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Abstract: This paper comprises a study of the grasping stability for an 

underactuated robotic manipulator under the condition of varying the 

position of different sizes cylindrical grasped objects. Grasping forces were 

calculated both theoretically and Via a CAD model for a 3-DOF 

underactuated robotic manipulator. The experimental part comprises the 

fabrication of the manipulator and performing the required tests on this 

manipulator by changing the position and size of the grasped object. 

Contact forces were observed experimentally by using the Force Sensing 

Resistors (FSR). Maps of stability and ejection for three different 

cylindrical object diameters (160, 200, 240) mm were presented. As a 

result, it was found that stable grasping is greatly affected by the size and 

location of the grasped object, where stable grasping is achieved for objects 

located near the actuator position. 
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Introduction  

Underactuated robotic manipulators are widely used 
in indusial robots, for they can be actuated by a single 
actuator for whatever degrees of freedom they have. The 
implementation of underactuation in robotic grasping 
seems to be more desirable for its need to simple control 
systems to govern less number of actuators as compared 
to a fully actuated system. The concept of grasping relies 
on providing a proficient mechanical system that can 
adapt to the shape of the grasped object hence to ensure 
stable grasping. The application of underactuated 
mechanisms make this concept to be more reliable and 
effective. The four bar mechanism is one of the common 
mechanisms applied in underactuated robotic grippers 
for their high grasping force capabilities. 

Many researchers have studied underactuated 
manipulators as related to: Their design and analysis; 
Rea (2011; Yao and Ceccarelli, 2011; Nacy and Nayif, 
2016; Birglen and Gosselin, 2005): Their 
optimization; Birglen and Gosselin (2004; Nacy et al., 
2009): Their usage as grippers or robotic hands; 
Birglen et al. (2008; Kragten, 2011; Laliberté and 
Gosselin, 2003; Zhao and Zhang, 2010; Meijneke et al., 
2011; Dandash et al., 2011; Jung and Oh, 2013; Azlan and 
Hiroshi, 2010; Laliberte et al., 2002): Their mechanism 
types; Carrozza et al. (2004; Yang et al., 2004; Cabas et al., 

2006; Krut, 2005; Dechev et al., 2001): Their grasping 
stability analysis; Kim et al. (2010; Zhang et al., 2009; 
Rizk et al., 2007; Ha et al., 2016; Kragten and Herder, 
2007; Luo et al., 2004; Kragten et al., 2011). 

In this work, grasping forces between the 
underactuated manipulator and a cylindrical grasped 
object were found for different sizes of the grasped object 
and at different locations on the workspace of the robotic 
manipulator where it can be reachable and grasped. 
Grasping forces distribution that clarifies the variation of 
grasping forces over the workspace was presented. The 
cases of stable grasping and ejection were obtained; hence 
stable grasping and ejection maps were concluded.  

Theoretical Analysis and Simulation 

The 3-DOF underactuated manipulator is shown 

schematically in Fig. 1. According to Birglen and 

Gosselin (2005), the equations of grasping forces can 

be presented as:  
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Where: 

T
a
: Torque of the actuator 

T2: Torque of spring 1 

T3: Torque of spring 2 

f1, f2, f3: Normal forces of proximal, middle and distal 

phalanges respectively 

l1,l2,l3: Length of proximal, middle and distal 

phalanges respectively 

k1,k2,k3: Contact locations on their respective phalanges 

θ2,θ2: Angles between the phalanges  

 
Contact forces f1, f2, f3 can be calculated according to 

a given geometrical dimensions of the manipulator, as 
listed in table 1, size and location of the grasped 
cylindrical object. Hence, in order to achieve a stable 
grasping situation, all these forces have to be positive. 
The simulation model, shown in Fig. 2 was built using 
MSC Visual Nastran. 

 
Table 1: Design parameters of the manipulator 

l1 l2 l3 a1 b1 c1 a2 b2 c2 S K1,K2 

266 mm 265 mm 233 mm 220 mm 278 mm 151 mm 272 mm 283 mm 175 mm 85.6 mm 46 N/m 

 

 
 

Fig. 1: 3-DOF linkage type underactuated manipulator 
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Fig. 2: Model of the underactuated manipulator; (1) Rotary actuator, (2) Proximal link, (3) Identical springs, (4) Middle link, (5) 

Distal link, (6) Transmission mechanism 

 

Experimentation  

The links of the underactuated manipulator were 

made from plastic material. Rotary actuator was used to 

actuate this manipulator. Ball bearings were placed in the 

joints to ensure smooth movement of the links. Springs 

were added to the second and third joints. Moreover, the 

force sensor FSR type interlink 408 was attached at the 

surfaces of contact between the links and the grasped 

object, which was associated with Arduino UNO board 

to get the results of contact forces. 

The experimental setup for the underactuated 

robotic manipulator is illustrated in Fig. 3. It consists 

of (1) the linkage mechanism, (2) the actuator, (3) 

power supply, (4) springs, (5) ball bearings, (6) the 

grasped object, (7) Arduino UNO and (8) Force 

Sensing Resistors (FSR). 

The grasped cylindrical objects were in three 

different diameters, namely, 160, 200 and 240 mm. 

The plane on which the cylindrical object is to be 

placed then grasped by the manipulator, which can be 

considered as the grasping work space, is 764×764 

mm in dimension. 

 
 
Fig. 3: 3-DOF Underactuated robotic manipulator with all 

required instruments 

 

Results and Discussion 

As stated previously grasping forces were obtained 

by three different procedures, theoretical, experimental 

and simulation, for three different sizes of the cylindrical 

grasped objects, D = 160, 200, 240 mm, located at 

different positions as related to the actuator of the 

grasping robotic manipulator. For comparison purposes, 

sample of these forces are shown in Tables 2, 3 and 4. 

All the cases listed in these tables are those representing 

stable grasping condition, in which the forces are all 
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positive thus insuring contact occurrence between the 

robotic manipulator and the grasped object. In case of 

stable grasping, it can be seen that depending on the 

object size or object location, contact occurs at link 1, 

link 2, link 3, at two links, or at all three links. While for 

the case in which ejection occurs, there will be no 

grasping where this case can be considered as unstable, 

as depicted in Fig. 4. 

 
Table 2: Grasping Forces for cylindrical object D = 160 mm 

POS (m)  Theoretical (N)  Simulation (N)  Experimental (N)  %Error 

------------------ ---------------------------- --------------------------------- ----------------------------- -------------------------- 

X Y F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

0.100 0.131 21.10 - - 20.96 - - 19.27 - - 8.1 - - 

0.100 0.231 4.43 16.31 0.49 5.48 12.00 0.88 5.11 11.94 1.04 6.8 0.5 15.4 

0.100 0.281 - 11.10 0.91 - 11.00 1.04 - 10.78 0.98 - 2.0 5.80 

0.100 0.381 - 7.67 3.42 - 7.43 3.21 - 8.10 3.12 - 8.3 2.80 

0.100 0.581 - - 6.08 - - 5.54 - - 5.23 - - 5.60 

0.150 0.231 - 11.59 0.66 - 11.66 0.95 - 12.02 1.10 - 3.0 13.6 

0.150 0.181 12.84 - 0.47 12.31 - 0.81 10.94 - 0.82 11.1 - 1.20 

0.200 0.081 7.09 9.76 - 10.54 3.30 - 8.89 2.83 - 15.7 14.2 - 

0.204 0.141 12.47 24.74 0.50 12.94 9.36 0.32 10.93 11.38 0.36 15.5 9.8 11.1 

0.200 0.081 5.27 17.22 0.49 6.92 15.87 0.87 5.94 13.84 1.02 14.2 12.8 14.7 

0.300 0.031 - 10.58 0.90 - 10.56 1.19 - 10.14 1.12 - 4.0 5.9 

0.300 0.131 - 9.84 1.24 - 9.66 1.47 - 10.18 1.57 - 5.1 6.40 

 
Table 3: Grasping Forces for Cylindrical Object D = 200 mm 

POS (m)  Theoretical (N)  Simulation (N)  Experimental (N)  %Error 

------------------ ------------------------------ ----------------------------- ----------------------------- --------------------------- 

X Y F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

0.125 0.131 20.910 - - 20.32 - - 19.48 - - 4.1 - - 

0.125 0.181 15.850 - 0.59 15.59 - 0.58 14.72 - 0.68 5.6 - 14.7 

0.125 0.215 1.600 13.54 0.62 2.19 12.00 1.20 2.02 11.85 1.12 7.8 1.3 6.7 

0.125 0.281 - 12.96 1.83 - 10.22 2.14 - 10.08 1.94 - 1.4 9.3 

0.125 0.531 - - 7.45 - - 7.16 - - 7.01 - - 2.1 

0.175 0.331 - 7.98 2.71 - 7.64 2.45 - 7.14 2.08 - 6.5 15.1 

0.175 0.181 0.320 10.88 0.72 0.48 10.90 0.96 0.51 10.10 1.14 5.9 7.3 15.8 

0.175 0.081 20.040 - 0.50 19.50 - 0.38 19.04 - 0.42 2.4 - 9.5 

0.225 0.031 4.770 9.91 - 11.44 2.25 - 10.38 2.06 - 9.3 8.4 - 

0.23 0.095 0.880 10.78 0.70 0.74 10.27 0.88 0.70 8.94 1.02 5.4 13.0 13.7 

0.225 0.431 - - 10.24 - - 9.94 - - 10.10 - - 1.6 

 
Table 4: Grasping Forces for Cylindrical Object D = 240 mm 

POS (m)  Theoretical (N)  Simulation (N)  Experimental (N)  %Error 

------------------ ------------------------------- -------------------------------- ----------------------------- --------------------------- 

X Y F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

0.150 0.081 32.86 - - 32.73 - - 30.21 - - 7.7 - - 

0.150 0.131 14.32 5.49 - 14.25 3.23 - 13.74 3.16 - 3.6 2.2 - 

0.150 0.181 15.88 - 0.84 15.59 - 0.86 14.36 - 0.90 7.9 - 4.4 

0.138 0.214 1.51 9.57 0.95 1.79 10.61 1.13 2.03 10.17 1.10 11.8 4.1 2.7 

0.150 0.381 - 5.77 5.89 - 5.51 5.72 - 5.15 5.20 - 6.5 9.1 

0.189 0.171 2.20 8.78 0.88 2.39 8.68 1.06 2.10 8.17 1.14 12.1 5.9 7.0 

0.200 0.131 14.65 - 0.84 14.41 - 0.75 14.19 - 0.71 1.5 - 5.3 

0.246 0.033 0.32 12.36 0.97 0.45 12.39 1.17 0.53 11.25 1.07 15.1 9.2 8.5 

0.244 0.081 1.36 9.36 0.90 1.62 9.21 1.08 1.87 8.92 1.01 13.4 3.1 6.5 

0.214 0.131 1.46 10.45 0.96 1.23 10.57 1.11 1.12 10.02 1.04 8.9 5.2 6.3 

0.300 0.031 - 9.58 1.40 - 9.26 1.53 - 10.20 1.30 - 9.2 15.0 

0.500 0.031 - - 7.49 - - 6.86 - - 6.11 - - 10.9 
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Fig. 4: Stable grasping and ejection, (A) and (B) stable grasping, (C) ejection 

 

Although there exist some deviations in the values of 

forces obtained by the three procedures, but still linkage 

contact sequence is achieved in the same manner for the 

three adopted procedures of contact force calculation. 

These deviations in the values of contact forces are 

mainly due to the ignorance of friction at the contact 

surfaces between the links and the grasped object, in the 

mathematical and simulation models. 

The obtained grasping forces are plotted in a 3-D 

view, as shown in Fig. 5 to 13, representing their 

variation with the grasped object location on the working 

plane of the robotic manipulator.  

As a common result, it can be seen that for all 

sizes of the cylindrical grasped object, the forces on 

the three links have maximum values when the 

location of the cylindrical object is near the actuator 

of the robotic manipulator, in other words near the 

fixed center of rotation at the base of the robotic 

manipulator. This happens to be true in order to 

balance the torque applied on the robotic manipulator 

by the single actuator governing the motion of the 

linkages mechanism.  

As the contact region between any link and the 

grasped object goes farther from the fixed center of 

rotation of the manipulator, that is to say, contacts 

happened to be on link 2 or link 3. It can be seen that 

the maximum contact force, whether F2 or F3 

happened to be at object locations near the 

intersecting axes of the fixed center of rotation of the 

robotic manipulator. 

To determine the object location on the robotic 

manipulator working space, hence to ensure a case of 

stable grasping, stability maps are plotted as shown in 

Fig. 14 to 16. Each figure represents a case of the 

cylindrical object size taken into consideration in this 

study, i.e., d = 160, 200, 240 mm. 

According to the number of degrees of freedom, the 

grasping workspace can be divided into three regions 

distributed radially. The first region is limited by the 

length of the proximal phalange (link 1), the second 

region is limited by the length of the middle phalange 

(link 2) and finally the third region is limited by the 

length of the distal phalange (link 3). From the results 

obtained for the three cylinders, it can be seen that 

grasping is fully achieved at the first region, while it 

decreases gradually as moving farther on the second 

and third regions. This is true, since when the 

cylindrical object is located on the first region, the 

three contact forces induced from the three links are 

acting on the grasped object thus giving rise to a stable 

grasp with no occurrence of ejection. Considering the 

area of the stable grasping region inside the workspace 

as a measure for the overall stability behavior, then it 

can be observed that stability decreases as the 

cylindrical grasped object becomes larger. Hence larger 

objects are more vulnerable to ejection as compared to 

small or medium size objects. 
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Fig. 5: Variation of force on link 1 with cylindrical object location (d = 160 mm) 
 

 
 

Fig. 6: Variation of force on link 2 with cylindrical object location (d = 160 mm) 
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Fig. 7: Variation of force on link 3 with cylindrical object location (d = 160 mm) 

 

 

 

Fig. 8: Variation of force on link 1 with cylindrical object location (d = 200 mm) 
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Fig. 9: Variation of force on link 2 with cylindrical object location (d = 200 mm) 

 

 

 

Fig. 10: Variation of force on link 3 with cylindrical object location (d = 200 mm) 
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Fig. 11: Variation of force on link 1 with cylindrical object location (d = 240 mm) 

 

 

 

Fig. 12: Variation of force on link 2 with cylindrical object location (d = 240 mm) 
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Fig. 13: Variation of force on link 3 with cylindrical object location (d = 240 mm)  
 

 
 

Fig. 14: Stability map for cylindrical object d = 160 mm 
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Fig. 15: Stability map for cylindrical object d = 200 mm 
 

 
 

Fig. 16: Stability map for cylindrical object d = 240 mm 
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2. Grasping forces attained higher values when the 

cylindrical grasped object is located near the 

fixed center of rotation of the underactuated 

robotic manipulator 

3. In general, each grasping force decreases as the 

grasped cylindrical object diameter increases for any 

specific location of the grasped object 

4. The state of stable grasping happened to be true 

when the grasped object is near the fixed axis of 

rotation of the robotic manipulator, while the state 

of ejection occurred when the object is far from 

the fixed axis of rotation in which contact 

between the object and the manipulator happened 

to be at the distal link 

5. The probability of achieving a state of stable grasping 

is higher for smaller cylindrical grasped objects 
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