Journal of Mathematics and Statistics 1 (3): 234-238, 2005 ISSN 1549-3644 © 2005 Science Publications

On the Prime Radical of a Hypergroupoid

Gürsel Yeşilot

Istanbul Technical University Fen-Edebiyat fak. Matematik Böl. 80626 Maslak, Istanbul, Turkey

Abstract: In this study, we give definitions of a prime ideal, a s-semiprime ideal and a w-semiprime ideal for a hypergroupoid K. For an ideal A of K we show that radical of A (R(A)) can be represented as the intersection of all prime ideals of K containing A and we define a strongly A-nilpotent element. For any ideal A of K, we prove that $R(A)=\cap(s-semiprime ideals of K containing A)=\cap(w-semiprime ideals of K containing A)={strongly A nilpotent elements}. For an ideal B of K put B^(o)=B and B⁽ⁿ⁺¹⁾=(B⁽ⁿ⁾)². If a hypergroupoid K satisfies the ascending chain condition for ideals then <math>(R(A))^{(n)}\subseteq A$ for some n. For an ideal A of K we give a definition of right radical of A $(R_+(A))$. If K is associative then $R(A)=R_+(A)=R_-(A)$.

Key words: Hypergroupoids, s-semiprime ideal, w-semiprime ideal, ascending chain

1. Hypergroupoids and Complete *l*-Groupoids

Definition 1.1: A groupoid K is a system (K, \cdot) , where K is a set and \cdot is a binary operation on K.

Definition 1.2^[1]: A complete ℓ -groupoid is a system (K, \cdot), where K is a complete lattice and \cdot is a binary operation on K which satisfies the following conditions:

$$\mathbf{a} \cdot (\mathbf{V}\mathbf{b}_{t}) = \mathbf{V} (\mathbf{a} \cdot \mathbf{b}_{t}), (\mathbf{V}\mathbf{b}_{t}) \cdot \mathbf{a} = \mathbf{V} (\mathbf{b}_{t} \cdot \mathbf{a})$$
$$\mathbf{t} \in \mathbf{T} \qquad \mathbf{t} \in \mathbf{T} \qquad \mathbf{t} \in \mathbf{T}$$

for all $a, b_t \in K$

Let K be a set and denote by 2^{K} the set of all its subsets.

Definition 1.3^[2]: A multivariable binary operation on K is a map ϑ :KxK $\rightarrow 2^{K}$. A hypergroupoid is a system (K, ϑ), where K is a set and ϑ is a multivariable operation on K.

From now on, we write $a \cdot b$ instead of $\vartheta(a, b)$

Let (K, \cdot) be a hypergroupoid. For $A, B \in 2^{K}$. $A \neq \emptyset$, $P_{i}(\emptyset)$ and $Q \neq A$. $A \in Q$, $G \neq 0$.

 $B \neq \emptyset$, put $A \cdot B = \bigcup (a \cdot b)$ and $\emptyset \cdot A = A \cdot \emptyset = \emptyset$ for all $a \in A$ $b \in B$

 $A \in 2^{K}$. Then $(2^{K}, \cdot)$ is a complete ℓ -groupoid.

Conversely, If $(2^{K}, \cdot)$ is a complete ℓ -groupoid then a restriction of the binary operation of 2^{K} to K is a multivariable operation on K and K is a hypergroupoid, with respect to this operation.

Let w be a ternary relation on K.

For $(a, b) \in KxK$, put $a \cdot b = \{x \in K | (a, b, x) \in w\}$, then (K, \cdot) is a hypergrupoid.

Conversely, let (K, \cdot) be a hypergroupoid. Denote by w the set $(a, b, c) \in KxKxK$ such that $a \cdot b \neq \emptyset$ and $c \in a \cdot b$. Then w is a ternary relation on K.

Hypergroupoids contain the following two classes of algebraic systems.

 A partial binary operation ϑ on K is a map ϑ:A→K, where A is a subset of KxK. A partial groupoid is a system (K, ·), where · is a partial binary operation on K.

Let (K, \cdot) be a partial groupoid and A is the definition domain of \cdot . For $(a, b) \notin A$ put $a \cdot b = \emptyset$. Then \cdot is defined for all $(a, b) \in KxK$ and (K, \cdot) is a hypergroupoid.

- 2. Let {k, ϑ_V , $v \in S$ } be a universal algebra such that every ϑ_V is a binary operation on K. For (a, b) \in KxK put a·b={ $\vartheta_v(a, b), v \in S$ } then (K, ·) is a hypergroupoid.
- 2. Prime and Semiprime Elements of an Ordered Gruopoid: Let (G, \cdot) be an ordered groupoid^[1], ch XIV). An ordered groupoid G is called ℓ_o -groupoid if G is a complete lattice. Denote by 1_G the greatest element of G.

Definition 2.1^[1]: Let (G, \cdot) be an ℓ_0 -groupoid. An element $p \in G$ is prime if $p \neq 1_G$ and $a \cdot b \leq p$, for $a, b \in G$, then $a \leq p$ or $b \leq p$.

For $a \in G$, $a \neq 1_G$, denote by $R_G(a)$ the intersection of all prime elements of G containing a. Put $R_G(a)=1_G$ if there are not any element with this property.

Definition 2.2: An element $h \in G$ is s-semiprime if $h \neq 1_G$ and $a^2 \leq h$, for $a \in G$, implies that $a \leq h$.

For $a \in G$, $a \neq 1_G$, denote by $r_G^S(a)$ the intersection of all s-semiprime elements of G containing a. Put $r_G^S(a)=1_G$ if there are not any element with this property. For $a \in G$ denote by <a> the groupoid generated by a. An element of the groupoid <a> will be denoted by f(a).

Definition 2.3: An element $h \in G$ is w-semiprime if $h \neq 1_G$ and $f(a) \leq h$, $a \in G$, $f(a) \in \langle a \rangle$ implies that $a \leq h$.

Therefore every w-semiprime element is ssemiprime. For $a \in G$, $a \neq 1_G$, denote by $r_G^W(a)$ the intersection of all w-semiprime elements of G containing a. Put $r_G^W(a)=1_G$ if there are not any element with this property. It is clear that $r_G^S(a) \leq r_G^W(a) \leq R_G(a)$ for all $a \in G$.

3. The Prime Radical of an Ideal

Definition3.1: Let K be a hypergroupoid. A right (left) ideal of K is a subset H such that ha \subseteq H (respectively a·h \subseteq H) for all a \in K, h \in H. An (two-side) ideal of K is a subset H such that ha \subseteq H and ah \subseteq H for all a \in K, h \in H. Denote by Id(K) (Id₊(K), Id_(K)) the set of all ideals (respectively, right ideals, left ideals) of K. Put $\emptyset \in Id(K)$, $\emptyset \in Id_+(K)$, $\emptyset \in Id_-(K)$. Then Id(K), Id_+(K), Id_(K) are complete lattices with respect to the inclusion relation.

Proposition 3.2: Let K be an hypergroupoid. Then:

- 1. $\bigcap_{t \in T} A_t \in Id(K) \text{ and } \bigcup_{t \in T} A_t \in Id(K) \text{ for any } A_t \in Id(K);$
- 2. $\bigcap_{t \in T} B_t \in Id_{+}(K) \text{ and } \bigcup_{t \in T} B_t \in Id_{+}(K) \text{ for any }_{t} \in Id_{+}(K);$
- 3. $\bigcap_{t \in T} C_t \in Id_{-}(K) \text{ and } \bigcup_{t \in T} C_t \in Id_{-}(K) \text{ for any } C_t \in Id_{-}(K).$

The proof is clear. We next consider the multiplication operation $A \cdot B$ on 2^{K} .

Definition 3.3: Hypersemigroup is a hypergroupoid K such that $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ for any A, B, $C \in 2^{K}$.

If K is hypersemigroup then $A \cdot B \in Id(K)$ for any A, $B \in Id(K)$. But there are a hypergroupoid K and A, $B \in Id(K)$ such that $A \cdot B \notin Id(K)$. Therefore for any hypergroupoid K we define a multiplication operation of ideals as follows:

For A, $B \in Id(K)$ denote by A·B the intersection of all ideals of K containing the set $G=\{x|x=a \cdot b, a \in A, b \in B\}$

Multiplication operations on $Id_{+}(K)$ and $Id_{-}(K)$ are introduced similarly.

Proposition 3.4: For any hypergroupoid K, the lattices Id(K), $Id_{+}(K)$, $Id_{-}(K)$ are complete ℓ -groupoids with respect to above multiplication operations.

Proof: We give a proof for Id(K) and the proofs for Id₊(K) and Id_(K) are similar. Suppose A, $B_t \in Id(K)$, t $\in T$. It is clear that $A \cdot (\bigcup_{t \in T} B_t) \supseteq \bigcup_{t \in T} (A \cdot B_t)$

Conversely the ideal $A \cdot (\bigcup B_t)$ is the smallest ideal containing all elements $a \cdot b$, where $a \in A$, $b \in \bigcup_{t \in T} B_t$.

Let
$$a, b \in A \cdot (\bigcup_{t \in T} B_t)$$
.

Since $b \in B_t$ for some $t \in T$ then $a \cdot b \in A \cdot B_t$. Therefore $A \cdot (\bigcup_{t \in T} B_t) \subseteq \bigcup_{t \in T} (A \cdot B_t)$

Now, we apply the definitions and designations of the prime and semiprime elements of ordered groupoids to 2^{K} , Id(K), Id₊(K), Id_(K). Put

$$\begin{split} &R_{G}(A) \!=\! R(A), r_{G}^{S}(A) \!=\! r^{s}(A), r_{G}^{W}(A) \!=\! r^{w}(A) \text{ for } \\ &G \!=\! Id(K), A \!\in\! Id(K) \\ &R_{G}(A) \!=\! R_{+}(A), r_{G}^{S}(A) \!=\! r_{+}^{S}(A), r_{G}^{W}(A) \!=\! r_{+}^{W}(A) \text{ for } \\ &G \!=\! Id_{+}(K), A \!\in\! Id_{+}(K) \\ &R_{G}(A) \!=\! R_{-}(A), r_{G}^{S}(A) \!=\! r_{-}^{S}(A), r_{G}^{W}(A) \!=\! r_{-}^{W}(A) \text{ for } \\ &G \!=\! Id_{-}(K), A \!\in\! Id_{-}(K) \\ &R_{G}(A) \!=\! R_{o}(A), r_{G}^{S}(A) \!=\! r_{0}^{S}(A), r_{G}^{W}(A) \!=\! r_{0}^{W}(A) \text{ for } \\ &G \!=\! 2^{K}, A \!\in\! 2^{K}. \end{split}$$

For $A \in Id(K)$ the ideal R(A) will be called radical of A. An ideal A is called radical if A=R(A)

Definition 3.5: An ideal H is maximal if $H \neq K$ and $H \subseteq B \subseteq K$, $B \in Id(K)$ implies that H=B or B=K.

For $a \in K$ denote by [a] the intersection of all ideals of K containing a.

Proposition 3.6: Let K be a hypergruopoid. Then any maximal ideal of K is prime if and only if $K=K^2$.

Proof: Let $K=K^2$ and M be a maximal ideal of K. Assume that $A \cdot B \subseteq M$, A, $B \in Id(K)$. If $A \not\subset B$ and $B \not\subset M$ then $A \cup M=K$, $B \cup M=K$. Therefore

 $K \cdot K = (A \cup M)(B \cup M) = A \cdot B \cup AM \cup MB \cup MM \subseteq M \subseteq K$ by Proposition 3.4. Hence M=K. This is a contradiction. Thus M is prime.

Conversely, Let $K^2 \neq K$ and $a \in K \setminus K^2$. We prove that $M=K \setminus \{a\}$ is a maximal ideal of K and it is not prime. Let $b \in M \setminus \{a\}$. Then $hb \in M$ and $bh \in M$ for all $h \in K$. Indeed, if there is $h \in K$ such that $hb \notin M$ then $a \in hb$.

Hence $a \in K^2$. It is a contradiction. Thus $hb \in M$ and $bh \in M$ for any $h \in K$. It is clear that M is a maximal ideal. Prove that M is not prime. By $a \notin M$ we have $[a] \not\subset M$. But $[a] \subseteq K^2 \subseteq M$. Therefore M is not prime.

Remark: This proposition is known for semigroups^[5].

Every sequence $\{x_0, x_1, ..., x_n, ...\}$, where $x_0=a$, $x_{n+1} \in [x_n]^2$, will be called an s-sequence of the element a.

Definition 3.7: Let $A \in Id(K)$. An element $a \in K$ is strongly A-nilpotent if every s-sequence of a meets A.

Remark: This definition is similar to the definition of the n-sequence^[6].</sup>

Denote by n(A) the set of all strongly A-nilpotent elements of K.

Theorem 3.8: Let K be a hypergroupoid. Then for any ideal A of K, we have $n(A)=r^{s}(A)=r^{w}(A)=R(A)$.

Proof: From the definitions $r^{s}(A)$, $r^{w}(A)$, R(A) we obtain $r^{s}(A) \subseteq r^{w}(A) \subseteq R(A)$ for any $A \in Id(K)$.

We prove that $n(A)\subseteq r^{s}(A)$. If there is not an ssemiprime ideal of K containing A then $r^{s}(A)=K$ and $n(A)\subseteq r^{s}(A)$.

Assume that there exists an s-semiprime ideal of K containing A. Let $a \in n(A)$ and S be s-semiprime ideal of K containing A. We first prove that $a \in S$. If $a \notin S$, then $[x_o] \not\subset S$, where $x_o=a$. There exists $x_1 \in [x_o]^2$ such that $x_1 \notin S$ since $[x_o]^2 \not\subset S$.

By continuing in this manner we obtain an ssequence $\{x_0, x_1, ..., x_n, ...\}$ of the element a such that $x_n \notin S$ for all n. But this is a contradiction since every ssequence of the element a meets A. Thus $a \in S$ and $a \in r^s(A)$ since S is any semiprime ideal containing A. Hence $n(A) \subseteq r^s(A) \subseteq r^w(A) \subseteq R(A)$.

Now we prove that R(A)=n(A). If n(A)=K then $n(A)=r^{s}(A)=r^{w}(A)=R(A)=K$. Let $n(A)\neq K$. Hence there exists $b\in K$ such that $b\notin n(A)$. Then there exists an s-sequence $X=\{x_{o}, x_{1}, ..., x_{n}, ...\}$ of the element b such that $X \cap A=\emptyset$. Denote by Σ the set of ideals M in K such that $X \cap M=\emptyset$, $M \supseteq A$. Σ is not empty since $A \in \Sigma$.

We can apply Zorn's lemma to the set Σ so there exists a maximal element P of Σ . We show that P is prime.

First, P is proper since $b \notin P$. Let B, $C \in Id(K)$, $B \not\subset P$, C⊄P. Then $P \cup B \neq P$ and $P \cup C \neq P$. By the maximality of P in Σ . We have $P \cup B \notin \Sigma$ and $P \cup C \notin \Sigma$. Hence there exist $x_m \in X$, $x_q \in X$ such that $x_m \in P \cup B$, $x_q \in P \cup C$. Then $[x_m] \subseteq P \cup B, [x_q] \subseteq P \cup C.$ Hence $x_{m+1} \in [x_m]^2 \subseteq P \cup B,$ $x_{a+1} \in [x_a]^2 \subseteq P \cup C$. By continuing in this manner we find $x_{m+1} \in P \cup B$, $x_{q+1} \in P \cup C$ for all t. Put n=max(m, q). Then $x_n \in P \cup B$, $x_n \in P \cup C$. Hence, $x_{n+1} \in [x_n]^2 \subseteq (P \cup B)$. $(P \cup C) \subseteq P \cup B \cdot C$ by the Proposition 3.4. But $x_{n+1} \notin P$. Hence $B \cdot C \not\subset P$. Therefore P is prime. Thus there exists a prime ideal Р such that b∉P. Thus $n(A)=r^{s}(A)=r^{w}(A)=R(A)$. From the Theorem 3.8, we obtain that every s-semiprime ideal of K is radical.

The ideal $R(\emptyset)$ will be called the prime radical of the hypergroupoid K and will be denoted by Pr. rad(K).

Corollary 3.9: For any ideal A of K the following conditions are equivalent:

1. R(A)=A;

2. If $B^{(n)} \subseteq A$, $B \in Id(K)$, for some n then $B \subseteq A$.

3. If $B^2 \subseteq A$, $B \in Id(K)$, then $B \subseteq A$.

Proof: (1) \Rightarrow (2) \Rightarrow (3) is clear. (3) \Rightarrow (2): Let B⁽ⁿ⁾ \subseteq A, B \in Id(K), for some n. Then B⁽ⁿ⁾=(B⁽ⁿ⁻¹⁾)² \subseteq A implies that B⁽ⁿ⁻¹⁾ \subseteq A. By induction on n we obtain B \subseteq A. (2) \Rightarrow (1): The condition (2) implies that r^s(A)=A. By the Theorem 3.8 we see R(A)=r^s(A)=A.

Corollary 3.10: For a hypergropoid K the following conditions are equivalent:

1. Every ideal of K is radical;

2. A·B=A \cap B for all A, B \in Id(K);

3. $[a]^2 = [a]$ for all $a \in K$.

Proof: We use the following lemma:

Lemma 3.11: $R(A \cdot B)=R(A \cap B)=R(A) \cap R(B)$ for any A, $B \in Id(K)$.

The proof of this lemma follows from the Proposition $1.6^{[7]}$.

 $(1) \Rightarrow (2)$: If every ideal of K is radical then using the lemma we obtain

A·B=R(A·B)=R(A)∩R(B)=A∩B. (2)⇒(3): Let A·B=A∩B for all A, B∈Id(K). Then A²=A for all A∈Id(K). (3)⇒(1): We prove that every ideal of K is ssemiprime. Let A be an ideal of K. Then A= $\bigcup_{a \in A} [a]$. Using the Proposition 3.4 we have A²=($\bigcup_{a \in A} [a]^2$) $\cup (\bigcup_{a \in A} [a][b])=\bigcup_{a \in A} [a]=A$ since a∈A

 $[a] \cdot [b] \subseteq [a] \cap [b]$ for any a, $b \in A$. Thus $A^2 = A$ for all $A \in Id(K)$. Assume that $B^2 \subseteq A$, $B \in Id(K)$. Then $B = B^2 \subseteq A$. Therefore A is s-semiprime. From the Theorem 3.8 we obtain that A is radical.

Remark: This corollary is an analog of the similar theorem for associative $rings^{[8]}$.

Definition 3.12: Let $A \in Id(K)$. An ideal B of K is A_s -nilpotent if $B^{(n)} \subseteq A$ for some n.

Proposition 3.13: Let K be hypergroupoid and A, $B \in Id(K)$. If C is B_s -nilpotent and B is A_s -nilpotent then C is A_s -nilpotent.

Proof: Since C is B_s -nilpotent then $C^{(n)} \subseteq B$ for some n. Hence $C^{(n+m)} = (C^{(n)})^{(m)} \subseteq B^{(m)} \subseteq A$ for some m.

Theorem 3.14: Let K be a hypergroupoid satisfying the ascending chain condition for ideals. Then for any ideals A of K, R(A) is A_s -nilpotent.

Proof: Let $A \in Id(K)$. Denote by Σ the set of all A_s nilpotent ideals H of K such that $H \supseteq A$. Σ is not empty since $A \in \Sigma$. There exists a maximal element P in Σ . We prove that P is s-semiprime. Let $B^2 \subseteq P$. Then $(B \cup P)^2 = B^2 \cup BP \cup PB \cup P^2 \subseteq P$. By Proposition 3.13 the ideal $B \cup P$ is A_s -nilpotent. By the maximality of P we have $B \cup P=P$. Hence $B \subseteq P$. This means that P is ssemiprime. Since $P \supseteq A$ then $R(A) \subseteq P$ by Theorem 3.8. But $P^{(n)} \subseteq A \subseteq R(A)$ for some n. Since R(A) is ssemiprime then $P \subseteq R(A)$. Thus P=R(A)

Remark: This theorem is similar to the proposition for associative rings^[9].

Corollary 3.15: Let K be hypergroupoid satisfying the ascending chain condition for ideals. Then the following conditions are equivalent:

1. $K^{(n)} = \emptyset$ for some n.

- 2. K doesn't have a prime ideal;
- 3. K doesn't have a s-semiprime ideal.

A proof follows from Theorem 3.14 and the definition of Pr. rad(K). Denote by $Id_r(K)$ the set of all radical ideals of K. $Id_r(K)$ is a complete lattice with respect to the inclusion relation. Denote by \lor and \land the lattice operations in $Id_r(K)$.

Theorem 3.16: Let K be a hypergroupoid. Then the lattice $Id_r(K)$ satisfies the infinite \wedge -distributive condition:

 $A \land (\bigvee_{t \in T} B_t) = \lor (A \land B_t)$ for any $A, B_t \in Id_r(K)$

Proof: The proof follows from Theorem 1.3^[7].

Theorem 3.17: Let K be a hypergroupoid satisfying the ascending chain candition for ideals. Then any radical ideal of K is an intersection of finite prime ideals and a such representation is unique.

Proof: First we prove the following lemma.

Lemma: $H \in Id_r(K)$ is prime ideal if and only if H is an \wedge -indecomposable element of the lattice $Id_r(K)$.

Proof: Let A be a prime ideal of K and $A=A_1 \land A_2$, A_1 , $A_2 \in Id_r(K)$. Then^[7].

 $A_1A_2\subseteq A_1\cap A_2\subseteq R(A_1\cap A_2)=A_1\wedge A_2=A.$ Hence A₁⊆A or A₂⊆A. Then A=A₁ or A=A₂ Let A be an \land indecomposable element in Id_r(K) and BC⊆A, B, C∈Id(K). Then R(B·C)⊆A. By the lemma 1.6^[7] we have R(B) \land R(C)=R(B·C)⊆A. By the distributivity Id_r(K) we obtain A=A \lor (R(B) \land R(C))=(A \lor R (B)) \land (A \lor R(C)). Then A=A \lor R(B) or A=A \lor R(C) since A is \land -indecomposable. This means that B⊆R(B)⊆A or C⊆R(C)⊆A.

Thus A is prime. The lemma is proved. By the lemma and the Corollary^[1] we obtain that every radical ideal of K is an intersection of finite prime ideals and a such representation is unique.

4. The Right Prime Radical of an Ideal

Definition 4.1: A right ideal H of K is maximal if $H \neq K$ and $H \subseteq B \subseteq K$, $B \in Id_{+}(K)$, implies that H=B or B=K.

Proposition 4.2: Let K be a hypergroupoid such that $A \subseteq K \cdot A$ for all $A \in Id_{+}(K)$. Then any maximal right ideal of K is prime element of $Id_{+}(K)$.

Proof: Let M be a maximal right ideal of K and $A \cdot B \subseteq M$, A, $B \in Id_{+}(K)$. If $A \not\subset M$ then $M \cup A = K$. By Proposition 3.4 we have $B \subseteq K \cdot B = (M \cup A) \cdot B = MB \cup AB \subseteq M$.

Definition 4.3: An element $1 \in K$ is called identity of K if $1 \cdot a = a \cdot 1 = a$ for all $a \in K$.

Remark: The conditions of Proposition 4.2 are satisfied for groupoids with 1. Thus there exists a prime right ideal in such groupoids.

For an element $a \in K$ denote by $[a]_+$ the intersection of all right ideals containing a. Every sequence $\{x_0, ..., x_n,\}$, where $x_0=a$, $x_{m+1}\in [x_m]_+^2$, is called an s_+ -

Definition 4.4: Let $A \in Id_+(K)$. An element $a \in K$ is strongly A_+ -nilpotent if every its s_+ -sequence meets A.

Denote by $n_{+}(A)$ the set of all strongly A_{+} -nilpotent elements of K.

Proposition 4.5: Let K be a hypergroupoid. For any right ideal A of K are satisfied the following inequalities:

$$R(A)\underline{\subseteq}n_{\scriptscriptstyle +}(A)\underline{\subseteq}r_{\: +}^{\: S}\:(A)\underline{\subseteq}r_{\: +}^{\: W}\:(A)\underline{\subseteq}R_{\scriptscriptstyle +}(A).$$

sequence of the element a.

Proof: A proof of $n_{+}(A) \subseteq r_{+}^{S}(A)$ is similar to the proof of $n(A) \subseteq r^{S}(A)$ as in the Theorem 3.8. The inequality $R(A) \subseteq n_{+}(A)$ immediately follows from the equality R(A)=n(A) and definitions of n(A) and $n_{+}(A)$.

Theorem 4.6: Let K be a hypergroupoid satisfying the following conditions:

 $(K \cdot A) \cdot B = K \cdot (A \cdot B), (A \cdot K) \cdot B = A \cdot (K \cdot B)$ for all A, B \in Id_{+}(K). Then

$$R(A)=n_{+}(A)=r_{+}^{S}(A)=r_{+}^{W}(A)=R_{+}(A) \text{ for any } A \in Id(K).$$

Proof: By Proposition 4.5 it is enough to prove that $R_+(A) \subseteq R(A)$.

Denote by P(K) the set of all prime ideals of K and by P₊(K) the set of all prime right ideals of K. We prove that P(K) \subseteq P₊(K). Let Q \in P(K) and B·C \subseteq Q, B, C \in Id₊(K). Then, (B \cup K·B) (C \cup K·C)= (B·C) \cup (B·(KC)) \cup ((K·B)·C) \cup (K·B)·(K·C) \subseteq Q.

Note that $B \cup KB$ and $C \cup KC$ are ideals of K. Indeed $K \cdot (B \cup KB) = K \cdot B \cup (K \cdot (K \cdot B)) \subset B \cup KB$.

From $(B \cup KB)$ $(C \cup KC) \subseteq Q$ we obtain $B \subseteq B \cup KB \subseteq Q$ or $C \subseteq C \cup KC \subseteq Q$ since Q is prime. This means $Q \in P_{+}(K)$.

Thus $P(K) \subseteq P_+(K)$. Therefore we have $R_+(A) \subseteq R(A)$.

Remark: The conditions of this theorem are satisfied for hypersemigroup. Therefore the same theorem is given for nonasociative hypergroupoid K and $A \in Id(K)$ such that $R(A)=R_{+}(A)$ and $R(A)\neq R_{-}(A)$. Let $A \in Id_{+}(K)$. For $b \in K$ put $b^{(o)}=b$, $b^{(n+1)}=(b^{(n)})^{2}$.

Definition 4.7: An element $b \in K$ is A_s -nilpotent if $b^{(n)} \subset A$ for some n. An element $b \in K$ is A_w -nilpotent if $f(b) \subseteq A$ for some $f(b) \subseteq \langle b \rangle$.

Denote by $n_{O}^{S}(A)$ $(n_{O}^{W}(A))$ the set of all A_s-nilpotent (respectively, A_w-nilpotent) elements of K.

Proposition 4.8: For any ideal A of K are hold the following inequalities:

 $R(A)\underline{\subset}n_{+}(A)\underline{\subset}n_{0}^{S}(A)\underline{\subset}r_{0}^{S}(A)\underline{\subset}R_{o}(A)$

 $R(A) \underline{\subseteq} n_{+}(A) \underline{\subseteq} n_{0}^{W}(A) \underline{\subseteq} r_{0}^{W}(A) \in R_{0}(A)$

The proof is smilar to the proof of Proposition 4.5.

Theorem 4.9: Let K be a hypersemigroup satisfying the condition $K \cdot a = a \cdot K$ for all $a \in K$. Then $R(A) = n_o(A) = r_o(A) = R_o(A)$ for all $A \in Id(K)$.

The proof is smilar to the proof of Theorem 4.6.

REFERENCES

- 1. Birkhoff, G., 1967. Lattice Theory, Providence, Rhode Island.
- 2. Levy-Bruhl, J., 1968. Introduction Aux Structures Algebriques, Dunod, Paris.
- 3. Khadjiev, D. and F. Çallıalp, 1997. On the prime radical of a ring and a groupoid. Marmara Univ. Fen Dergisi, no. 13, İstanbul.
- 4. Clifford, A.H. and G.B. Preston, 1967. The Algebraic Theory of Semigroups. Vol. I, Providence, Rhode Island.
- Artamonov, V.A., V.N. Saliy, L.A. Skornyakov, L.N. Shevrin and E.G. Shulgeyfer, 1991. General Algebra, T.2. Moskow, Nauka.
- 6. Lambek, J., 1966. Lectures on Rings and Modules. Blaisdell Publ., Comp., Waltham-London.
- Khadjiev, D.J. and T.M. Shamilev, 1997. Complete *l*-groupoids and their prime spectrums. Algebra i Logica (Algebra and Logic), 86: 341-355.
- 8. Andrunakievich, V.A. and Y.M. Ryabuhin, 1979. Radicals of Algebras and a Structure Theory. Moscow, Nauka.
- 9. Rowen, L.H., 1988. Ring Theory. Vol.1, Acad. Press. INC., Boston.