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Abstract: In this study, a two dimensional infinite element model has been developed to study thermal 
effect in human dermal regions due to tumors. This model incorporates the effect of blood mass flow 
rate, metabolic heat generation and thermal conductivity of the tissues.The dermal region is divided 
into three natural layers, namely, epidermis, dermis and subdermal tissues. A uniformly perfused 
tumor is assumed to be present in the dermis. The domain is assumed to be finite along the depth and 
infinite along the breadth. The whole dermis region involving tumor is modelled with the help of 
triangular finite elements to incorporate the geometry of the region. These elements are surrounded by 
infinite domain elements along the breadth. Appropriate boundary conditions has been incorporated. A 
computer program has been developed to obtain the numerical results. 
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INTRODUCTION 
 
 A disturbance-say, an increase in metabolic heat 
production due to some abnormality-upsets the thermal 
balance. Heat is stored in the body and core temperature 
rises. Core temperature continues to rise and these 
responses continue to increase until they are sufficient 
to dissipate heat as fast as it is being produced, thus 
restoring heat balance and preventing further increases 
in body temperatures. The rise in core temperature that 
elicits heat-dissipating responses is sufficient to 
reestablish thermal balance. When the disturbance is 
too large, the whole body is no longer able to function. 
The study of relationships among various parameters, 
systems and organs of a human body are of clinical 
importance for biomedical scientists doctors,in 
diagnosis and cure of certain diseases like cancer etc 
and their treatment as well. 
 Perl gave a mathematical model of heat and mass 
distribution in tissues. He combined the Fick's second 
law of diffusion and Fick's perfusion principle along 
with heat generation term to deduce the model. The 
partial differential equation derived by him is given by: 
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  The effect of blood flow and effect of metabolic 
heat generation are given by the terms mb cb (Tb -T) and 
S, respectively. 
 Where, � = tissue density, c = specific heat of the 
tissue, T = unknown temperature, t = time, K = thermal 
conductivity, mb = blood mass flow rate, cb = specific 
heat of blood, Tb = blood temperature, S = rate of 
metabolic heat generation.  

 Perl[1] solved a simple case of equation (1) for a 
spherical symmetric heat source embedded in an 
infinite, tissue medium. Cooper and Trezek[2] found an 
analytic solution of heat diffusion equation for brain 
tissue with negligible effect of blood flow and 
metabolic heat generation. Chao, Eisely and Yang[3] 
and Chao and Yang[4] applied steady state and unsteady 
state models with all the parameters as constant, to the 
problem of heat flow in the skin and subdermal tissues. 
Trezek and Cooper[5] obtained a solution for a 
cylindrical symmetry considering all the parameters as 
constant and computed the thermal conductivity of the 
tissue. Saxena[6,7] obtained an analytical solution to one 
dimensional problem taking position dependent values 
of blood mass flow and metabolic heat generation. 
Later on Saxena and Arya[8] and Arya and Saxena[9] 
initiated the use of finite element method for solving 
the problem of temperature distribution in three layered 
and six layered skin and subcutaneous tissues. Saxena 
and Bindra[10,11] used quadratic shape functions in 
variational finite element method to solve a one 
dimensional steady state problem.  
 Later Saxena and Pardasani[12,13]extended the 
application of analytical and finite element approach to 
the problems involving abnormalities like malignant 
tumors. Further Pardasani[12,14] investigated the heat and 
water distribution problem in skin and subcutaneous 
tissues. Jas[15] has also studied temperature distribution 
in cylindrical organs of human body involving tumors 
using finite element method.No study has been carried 
out for infinite domains. We[16] studied thermal changes 
in infinite element domain of human peripheral regions 
due to tumors. 
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MATHEMATICAL MODEL 
 
 For a two dimensional steady state case, the partial 
differential equation (1) for heat flow in skin and 
subcutaneous tissues takes the form:  
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 The   tumor   is   characterized   by  uncontrolled 
rates   of     metabolic     heat   generation.   The   
normal   tissues   are   characterized    by self-controlled 
rate of metabolic  heat generation. In view of this the 
metabolic term S in eqn.(2) can be broken into two 
parts i.e. S = S1 + W  
 Where, S1 and W are self controlled and 
uncontrolled rate of metabolic heat generation 
respectively. 
 We consider a rectangular composite region with 
boundaries x = a, x = b and y = c, y= d with the 
following conditions. 
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T(x,y) = Tb, at y = c,  
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 The last condition incorporates the heat loss by 
radiation-convection and evaporation at the outer skin 
surface because the outer surface of the skin is exposed 
to the environment and heat loss takes place from this 
surface. where h is heat transfer coefficient, Ta is the 
atmospheric temperature, L and E are respectively the 
latent  heat   and   rate   of   sweat   evaporation. Also 
the  human   body   maintains   its   core   temperature  
at a uniform temperature (37oC). Tb   is   the   body   
core temperature. The values of � and � are taken 
depending on the outward normal flow from the 
boundaries   at   x = a   and x = b. The   region is 
divided   into   sufficiently   large   number   of two 
types of elements to match with geometry and to 
incorporate minute details of physiology.The triangular 
shaped finite elements and rectangular shaped 
infinite[17] elements. As the elements size is quite small, 
we take linear variation of temperature within each 
element. 
 The variational formulation of (2) for some general 
eth element along with the boundary conditions (3) and 
(4) is given by: 
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 Where, �(e) is the region contained in the eth 

element. 
 Here the second integral of eq. (5) is valid for 
elements adjoining the outer skin surface, �1

(e) being the 
boundary of the eth element exposed to the environment 
and it is zero for all other elements. In the same way 
third and fourth integrals are valid only for the elements 
adjoining the boundaries � 1 and � 2 respectively and 
taken equal to zero for the remaining elements. 
Following assumptions have been made for K(e) and (mb 
cb) 

(e) : K(e) = K(e) ( �1
(e) - � 2

(e) y), (mb cb)
(e) = m (e) (�1

(e) - 
�2 

(e) y ) 
 
For triangular finite elements: 
  
T(e)=c1

(e)+c2
(e)x+c3

(e)y (6) 
 
Where T(e) is equal to Ti, Tj and Tk at the nodes of the 
eth element. Thus we have 
 
Ti

(e) =c1
(e) + c2

(e)xi+c3
(e)yi, Tj

(e) = c1
(e) + c2

(e) xj + c3
(e) yj, 

Tk
(e)=c1

(e)+ c2
(e) xk + c3

(e) yk      
In matrix from this can be written as:  
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Where, C(e) is obtained from (7) and is given below: 
 

( )( ) ( ) ee eC R T= ,  Where R(e) = P(e) –1 (8) 
 
The expression (6) may also be written as:  
  
T(e) = PT C(e) ,  Where PT = [ 1 x y] (9) 
 
On substituting the value of C(e) from (8) in (9) we have  
  

( )( ) ( ) ee T eT P R T=  (10) 
 
 The rate of metabolic heat generation is directly 
proportional to gradient of issue temperature. So when 
gradient of tissue temperature increases, rate of 
metabolic heat generation also increases and when the 
gradient of tissue temperature decreases, rate of 
metabolic heat generation also decreases. So the rate of 
self controlled metabolic heat generation for different 
triangular elements is prescribed below:  
 
(i) If   yi = yk  and  yi > yk     
    S (e) = s (e) (α (e) - β (e) y ) [ 1 + q(e) ( Ti  + Tk  -  Tj  ) ]  
                                                                 2              
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(ii) If   yi = yk and yk > yj   
     S (e) = s (e) (α (e) - β (e) y ) [ 1 + q(e) ( Tj  - Ti  +  Tk  ) ]  
                                                                         2                                                           
(iii) If  yi = yj and  yk > yj  
      S (e) = s (e) (α (e) - β (e) y ) [ 1 + q(e) ( Ti  + Tj  -  Tk  ) ]  
                                                                  2              
(iv) If   yj = yk  and yk > yi  
     S (e) = s (e) (α (e) - β (e) y ) [ 1 + q(e) ( Ti  - Ti  +  Tk  ) ]  
                                                                          2  
For rectangular infinite elements: For  -1 ≤ ξ ≤ 1 , -1 
≤ η ≤ 1 
x = M1(ξ,η) x1+M2(ξ,η)x2+M3(ξ,η)x3+M4(ξ,η) x4 
y = M1(ξ,η) y1+M2(ξ,η)y2+M3(ξ,η)y3+M4(ξ,η) y4 

 
 Where the mapping functions M1 , M2 , M3 and M4 
are given by : 
 
M1(ξ,η) = ( 1 - η)( - ξ) / ( 1 - ξ), 
M2(ξ,η) = ( 1 + η)( -ξ) / ( 1 - ξ) 
M3(ξ,η) = ( 1 + η)(1 + ξ) / [2( 1 - ξ)], 
M4(ξ,η) = ( 1 - η)( 1 + ξ) / [2( 1 - ξ)] 
T = N1(ξ,η) Ti  + N2(ξ,η) Tj + N3(ξ,η) Tk+ N4(ξ,η) Tl   
 
 Where the shape functions N1 , N2 , N3 and N4 are 
given by : 
N1(ξ,η) = ( 1 - η)(ξ2- ξ ) / 4, 
N2(ξ,η) = ( 1 + η)(ξ2- ξ ) / 4 
N3(ξ,η) = ( 1 + η)( 1 - ξ2 ) / 2, 
N4(ξ,η) = ( 1 - η)( 1 - ξ2) / 2   
 
Let  
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 N = total no. of elements. Now I is minimized by 
differentiating it with respect to each of the nodal 
temperature and setting the derivatives equal to zero. 
 
 0/ =∂∂ TI  (12)  
    
Here, TI ∂∂ /  denotes the differentiation of I with 
respect to each nodal temperature as given below:  
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Also we define 
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Here n = total number of nodal points.  
 

NUMERICAL RESULTS AND DISCUSSION 
 
 Here a uniformly perfused tumor is assumed to be 
situated in the dermal region of the body. The skin and 

subcutaneous tissue (SST) region of human body has 
been divided into 10 layers. The epidermis consists of 
one layer. The dermis is divided into five layers and 
subdermal tissues are divided into four layers.The 
innermost layer is the core consisting of bone, muscles, 
large blood vessels etc.The vertical cross section of skin 
and sudbermal tissues with a solid tumor is shown in 
Fig. 1 which is discretized into 552 triangular finite 
elements and 10 rectangular infinite elements. The 
epidermal layer is discretized into 52 triangular 
elements with 2 infinite elements. The dermal layer is 
discretized into 292 elements with 5 infinite elements 
and also include 32 elements of tumor region. The 
subcutaneous tissues is discretized into 208 elements 
with 4 infinite elements Now using above assumptions 
and expressions, the integrals I(e) are evaluated and 
assembled a given below: 
       562 
I  =  Σ   I(e) (15)  
      e=1 
 

 
 

Fig. 1: Discretized section of skin 
 
 The integral I is extremised with respect to each 
nodal temperature Ti(i = 1(1)322) to obtain a following 
set of algebraic equations in terms of nodal temperature 
Ti (i=1(1)322). 
 
X T Y=  (16)  

 
 Here X, Y and T are respectively the matrices of 
order 322 x 322, 322 x1 and 322 x 1. A computer 
program has been developed for the entire problem in 
Microsoft Fortran Powerstation. Gaussian elimination 
method has been employed to solve the set of equations 
(16) to obtain nodal temperatures which give 
temperature profiles in each subregion.  
 The values of physical and physiological 
parameters have been taken from Cooper and Trezek[2], 
Saxena and Bindra[10] and Pardasani and Saxena[12,13] as 
given below: 
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K1= 0.030 Cal cm-min�1.°C, K2 = 0.0845 Cal cm-
min�1.°C, K3= 0.060 Cal cm-min�1.°C 
M = 0.003 Cal cm3-min�1.°C, S = 0.0357.Cal cm3-
min�1, L = 579.0, h = 0.009 Cal cm2-min�1.°C 
 The results have been computed for the following 
two cases of atmospheric temperatures and parameters 
m, S and E have been assigned the values as given in 
Table 1. 
 
Table 1: Values of m, S and E 
Atm. Temp Mmax=(mbcb)max= Smax= s cal cm�3min E=gm cm�2 min 
T	(°C)  m cal cm�3-min.°C 
15°C 0.003 0.0357 0.0 
23°C 0.018 0.018 0.0,0.24X10-3 
33°C 0.315 0.018 0.24x10-3, 
   0.48x10-3, 
   0.72x10-3 

 
 The following values have been assigned to 
physical and physiological parameters in each 
subregion.  
 
i. Epidermis 
λ1

 (e) = 1 λ2
 (e) = W(e) = β (e) = 0, K(e) = 0.03  , m(e) = 0,q(e) 

= 2/(Ta + Tb) , α (e) = 1, s(e) = S/16                    
ii. Dermis 
      λ1

 (e) = 3, λ2
 (e)= 2.5, K(e) = 0.03 , φ1

(e)= 4, φ2
(e) = 5, 

m(e) = m,W(e) = 0, q(e) =2/(Ta + Tb),  
      α (e) = 3.8 , β (e) = 4.6 , s(e) = S  
iii. Subdermal Tissues 
      λ1

 (e) = 1, λ2
 (e) = W(e) = β (e) = 0, K(e) = 0.06 , m(e) = 

m , q(e) = 1/Tb , α (e) = 1, s(e) = S        
iv. Tumor region 
λ1

 (e) = 1, λ2
 (e) = φ2

(e) =β (e) = s(e) = 0, K(e) = 0.036, φ1
(e)= 

1 , m(e) = m , α (e) = 5, W(e) = S, q(e) = 0    
 

 
 
Fig. 2: Graph between temperature T (in °C) and x, y 

(in cm) at atmospheric temperature Ta = 15°C 
and E = 0.0 gm cm�2 for normal case 

 
 The various temperature profiles have been 
studied. Figure 2 represents the temperature profiles for 
Ta = 15°C and E = 0.0 gm cm�2 for a normal case 
(without tumor). Figure 3 shows temperature profiles 
for  Ta = 23°C,    E = 0.0   gm cm�2   for   a  normal case  

 
 
Fig. 3: Graph between temperature T (in °C) and x, y (in 

cm)  at   atmospheric temp. Ta = 23°C and E = 
0.0 gm cm�2 for normal case 

 

 
 
Fig. 4: Graph between temperature T (in °C) and x, y (in 

cm)   at   atmospheric  temp.  Ta = 33°C and E = 
0.24x 10�3 gm cm�2 for normal case 

 
 

 
 
Fig. 5: Graph between temperature T (in °C) and x, y (in 

cm) at atmospheric temp. Ta = 33°C and E = 
0.24x 10�3 gm cm�2. Solid lines for normal 
tissues and dashed lines for abnormal tissues  
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(without tumor). The fall in temperature profiles for a 
normal case (without tumor) is more for Ta = 15°C and 
E = 0.0 gm cm�2 as compared to that for Ta = 23°C, E = 
0.0 gm cm�2. This may be because the heat loss is more 
from the skin surface at low atmospheric temperatures 
due to the increase in temperature gradient at the skin 
surface. Figure 4 shows temperature profiles for Ta = 
33°C, E = 0.24x10-3 gm cm�2 for a normal case (without 
tumor). The temperature profiles for Ta = 15°C and E = 
0.0 gm cm�2 and Ta = 33°C, E = 0.24x10-3 gm cm�2 are 
close inspite of a difference of 18°C in atmospheric 
temperature and a small rate of sweat evaporation at 
higher temperature.This is due to large temperature 
gradient on the surface for low atmospheric temperature 
which causes more heat loss than that for smaller 
temperature gradients due to high atmospheric 
temperature. Figure 5 shows temperature profiles for Ta 
= 33°C, E = 0.24x10-3 gm cm�2 for a normal case 
(without tumor) and an abnormal case (with tumor). 
The temperature profiles fall down as we move away 
from body core to the skin surface. The numerical 
results for a normal case are comparable with those 
obtained by Saxena and Bindra[10]. An elevation in 
temperature profiles for skin and subdermal tissues with 
a tumor is observed while comparing the profiles for 
the normal and abnormal tissues.The maximum thermal 
disturbances are seen in the region between y = 0.5 cm 
and y = 0.7 cm. The points of change in the slopes of 
the curves are actually the junction of normal tissues 
and tumor region. This information is useful for 
justifying the boundaries of tumor region and normal 
region. Such models can be developed to generate the 
thermal information which may be useful for 
biomedical scientists for diagnosis and treatment of 
cancer. 
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