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Abstract: The stereological problem of unfolding the hemisphere radius distribution from the chord 
length distribution is analyzed. Let a stationary isotropic process of hemispheres be given. The 
hemispheres have random diameters and are isotropically uniformly randomly orientated in space. A 
straight line probe yields a process of intercepts. The inverse problem of re-obtaining the size 
distribution of the hemispheres in terms of an experimental intercept length distribution is solved. The 
chord length distribution of a single hemisphere, known analytically, is approximated by piecewise 
polynomials in two intervals. The solution of the inverse problem is traced back to a simple recurrence 
equation. Numerical checks with exact and simulated data are performed to demonstrate the 
applicability. Data of "chord length sampling", resulting from image analysis procedures, from 
scattering methods or from other appropriate physical apparatuses, are applicable. 
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INTRODUCTION 

 
 One of the fundamental problems in stereology is 
the derivation of the size distribution of geometric 
objects (particles) from partial information which is 
contained in the length distribution of linear 
intersections of the particles (Fig. 1). Textbooks by 
Weibel[1], Stoyan, Kendall and Mecke[2], Serra[3], Ohser 
and Mucklich[4] handle this problem for specific shapes. 
Information about the particle size via chord length 
measurement can be obtained by physical apparatuses. 
 The standard problem of tracing back the size 
distribution of hemispheres to linear intercept 
measurement occurs in different fields, involving 
specificities. The universal nomenclature used in this 
representation is explained in Appendix A. 
 Chord length distributions (CLDs) were 
investigated by Enns and Ehlers[5]. Applications of 
particle sizing in materials science were discussed by 
Hermann[6]. Scattering methods, especially small-angle 
scattering (SAS), Appendix B, were applied for particle 
sizing on the nanometric length scale[7-9]. 
 Let L be the largest diameter of the largest 
hemisphere. For the analysis of the hemisphere sizes, 
isotropic uniform random chord lengths exclusively 
inside the hemispheres will be analyzed, Lr ≤≤0 . No 
outside chord lengths or any other experimental 
information about the spatial arrangement of the 
hemispheres are included and no interaction between 
the hemispheres is considered. 
 For the following, the normalized, isotropized 
geometric covariogram of  the hemispheres will serve 

as a universal working function (WF) )(rγ , 1)0( =γ , 
Lr <≤0 , 0)( ≡rγ  if rL < , 
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 Here, the function |)(|)( rKrK =  is the isotropized 
geometric covariogram of an ensemble of hemispheres. 
Some steps of explanation concerning the WF and the 
background of Eq. (1) are helpful. 
 The consideration starts with the geometric 
covariogram )(1 rK  for a single particle in a fixed 
direction[3]. The geometric covariogram is useful to 
characterize a single hemisphere RH  of radius R , as 
well as  an ensemble of hemispheres possessing a 
certain size distribution. 
 For a single hemisphere the geometric 
covariogram[3] is the overlapping integral  

xdrxxrHHVrK
RR HHRR )(1)(1))(()(1 +⋅=+∩= � , 3ℜ∈r ,  

where 
RH1  is the indicator function of RH  and V the 

overlapping volume. The function )(1 rK  describes the 
overlapping in a fixed direction. 
 Further, the isotropized covariogram of RH , 

)(1 rK ,      follows     from     spatial     averaging    over   
the   spherical    unitshell    of    surface    area π4  in 

3ℜ , 
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Here, ud  is the element of the surface measure, given 
by use of spherical coordinates ϕ  and ϑ  via 

)cos()(cos(),( ϑϕϑϕ ⋅=u , )cos()sin( ϑϕ ⋅ , ))sin(ϑ . 

 The function )(1 rK  possesses the property 
)()0()0( 11 RHVKK == . Considering a single hemi-

sphere RH , it is useful to define a dimensionless 

working function )0(/)()( 111 KrKr =γ , r≤0 . Evidently, 
)(1 rγ  is a strictly monotonously decreasing function 

on the interval Rr ⋅≤≤ 20 , possessing the property 

�
⋅

=⋅⋅
R

RHVdrrr
2

0 1
2 )()(4 γπ . The function )(1 rγ  starts in 

the origin with 1)0(1 =γ . 
 In the case of an ensemble of N differently sized 
hemispheres (volumes 

,...3,2,1V ), there exist N functions 

)(1 r
i

γ , Ni ...3,2,1= . The function )(1 r
i

γ  describes the 
thi  hemisphere with volume iV . The averaged working 

function )(rγ  is defined by the ratio 
[ ] [ ]�� ==

⋅= N

i i
N

i i VrVr
i 11 1 )()( γγ . Being a sum of strictly 

monotonously decreasing functions, )(rγ  is again 
strictly monotonously decreasing. Further, the WF )(rγ  
is dimensionless, real valued and possesses the property 

1)(0 ≤≤ rγ . 
 Operating with )(rγ , an isotropic and 
homogeneous arrangement of homogeneous 
hemispheres with random radius R , distribution 
function )(RF  and continuous distribution density 
function )(')( RFRf = , is analyzed (Fig. 1). 
 

 
 
Fig. 1: Particle sizing of hemispheres of random size 

via analysis of the length distribution law of 
linear intercepts: Assuming an isotropic 
geometric arrangement, any testline can be 
applied for measurement of IUR chord lengths 
inside the particles 

 
 Let maxR  be the largest radius. The volume fraction 
of the hemispheres inside the sample volume is an 
insignificant parameter, 0)( ≡rγ , if  rRL <= max2 . 
The functions )(rK  and )(rγ  are assumed to be 
exclusively influenced by the sizes of the hemispheres. 
Clearly, this is trivial in cases, if image material is 
available and exclusively chord lengths inside the 

hemispheres can be selected and measured. However, 
in the case of scattering experiments, the assumption of 
a so-called quasi-diluted particle arrangement must be 
additionally fulfilled, Appendix B (Fig. B1).  
For compact convex particles, the chord length 
distribution density ),()( RlAlA =  is connected with 

)(rγ ,  
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look for example back at the parallelepiped case[10]. 
Thus, )(lA  defines )(rγ . In the other direction, )(rγ  
defines )(lA  via the second derivative. From geometric 
principles, )(lA  functions were determined for many 
basic geometric shapes[5,11-13].  
 Particularly, the analytical expression for the CLD 
of the hemisphere with a fixed radius R , ),( RlAH , is 
known, Gille[10,14] (Fig. 2). The motivation of these 
calculations are experimental results, showing the 
existence of hemispherical micro-particles, Appendix 
C. Moreover, there is a theoretical interest to add a new 
result to the sequence of known cases with elementary 
particle shapes. 
 There are cases in which two- or three-dimensional 
images are available. The theory reported here, 
operating with the WF )(rγ , can even be applied 
without an image. 
 

 
 
Fig. 2: Isotropized chord length distribution density 

)('')( lllA HH γ⋅=  of a single hemisphere of 
radius 1=R , 2=L  

 
 This project starts with the analysis of the relation 
between )(Rf , WF and CLD, operating with the 
analytical expression ),( RrHγ  for the single hemisphere 
of radius R  (Fig. 2). Section 2 considers the general 
formulas for the simulation of the WF and the CLD 
depending on )(Rf . Section 3 analyses the backstep, 

)(Rf  in terms of )(rγ . However, as it seems to be 
impossible to find an exact solution, sections 3.1-3.3 
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consider a suitable approximation of  Hγ . A numerical 
test of this approximation is included.  
 Finally, a recurrence equation follows, connecting 

)(Rf  and )(lA , sections 3.4, 3.5. After some checks an 
application for a simulated case follows. Selected steps 
of the project are explained in greater detail in the 
Appendices. 
 
2. Simulation of )(rγ  from )(Rf  
2.1 The hemisphere correlation function ),( RrHγ : 
For a single hemisphere of radius R  (for more details 
Gille[14] and Appendix D), 
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The abbreviation for the interval restrictions in Eq. (3) 
means 
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Thus, Hγ  is split into three functions: ),(1 RrHγ  if 

Rr ≤≤0 ; ),(2 RrHγ , if  RrR 2≤≤ ; 0),(3 =RrHγ  if  
rR <2 .  

 
2.2 Averaging over different radii: The volume 

),(3 RrR Hγ⋅  is proportional to the geometric 
covariogram, Serra[3].  Then, the averaged WF )(rγ  is 
defined in terms of )(Rf  and ),( RrHγ   
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Rr ⋅≤≤ 20 ,  
max0 RR ≤≤  . 

 
 The integral in the denominator of Eq. (5) is the 
third moment M3 of )(Rf . The ratio 3/),(3 MRrR Hγ⋅  
is the weighing function for averaging. Eq. (5) satisfies 

1)0( =γ . The lower integration limit depends on r . 
Here, Rr ≤2/  is necessary to fulfil Rr ⋅≤≤ 20 , 
including the condition max2Rr ≤ , Eqs. (3,4). In more 
detail, for any assumed )(Rf , the averaged WF is a 
sum of two parametric integrals 
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 The mean hemisphere volume V is 33/2 MV ⋅= π . 
Eq. (6) satisfies 0)( max =Rγ . The connection between 
Eq. (6) and A(l) is Eq. (2). Furthermore, the WF can be 

traced back to the isotropic scattering intensity, 
Appendix B. 
 
2.3 An assumed density function )(Rf :  
Let )(Rf  be the superposition of two Maxwell 
distribution densities with the first moments 151 =xm  
and 502 =xm  (two local maxima occur in Fig. 3).  
 

 
 
Fig. 3: Superposition of two Maxwell distribution 

densities: )(Rf  extends from 2 to 120max =R . 
The WF in the insert is simulated numerically, 

2000 << r , Eq. (6) 
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 Consequently, 5103 ≈M  and 5101.2 ⋅=V . The 
insert of Fig. 3 involves the resulting WF )(rγ , Eqs. 
(6,3). The WF curve, given in the limited interval, 

2000 ≤≤ r , results. An existing truncation error 
0)(( ≡rγ , if )200 r<  can be neglected. The WF defines 

the CLD via Eq. (2). On the other hand, the SAS curve 
of the polydisperse hemisphere system (Fig. B2) 
involves the same information about )(Rf , but it is 
based on another experimental (sampling) technique.  
 This way, depending on a special experimental 
sampling technique used, the information about the 
unknown function )(Rf  is contained in the WF as well 
as in the CLD and as well as in the SAS curve.    
 Now, the inverse problem consists in the 
determination of )(rF , )(Rf  based on )(lA . 
Depending on the respective practical problem to be 
solved, )(lA  can be measured directly or obtained from 
the WF. Furthermore, the WF can be traced back to the 
scattering intensity. 
 
 
3. Solution of the inverse problem  
3.1  Analysis of Eq. (6): The functions )(Rf , )(rγ  and 

),( RrHγ  are connected via Eq. (5), or in greater detail, 
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by Eq. (6). Taking into account the current opinion of 
the specialists in the field of integral equations, for 
example Camko et al.[15], Wiener[16], including the 
actual developments in the field of computer algebra, 
Mathematica[17], it seems difficult to find out an exact 
analytical solution. Fedorova & Schmidt[11] reached 
analytic solutions for particle sizing problems for a 
sequence of particle shapes. The hemisphere case is not 
included there. There are no simplifying integral 
transformations for the actual kernel type. Evidently, 
the only way is to apply numerical procedures, 
developed for solving a wide group of  inverse 
problems.  
Another way for solving the inverse problem is to apply 
a method recently developed by Ohser, also Ohser & 
Mucklich[4]. This procedure should work for all cases, 
when the kernel function is known explicitly with high 
precision (which is fulfilled by Eq. (3)).  
 However, in the present paper the goal of 
developing a simple practicable solution was reached 
by puzzling over a suited approximation of the function 

),( RrHγ . In the beginning, it seemed to be advisable to 
apply series expansions, Gille[10], or their combination 
at well chosen r-positions. A two-dimensional series 
expansion of ),( RrHγ  was also inserted into Eq. (6). 
 A long series of trials has shown that the best 
suited approximation (with respect to the desired 
solution of Eq. (6)) is a piecewise linear approximation 
on two r-intervals. This is based on the fact that the 
CLD (Fig. 2) can be approximated by a straight line in 
the first r interval, Rr ≤≤0 . After two differentiation 
steps (operating with Eqs. (3-6)), the second derivative 

)('' rγ  of the WF is  
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 For both differentiation steps, the limiting relations 

0),2( max =⋅ RRHγ , 0),2(' max =+ RRHγ  and 

0),2('' max =+ RRHγ  are essential. Consequently, the 

unknown function )(rf  is defined in terms of the 
transformation Eq. (6) and as well in terms of Eq. (8). 
Thus, Eqs. (6,8) are equivalent.  
Furthermore, the left hand side functions )(rf  and 

)('' rγ  can be traced back to experimental values. Data 
from linear intercept measurements define the left hand 
side of  Eq. (8). According to Eq. (2), )(rA  is 
proportional to )('' rγ  on the whole interval 

max20 Rr ⋅≤≤ . No matter which of the functions, )(rγ  
or )('' rγ  or )(rA  is given experimentally, Eq. (8) is the  
equation to be inverted in order to determine )(Rf .  
 
3.2 Approximation of ),( RrHγ  by a function: 

),( RrAγ : Let ),( RrAγ  be the approximation in question 

of the exact function ),( RrHγ . Considering the intrinsic 
properties of the CLD (Fig. 2) in greater detail, two 
polynomials of third degree on the r-intervals, 

Rr ≤≤0  and RrR ⋅≤≤ 2  fulfil ),(),( RrRr AH γγ ≈ , 
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 Eq. (9) uses the abbreviation π243458 ++=t , 

)83158(3 π++=at , )168315( −+= πbt . The degree of 
the r polynomial applied is a compromise. The 
approximation fulfils 1),0( =RAγ . Differentiation of the 
terms in Eq. (9) with respect to r  yields the terms of 

),('' RrAγ ,  Appendix E. Altogether, Eq. (8) is 
simplified. 
 Numerical methods for solving integral equations 
are not applied. By use of Eq. (9),  Eqs. (6,8)  simplify 
by r-differentiation. After this intermediate step, )(Rf  
is defined implicitly.  
 
3.3. The solution for )(rf : Operating with Eq. (9), a 
form involving the distribution function, containing 
terms )(rF  and )2/(rF  is obtained after three 
differentiation steps 
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Inserting 0=r  and )0(F  into Eq.(10) yields, 
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 Eq. (11) defines M3. Furthermore, the 
differentiation step )(')( RFRf =  transforms Eq. (10) 
into a recurrence equation 
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 This result, Eq. (12), is remarkable. The function 
f  is traced back to the WF )(rγ . In fact, )4(γ is 

proportional to the second derivative )('' rA  of the 
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experimental chord length distribution density )(rA , 
Eq. (2). 
 
3.4 A procedure for determining )(Rf : Because of 
experimental errors, a lower limit of information, 

0rr = , exists. This has to be taken into account for 
establishing a stable procedure, based on Eq. (12). For 
example in image analysis 0r  is given by the resolution 
limit of the image. On computer screens 

0r  is connected 

with the number of pixels used. For micro-particles in 
the field of  SAS, ≈0r 2nm. On the other hand, there is 
an upper experimental limit maxr . Consequently, 

limiting conditions 0)( =Rf , if 0rR <  and 0)( =Rf , if  
Rr <max  exist. Additionally, there are noise terms, 

inherent in a data set,  { })(, iii lAl , i=1, ... N.  In the 
simulated cases these parts have been obtained from 
random number generators. 
  The procedure _]0_,[ rrf  involves these 
restrictions. The first step is the determination of M3 
from the WF, followed by a recursive solution of the 
recurrence equation Eq. (12). 
  
The algorithm is: 

π243458 ++=t ; t1=t-8; )88315(122 −+= πt ; 

)168315(33 −+= πt ; 

[ ]0
3

3 )3( rt
t

M
γ⋅

=  ; 

(*COMMENT: recursive definition of [ ]0,rrf , 
Eq.(12)*) 

[ ] =:_0_,rrf Which 0[ rr <= , 0, 

020 rrr ⋅<< , [ ]r
t

tM )4(

2
32 γ⋅⋅⋅− , 

∞<<⋅ rr02 , ]2/])[32]0,2/[1( )4( trtMrrft γ⋅⋅⋅−⋅ ; 
(*COMMENT: The function Plot[] includes the 
recursion *) 
Plot ]0,[[ rrf , { }],0, maxrr ; 
 
 The plot starts at 0=r . If 0rr ≤ , then 0 results 
until 0rr =  is reached. Then, for all the following actual 
r-values the term ]0,2/[1 rrft ⋅  successively changes, 
according to Eq. (12), depending on 0r . 
 
3.5 Application and stability: The given algorithm is 
applied to the simulated data set, section 2.3 and Fig. 3. 
The second derivative of the WF )('' rγ  is represented 
by a table { })(, iii lAlT = , 200)1(1=i , whose numbers 
possess two digits. This represents a not normalized 
experimental CLD. Based on T, the function 

)(Rf should reappear. In fact, the dashed line (Fig. 4) is 
obtained, based on Eqs. (11, 12) which are involved in 
the procedure. The full line in Fig. 4 is given by Eq. (7). 

 Figure 4 demonstrates the stability of the method 
for the bimodal distribution type assumed. Furthermore, 
the procedure is checked for several conditions and for 
other size distribution models; Rayleigh-distribution, 
Normal-distribution, Log-Normal-distribution. The 
most sensitive point is the parameter  0r .  
 Exceptional situations can be constructed, in which 
the method fails (in the case of extremely narrow or not 
continuous distributions). Here, the approximation 
errors given by the difference between Hγ  and  Aγ  (or  

HA  and AA ) influence the stability. 
 In most of the tested cases the assumed )(Rf  
reappears, if  0r  is sufficiently small, compared with the 
abscissa value mRR =  of the first maximum )( mRf  of 

)(Rf . Tests show that the relation 5/0 mRr <  is 
sufficient. In most experimental cases, 0r  is known 
beforehand, however the parameter mR  results (and can 
be checked) only after performing the data evaluation. 
 

 
 
Fig. 4: Numerical test of the procedure in a special 

case, where )(Rf  is a superposition of two 
Maxwell distribution densities (Fig. 3) 

 
)(Rf  (dashed line) is obtained, based on a table (200 

simulated )('' rγ  values, each number with two digit 
precision). Here 20 =r  and 200max =r  are inserted. 
Even in this case the procedure is applicable (logically, 
the smaller 0r  the better the dashed line agrees with Eq. 
(7)). 
 

CONCLUSION 
 
 The problem of estimation of the radius 
distribution function and its density from the 
observation of chord lengths in IUR sections of a 
macroscopic isometric system of hemispheres with 
straight  lines  is  solved.  After writing the mean WF as  
an integral over the hemisphere size density, a 
procedure  for determining )(Rf  is established. This is  
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based on the analytic expression for the single 
hemisphere chord length distribution and further, on the 
simplifying piecewise approximation of the WF by 
polynomials of third degree. Thus, a simple recurrence 
equation follows. It traces the unknown parameters 
back to a data table T , involving the frequency of 
chord segments il . 
In most practical cases, smooth distributions without 
singularities exist. Under this condition, a sequence of 
tests shows: A stable solution is obtained based on at 
least 200=N  pairs { })(, iii lAl  on the interval 

maxmax20 rRlr i <⋅<< . The approximation error, 
inherent in the method, is unimportant in contrast to the 
errors resulting from the lower experimental limit 

0rr = .  
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Appendix A: Notation 
R radius of a single hemisphere, random 

variable 
)(RF , )(Rf  distribution function and distribution 

density of the random variable R 
M3  the third moment of )(Rf  

321 ,,, VVVV   volume; volumes of three hemispheres  

V   mean hemisphere volume 
r, 

maxR ; L  distance, radius of the largest hemisphere; 

L is the greatest existing particle 
diameter;  

T  table of data,  { })(, iii lAlT = , Ni )1(1= , 
200>N  which represents the (simulated) 

experimental chord length distribution, 
all numbers should involve two digits     

l, m  within, l and outside, m, of the 
hemispheres  

max0 , rr   lower and upper experimental limit for 

length measurement  

mR  abscissa of the first maximum of )(Rf  

 
 

)(rK  isotropized geometric covariogram 

)(rγ  working function (WF) 

)(lA , A(r) chord length distribution density (CLD), 
for IUR-chords, experimental linear 
intercept measurements yield A(r) for 
certain segment lengths max0 rrr << . 

),( RrHγ  isotropized and normalized set covariance 
of a single hemisphere with fixed radius R 

),( RlAH
 CLD for a single isolated hemisphere with 

fixed radius R 
),( RrAγ  analytically approximated WF of a single 

hemisphere with fixed radius R  
),( RLAA
 analytically approximated CLD of a 

hemisphere with fixed radius R 
t, ta, tb, c1, c2 constants 
h amount of the scattering vector 

)(hI   isotropic scattering-intensity, normali-
zation 1)0( =I  

 
Appendix B: Scattering experiments  
 Particle sizing by use of SAS experiments is a 
standard method, Guinier & Fournet[18]. Here, the 
particle shape must be known a priori. No image 
material (micrograph) is necessary. Physical 
apparatuses record the (isotropic) scattering intensity 
curve )(hI  (scattering vector h). The WF can be traced 
back to )(hI , Torquato[19] (page 34, equations 2.30 and 
2.31 in that textbook), by inversion of Eq. (13)    
 

�

�
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⋅⋅⋅⋅
= L

L

drrr

drrhrhrr
hI

0

2

0

2

)(4

)/()sin()(4
)(

γπ

γπ  (13) 

 
 However, in order to exclude the confusing 
influence of so-called interparticle interferences the 
conditions explained in Fig. B1 must be fulfilled (so-
called quasi-diluted particle arrangement).  
 
 This figure shows an assumed configuration of 
hemispheres 1, 2, 3 with volumes 1V , 2V , 3V  and 
corresponding WFs 1γ , 2γ , 3γ . The diameter lR =2  is 
smaller than the minimum of all possible distances m 
between any points of the surface areas of the 
hemispheres, 1-2, 1-3, 2-3. In such a system, the WF in 
the interval max20 Rr ⋅≤≤  is the volume averaged 
mean, whatever the particle shape, 

+⋅+⋅= )()([)( 2211 rVrVr γγγ  )/()]( 32133 VVVrV ++⋅γ . The 
normalization 1)0( =γ  is fulfilled.  
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Fig. B1: Quasi-diluted conditions 
 
 

 
 
Fig. B2: Based on a simulation of the WF, )(Rf  is 

given by Eq. (7), )(hI  is obtained via Eq. (13). 
In order to emphasize the high dynamics of the 
intensity, a logarithmic plot is used. Small 
hemispheres mainly influence )(hI  for large 
h . Big hemispheres are reflected with small 
h . 

 
Appendix C: Hemispherical particles in aluminum 
alloys 
 There is an eminent physical background in 
materials research, Dutkievicz et al.[20]. This particle 
shape has already been observed in metal physics on a 
length scale of about 50 nm in several alloys. Lukac[21] 
investigated the influence of the strain rate on the 
plastic instabilities in aluminum based alloys (Fig. C1).   

 

 
 
Fig. C1: Micrograph with hemispherical particles in 

AlLi(2.35%) material with a treatment: 
=AT 190°C for 100h (after homogenization) 

 
Appendix D: Constellation for determining )(lAH  of 
the hemisphere: Two types of chord lengths, basic-
chords (bc) and cap-chords (cc) (Fig. D1) must be 
distinguished. For reasons of symmetry, it is sufficient 
to consider one random angle α , defining the interval 
limits of the IUR chords. 
 The area parts possible for bc and cc are related 
2:1. The fundamental limits of � depend on the chord 
length l . Three cases have to be distinguished: case 1: 

{ Rl <≤0 , }2/0 πα <≤ , case 2: { RlR ⋅<≤ 2 , 

})/arcsin(0 lR<< α , case 3: { RlR ⋅<≤⋅ 22 , 

})2/arccos(0 Rl ⋅≤< α . The distribution function )(lF , 
)Pr()( llF <= ς , can be expressed by ratios of 

projection portions perpendicular to the α -direction. 
Finally, )(')( lFlA =  was performed, Gille[14].   
 

 
 
Fig. D1: Two basic cases: cc and bc. Consequently, the 

whole CLD is a superposition of two 
distribution   densities   )(lAcc     and )(lAbc , 
Fig. D2 
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 The analytic representation of ),( RlAbc  is more 
complicated than that of ),( RlAcc ,   
 

)1/4arctan(
2

),( 22
2 −⋅= lR

R
l

RlAcc π
,   Rl 20 ≤≤  (14) 

 
The first moment of  ccA  is )9/(32 πR . 
The superposition )(3/2)(3/1)( lAlAlA bcccH ⋅+⋅=  

(Fig. 2) takes into account the geometry of IUR-chords 
on a straight test line (Fig. 1). 
 

 
 
Fig. D2: The functions )(lAcc  and )(lAbc  for the case 

1=R . In the cc-case 0)0( =ccA , but in the bc-
case 0)0( >bcA . Consequently, 0)0( >HA , Fig. 
2. 

 
Appendix E: The approximation Eq. (9) and its 
precision Eq. (9) yields ),('' RrAγ , 
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≤≤−⋅+
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=
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tRt

RrA

2,0

2,)2()8315(3
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)168315(348

),(''

3

32

π

π

γ

  

(15)

 

 

 Eqs. (9,15) are based on a piecewise linear 
interpolation of ),( RrAH

 taking into account the 
abscissas 0=r ,  Rr = , Rr ⋅= 2  and the limit ∞→r , 
followed by normalization via analysis of 

Aγ  and 
AA . 

Both, the functions ''Aγ and ),( RlAA , Eq. (2), are 
continuous functions. The strategy of operating with a 
polynomial approximation of higher degree yields 
smaller deviations  ),(),()( RrRrrd HA γγ −= . However, 
simultaneously this complicates the integrands in Eq. 
(8). The effort is not worth it. 
 Any modification of Hγ  leads to a certain change 
of the moments of the CLD of the single hemisphere. 
Analyzing this effect carefully an optimization problem 
results. A normalization factor, which is indispensable, 
cannot correct all moments of the CLD simultaneously. 
Eqs. (9,15) yield an exact 0th moment of the CLD. 
However, as a consequence of the linearization applied, 
the higher moments of ),( RlAA  differ somewhat from 
the exact ones. The differences, due to the application 
of Eq. (9) instead of Eq. (3), are acceptably small,   
 

�
⋅

⋅=⋅
R

H RdlRlAl
2

0 9
8

),(  , 

�
⋅

⋅
++

++=⋅
R

A RdlRlAl
2

0 )83158(3
243458

),(
π
π   . (16) 

 
 The first moment of ),( RlAA

 given in the second 
line of Eq. (16) is an approximation. The deviation is 
about 2%. The difference )1,()1,()( rrrd HA γγ −=  is 
investigated (Fig. E1). 
 Eqs. (3,9) have been studied by a Mathematica 
program. The exact WF is defined in program parts 1. 
and 2. Eq. (9) is compiled in parts 3. and 4. Finally, part 
5. investigates )(rd . The insert of Fig. E1 results.  
 

 
 
Fig. E1: Verification of the approximation Eq. (9) via 

analysis of the difference )(rd  for 1=R . The 
maximum deviation is smaller than 210− . 
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Clear["Global`*"]; Remove["Global`*"];  
(* 1. exact WF in 0<=r<=R *) 
g1[r_,R_]:=(3*r*(r^2+2*R^2)*Sqrt[-r^2+4*R^2]+ 
4*Pi*r*(r^3-9*r*R^2+8*R^3)+24*(r-R)*R^2*(r+R)* 
ArcCsc[(2*R)/r])/(32*Pi*r*R^3);  
 
(* 2. exact WF in  R <= r <= 2R *) 
g2[r_, R_] := (3*r*(r^2 + 2*R^2)*Sqrt[-r^2 + 4*R^2] +  
24*R^2*(-r^2+R^2)* ArcSec[(2*R)/r])/(32*Pi*r*R^3);  
 
(* 3. approximation in 0 <= r <= R *) 
g1app[r_,R_]=1+(-16*r^3+15*Sqrt[3]*r^3+ 
8*Pi*r^3)/(2*(8+45*Sqrt[3]+24*Pi)*R^3)+ 
(24*r^2)/((8 + 45*Sqrt[3] + 24*Pi)*R^2) - 
(3*(8 + 15*Sqrt[3] + 8*Pi)*r)/ 
((8 + 45*Sqrt[3] + 24*Pi)*R);  
 
(* 4. approximation in R <= r <= 2R *) 
g2app[r_, R_] = -(((15*Sqrt[3]+8*Pi)* 
(r-2*R)^3)/(2*(8+45*Sqrt[3]+24*Pi)*R^3));  
 
(* 5. A plot: approximation of the WF minus exact WF 
*) 
R = 1;  
Plot[Which[0<= r < R, g1app[r, R], 
                   R<= r <= 2*R, g2app[r, R], True, 0] -  
        Which[0<= r < R, g1[r, R],  
                   R<= r <= 2*R, g2[r, R], True, 0], {r,0,2.2}]; 
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