is achieved almost in all cases where the 

actuators (electric drive motors) are fitted with a 

mechanical reduction, a mechanical transmission, a 

sprocket, spiral gear, spool screw type. This results in a 

"forced" drive balancing from the transmission, which 

makes the operation of the assembly to be correct but 

rigid and with mechanical shocks. Such balancing is not 

possible when the actuators directly actuate the elements 

of the kinematic chain without using mechanical 

reducers (Antonescu and Petrescu, 1985; 1989; 

Antonescu et al., 1985a; 1985b; 1986; 1987; 1988; 1994; 

1997; 2000a; 2000b; 2001; Aversa et al., 2017a; 2017b; 

2017c; 2017d; 2017e; 2016a; 2016b; 2016c; 2016d; 

2016e; 2016f; 2016g; 2016h; 2016i; 2016j; 2016k; 

2016l; 2016m; 2016n; 2016o; Berto et al., 2016a; 2016b; 

2016c; 2016d; Cao et al., 2013; Dong et al., 2013; 

Comanescu, 2010; Franklin, 1930; He et al., 2013; Lee, 

2013; Lin et al., 2013; Liu et al., 2013; Mirsayar et al., 

2017; Padula and Perdereau, 2013; Perumaal and Jawahar, 

2013; Petrescu, 2011; 2015a; 2015b; Petrescu and 

Petrescu, 1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 

2000b; 2002a; 2002b; 2003; 2005a; 2005b; 2005c; 2005d; 

2005e; 2011; 2012a; 2012b; 2013a; 2013b; 2016a; 2016; 

2016c; Petrescu et al., 2009; 2016; 2017a; 2017b; 2017c; 

2017d; 2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 2017k; 

2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 2017r; 

2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 2017y; 

2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae). 
Shows the kinematic diagram of the planar chain and 

Fig. 2 shows the kinematic scheme of the space chain. 

The mechanism in Fig. 1 (planar cinematic chain) 

must be balanced to have a normal operation.  

Through a total static balancing, balancing the 

gravitational forces and moments generated by the forces 

of gravity is achieved, balancing the forces of inertia and 

the moments (couples) generated by the presence of 

inertial forces (not to be confused with the inertial 

moments of the mechanism, which appear separately 

from the other forces, being part of the inertial torsion of 

a mechanism and depending on both the inertial masses 

of the mechanism and its angular accelerations. 

Balancing the mechanism can be done through 

various methods. 

Partial balancing is achieved almost in all cases 

where the actuators (electric drive motors) are fitted with 

a mechanical reduction, a mechanical transmission, a 

sprocket, spiral gear, spool screw type. 

Such a reducer called the unisens (the movement 

allowed by it is a two-way rotation, but the 

transmission of the force and the motor moment can 

only be done in one direction, from the spindle to the 

worm gear, vice versa from the worm gear to the screw 

the force can not be transmitted and the movement is 

not possible by blocking the mechanism, which makes 

it apt to transmit the movement from the wheel of a 

vehicle to its wheels in the steering mechanism, not 

allowing the wheel forces due to the unevenness of the 

ground, to be transmitted to the steering wheel and 

implicitly to the driver, or this mechanism is suitable for 

mechanical meters so that they do not twist and vice 

versa etc.) can balance the transmission by letting the 

forces and motor moments unfold, but not allowing the 

kinematic elements to influence the movement through 

their forces of weight and inertia.  

This results in a "forced" drive balancing from the 

transmission, which makes the operation of the assembly 

to be correct but rigid and with mechanical shocks. 

Such balancing is not possible when the actuators 

directly actuate the elements of the kinematic chain 

without using mechanical reducers.  

It is necessary in this situation for a real, permanent 

balancing. 
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Fig. 1: The kinematic scheme of the plan chain 
 

    
 

Fig. 2: The kinematic scheme of the spatial chain 
 

In addition, in situations where hypoid reducers are 

used, it is also good to have a permanent, permanent 

static balancing that achieves a normal, quiet operation 

of the mechanism and the whole assembly. 
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Fig. 3: Balancing the plan cinematic chain 

 

As has already been shown, by balancing the static 

totality of a mobile cinematic chain, it is possible to 

balance the weight forces and couples produced by 

them, as well as balancing the inertial forces and the 

couples produced by them, but not balancing the 

moment of inertia. 

Arcing balancing methods generally did not work 

very well, the springs having to be very well calibrated, 

so that the elastic forces realized (stored) by them are 

neither too small (insufficient balancing) nor too large 

(because prematurely kinematic elements and couplers 

and also greatly forces actuators). 

The most used method is the classic one, with 

additional counterweight masses, similar to traditional 

folk fountains.  

Total balancing of the open robotic kinematic chain 

is shown in Fig. 3. 

Materials and Methods  

From the previous works, we observe the two 

dynamical relationships that generate the necessary 

motor moments (actuators) from the kinetostatic 

system, which are connected together in the dynamic 

system (1): 

These relationships necessary in studying the 

dynamics of the planar cinematic chain can be obtained 

directly by another method, using Lagrange differential 

equations of the second type and preserving the kinetic 

energy of the mechanism. 

This method is more direct compared to the 

cinetostatic study, but has the disadvantage that it no 

longer determines the loads (reactions, inner forces) 

from the kinematic couples of the studied chain, 

necessary for the organological calculation of the 

resistance of the materials to the stresses, by choosing 

some dimensions (thicknesses or diameters) of the 

kinematic elements 2 and 3 and of the coupling links: 
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After balancing, the center of gravity of element 3 

moves from point S3 to mobile O3 (Fig. 4) and the mass 

of element 3 increases from m3 to m3’; the center of 

gravity of element 2 moves from point S2 to fixed O2 
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joint, while the final mass of element 2 concentrated in 

O2 increases to m2'. 

First, we determine the speeds of the final weight 

centers, i.e., the linear and angular velocities in the two 

O2 and O3 joints (relations 2). 

So the linear velocities (the components or the 

scaling projections on the x and y-axes) of the two joints 

are determined, but also the angular velocities of the two 

elements considered concentrated each around the 

respective joint according to Fig. 4: 
 

2 2

3 3

20 20 2

2 20 2 2 20 2 30 30 3

0; 0;

sin ; cos ;

O O

O O

x y

x d y d

ϕ ω ω

ϕ ω ϕ ω ϕ ω ω

= = ≡ ≡


= − ⋅ ⋅ = ⋅ ⋅ ≡ ≡

ɺɺ ɺ

ɺ ɺɺ ɺ
 (2) 

 

For speeds, it is necessary to determine the mass or 

mechanical moments of inertia, which in order not to 

be confused with the moments of inertia, should be 

called inertial masses or masses of inertia, 

representing the inertial mass of each element and as 

the mass of each element generates linear 

amplification of the element's inertial force (linear) of 

the element (useful in the dynamic study) and the 

inertial mass of each element generates by the angular 

acceleration the moment of inertia of the respective 

element considered concentrated around the center of 

gravity of the element. 

Inertial masses are determined on elements around an 

axis of the respective element at a certain point, being 

generally variable on the respective element depending 

on the point around which it is determined. Generally, 

we are interested in the inertial mass (mass moment of 

inertia) in the center of gravity of the element, 

determined around the axis of rotation (Oz). 

The classical notation of inertial masses (of mass 

or mechanical inertia moments) is J, in order to 

differentiate such resistance moments of resistance, 

denoted by I, used in the material resistance 

calculations.  

There is a relationship between them. 

Unfortunately, many specialists today mark moments 

of mass inertia with I as well as resistance. 

For mass concentrates, the mass (mechanical) 

inertia determined in relation to an axis in the center 

of gravity is calculated by summing the products 

between each concentrated mass and the square of the 

distance from it to the point where we want to 

determine the mass inertia moment in our case the 

center of gravity of the element. 

 

 
 

Fig. 4: Dynamics of balanced plan cinematic chain 
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For element 3, the momentum of mass or 

mechanical inertia (inertial mass) is determined by the 

relationship (3): 

 

3

2 2 2

3 3 3 3O s III
J m d m s m ρ= ⋅ + ⋅ + ⋅  (3) 

 

Thus, the mass of load ms endured by endefactor M 

with the distance d3 from the endeffector to the center of 

gravity of the O3 element is multiplied by square and is 

summed up with the product of the mass of the element 

3 and the square of the distance from the center of mass 

to the O3 joint, also adds the additional mass mIII of the 

element 3 multiplied by the square of the distance from 

the point I3 to the movable joint O3. 

For element 2, the mass (mechanical) inertia moment 

around the end center of gravity of element 2 (fixed joint 

O3) is determined using the relationship (4): 
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Then determine the kinetic energy of the 

mechanism (the planar kinematic chain) with the help 

of relations (5): 
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The equation of the kinetic energy of the balanced 

planar chain cinematic chain is simplified by the final 

relation (6): 
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The second Lagrange differential equations are used 

(relations 7): 
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Results 

As the kinetic energy in this case does not directly 

depend on the kinematic parameters of positions q2 and 

q3 represented by the position angles ϕ20 and ϕ30, 

Lagrange simplified formulas (8) can be used: 
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By replacing the partial derivatives and deriving from 

time, the system (8) takes the form (9): 
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Discussion 

The mechanism in Fig. 1 (planar cinematic chain) 

must be balanced to have a normal operation.  

Through a total static balancing, balancing the 

gravitational forces and moments generated by the forces 

of gravity is achieved, balancing the forces of inertia and 

the moments (couples) generated by the presence of 

inertial forces (not to be confused with the inertial 

moments of the mechanism, which appear separately 

from the other forces, being part of the inertial torsion of 

a mechanism and depending on both the inertial masses 

of the mechanism and its angular accelerations. 

Balancing the mechanism can be done through 

various methods. 

Partial balancing is achieved almost in all cases 

where the actuators (electric drive motors) are fitted with 

a mechanical reduction, a mechanical transmission, a 

sprocket, spiral gear, spool screw type. 



Relly Victoria Petrescu et al. / Journal of Mechatronics and Robotics 2018, Volume 2: 23.34 

10.3844/jmrsp.2018.23.34 

 

29 

Such a reducer called the unisens (the movement 

allowed by it is a two-way rotation, but the 

transmission of the force and the motor moment can 

only be done in one direction, from the spindle to the 

worm gear, vice versa from the worm gear to the screw 

the force can not be transmitted and the movement is 

not possible by blocking the mechanism, which makes 

it apt to transmit the movement from the wheel of a 

vehicle to its wheels in the steering mechanism, not 

allowing the wheel forces due to the unevenness of the 

ground, to be transmitted to the steering wheel and 

implicitly to the driver, or this mechanism is suitable for 

mechanical meters so that they do not twist and vice 

versa etc.) can balance the transmission by letting the 

forces and motor moments unfold, but not allowing the 

kinematic elements to influence the movement through 

their forces of weight and inertia. 

This results in a "forced" drive balancing from the 

transmission, which makes the operation of the assembly 

to be correct but rigid and with mechanical shocks. 

Such balancing is not possible when the actuators 

directly actuate the elements of the kinematic chain 

without using mechanical reducers.  

It is necessary in this situation for a real, permanent 

balancing. 

In addition, in situations where hypoid reducers are 

used, it is also good to have a permanent, permanent 

static balancing that achieves a normal, quiet operation 

of the mechanism and the whole assembly. 

As has already been shown, by balancing the static 

totality of a mobile cinematic chain, it is possible to 

balance the weight forces and couples produced by 

them, as well as balancing the inertial forces and the 

couples produced by them, but not balancing the 

moment of inertia. 

Arcing balancing methods generally did not work 

very well, the springs having to be very well calibrated, 

so that the elastic forces realized (stored) by them are 

neither too small (insufficient balancing) nor too large 

(because prematurely kinematic elements and couplers 

and also greatly forces actuators). 

The most used method is the classic one, with 

additional counterweight masses, similar to traditional 

folk fountains.  

Total balancing of the open robotic kinematic chain 

is shown in Fig. 3. 

From the previous works, we observe the two 

dynamical relationships that generate the necessary 

motor moments (actuators) from the kinetostatic system, 

which are connected together in the dynamic system (1). 

These relationships necessary in studying the 

dynamics of the planar cinematic chain can be obtained 

directly by another method, using Lagrange differential 

equations of the second type and preserving the kinetic 

energy of the mechanism. 

This method is more direct compared to the 

cinetostatic study, but has the disadvantage that it no 

longer determines the loads (reactions, inner forces) 

from the kinematic couples of the studied chain, 

necessary for the organological calculation of the 

resistance of the materials to the stresses, by choosing 

some dimensions (thicknesses or diameters) of the 

kinematic elements 2 and 3 and of the coupling links. 

After balancing, the center of gravity of element 3 

moves from point S3 to mobile O3 (Fig. 4) and the mass 

of element 3 increases from m3 to m3’; the center of 

gravity of element 2 moves from point S2 to fixed O2 

joint, while the final mass of element 2 concentrated in 

O2 increases to m2'. 

First, we determine the speeds of the final weight 

centers, i.e., the linear and angular velocities in the two 

O2 and O3 joints (relations 2). 

So the linear velocities (the components or the 

scaling projections on the x and y-axes) of the two joints 

are determined, but also the angular velocities of the two 

elements considered concentrated each around the 

respective joint according to Fig. 4. 

For speeds, it is necessary to determine the mass or 

mechanical moments of inertia, which in order not to be 

confused with the moments of inertia, should be called 

inertial masses or masses of inertia, representing the 

inertial mass of each element and as the mass of each 

element generates linear amplification of the element's 

inertial force (linear) of the element (useful in the 

dynamic study) and the inertial mass of each element 

generates by the angular acceleration the moment of 

inertia of the respective element considered concentrated 

around the center of gravity of the element. 

Inertial masses are determined on elements around an 

axis of the respective element at a certain point, being 

generally variable on the respective element depending 

on the point around which it is determined. Generally, 

we are interested in the inertial mass (mass moment of 

inertia) in the center of gravity of the element, 

determined around the axis of rotation (Oz). 

The classical notation of inertial masses (of mass or 

mechanical inertia moments) is J, in order to 

differentiate such resistance moments of resistance, 

denoted by I, used in the material resistance calculations.  

There is a relationship between them. 

Unfortunately, many specialists today mark moments 

of mass inertia with I as well as resistance. 

For mass concentrates, the mass (mechanical) inertia 

determined in relation to an axis in the center of gravity 

is calculated by summing the products between each 

concentrated mass and the square of the distance from it 

to the point where we want to determine the mass inertia 

moment in our case the center of gravity of the element. 

For element 3, the momentum of mass or mechanical 

inertia (inertial mass) is determined by the relationship (3). 
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Then determine the kinetic energy of the 

mechanism (the planar kinematic chain) with the help 

of relations (5). The equation of the kinetic energy of 

the balanced planar chain cinematic chain is 

simplified by the final relation (6). 

The second Lagrange differential equations are used 

(relations 7). 

As the kinetic energy in this case does not directly 

depend on the kinematic parameters of positions q2 and 

q3 represented by the position angles ϕ20 and ϕ30, 

Lagrange simplified formulas (8) can be used. 

Conclusion 

 In some previous papers, the mechatronic module 

3R, plan, is a basic module on which the complete, 

geometric, cinematic, dynamic calculation of the 

anthropomorphic robots, the most used today's industrial 

robots, is built.  

The importance of the study of anthropomorphic 

robots has also been signaled, being today the most 

widespread robots worldwide, due to its simple design, 

construction, implementation, operation and maintenance.  

In addition, anthropomorphic systems are simpler 

from a technological and cheaper point of view, 

performing a continuous, demanding, repetitive work 

without any major maintenance problems.  

The basic module of these robots was also presented 

geometrically, cinematically, of the forces, of its total 

static balancing and of the forces that arise within or after 

balancing. In the present paper, we want to highlight the 

dynamics of the already statically balanced total module.  

It has been presented in other works and studied 

matrix spatially, or more simply in a plan, but in this 

case, it is necessary to move from the working plane to 

the real space, or vice versa, passage that we will present 

in this study. In the basic plan module already presented 

in other geometric and cinematic works, we want to 

highlight some dynamic features such as static 

balancing, total balancing and determination of the 

strength of the module after balancing.  

Through a total static balancing, balancing the 

gravitational forces and moments generated by the forces 

of gravity is achieved, balancing the forces of inertia and 

the moments (couples) generated by the presence of 

inertial forces (not to be confused with the inertial 

moments of the mechanism, which appear separately from 

the other forces, being part of the inertial torsion of a 

mechanism and depending on both the inertial masses of 

the mechanism and its angular accelerations. Balancing 

the mechanism can be done through various methods.  

Partial balancing is achieved almost in all cases 

where the actuators (electric drive motors) are fitted with 

a mechanical reduction, a mechanical transmission, a 

sprocket, spiral gear, spool screw type.  

This results in a "forced" drive balancing from the 

transmission, which makes the operation of the assembly 

to be correct but rigid and with mechanical shocks. Such 

balancing is not possible when the actuators directly 

actuate the elements of the kinematic chain without 

using mechanical reducers. 
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