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Abstract: In this study, we give definitions of a prime ideal, a s-semiprime ideal and a w-semiprime 
ideal for a hypergroupoid K. For an ideal A of K we show that radical of A (R(A)) can be represented 
as the intersection of all prime ideals of K containing A and we define a strongly A-nilpotent element. 
For any ideal A of K, we prove that R(A)=∩(s-semiprime ideals of K containing A)= ∩(w-semiprime 
ideals of K containing A)={strongly A nilpotent elements}. For an ideal B of K put B(o)=B and 
B(n+1)=(B(n))2. If a hypergroupoid K satisfies the ascending chain condition for ideals then (R(A))(n)⊆A 
for some n. For an ideal A of K we give a definition of right radical of A (R+(A)). If K is associative 
then R(A)=R+(A)=R_(A).  
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1. Hypergroupoids and Complete �-Groupoids  
 
Definition 1.1: A groupoid K is a system (K, ⋅), where 
K is a set and ⋅ is a binary operation on K. 
 
Definition 1.2[1]: A complete �-groupoid is a system 
(K, ⋅), where K is a complete lattice and ⋅ is a binary 
operation on K which satisfies the following conditions: 
a⋅ )ba(V)Vb( t

TtTt
t ⋅=

∈∈
, )ab(Va)Vb( t

TtTt
t ⋅=⋅

∈∈
 

for all a, bt∈K 
Let K be a set and denote by 2K the set of all its subsets. 
 
Definition 1.3[2]: A multivariable binary operation on K 
is a map ϑ:KxK→2K. A hypergroupoid is a system (K, 
ϑ), where K is a set and ϑ is a multivariable operation 
on K. 
From now on, we write a⋅b instead of ϑ (a, b)  
Let (K, ⋅) be a hypergroupoid. For A, B ∈2K. A≠∅, 
B≠∅, put A⋅B= )ba(

Bb
Aa

⋅∪

∈
∈

 and ∅⋅A=A⋅∅=∅ for all 

A∈2K. Then (2K, ⋅) is a complete �-groupoid.  
 Conversely, If (2K, ⋅) is a complete �-groupoid then 
a restriction of the binary operation of 2K to K is a 
multivariable operation on K and K is a hypergroupoid, 
with respect to this operation. 
Let w be a ternary relation on K. 
 For (a, b)∈KxK, put a⋅b={x∈K| (a, b, x)∈w}, then 
(K, ⋅) is a hypergrupoid. 
 Conversely, let (K, ⋅) be a hypergroupoid. Denote 
by w the set (a, b, c)∈KxKxK such that a⋅b≠∅ and 
c∈a⋅b. Then w is a ternary relation on K. 

Hypergroupoids contain the following two classes 
of algebraic systems. 

1. A partial binary operation ϑ on K is a map 
ϑ:A→K, where A is a subset of KxK. A partial 
groupoid is a system (K, ⋅), where ⋅ is a partial binary 
operation on K. 

 Let (K, ⋅) be a partial groupoid and A is the 
definition domain of ⋅. For (a, b)∉A put a⋅b=∅. 
Then ⋅ is defined for all (a, b)∈KxK and (K, ⋅) is a 
hypergroupoid. 

2. Let {k, ϑV, v∈S} be a universal algebra such that 
every ϑV is a binary operation on K. For               
(a, b)∈KxK put a⋅b={ϑv(a, b), v∈S} then (K, ⋅) is a 
hypergroupoid. 

 
2. Prime and Semiprime Elements of an Ordered 

Gruopoid: Let (G, ⋅) be an ordered groupoid[1], ch 
XIV). An ordered groupoid G is called �o-groupoid 
if G is a complete lattice. Denote by 1G the greatest 
element of G. 

 
Definition 2.1[1]: Let (G, ⋅) be an �o-groupoid. An 
element p∈G is prime if p≠1G and a⋅b≤p, for a, b∈G, 
then a≤p or b≤p. 
 For a∈G, a≠1G, denote by RG(a) the intersection of 
all prime elements of G containing a. Put RG(a)=1G if 
there are not any element with this property. 
 
Definition 2.2: An element h∈G is s-semiprime if h≠1G 
and a2≤h, for a∈G, implies that a≤h.  

 For a∈G, a≠1G, denote by r s
G (a) the intersection of 

all s-semiprime elements of G containing a. Put 

r s
G (a)=1G  if there are not any element with this 

property. For a∈G denote by <a> the groupoid 
generated by a. An element of the groupoid <a> will be 
denoted by f(a). 
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Definition 2.3: An element h∈G is w-semiprime if 
h≠1G and f(a)≤h, a∈G, f(a) ∈<a> implies that a≤h. 
 Therefore every w-semiprime element is s-

semiprime. For a∈G, a≠1G, denote by r w
G (a) the 

intersection of all w-semiprime elements of G 

containing a. Put r w
G (a)=1G if there are not any element 

with this property. It is clear that r s
G (a)≤r w

G (a)≤RG(a) 

for all a∈G. 
 
3. The Prime Radical of an Ideal 
 
Definition3.1: Let K be a hypergroupoid. A right (left) 
ideal of K is a subset H such that ha⊆H (respectively 
a⋅h⊆H) for all a∈K, h∈H. An (two-side) ideal of K is a 
subset H such that ha⊆H and ah⊆H for all a∈K, h∈H. 
Denote by Id(K) (Id+(K), Id_(K)) the set of all ideals 
(respectively, right ideals, left ideals) of K. Put 
∅∈Id(K), ∅∈Id+(K), ∅∈Id_(K). Then Id(K), Id+(K), 
Id_(K) are complete lattices with respect to the 
inclusion relation. 
 
Proposition 3.2: Let K be an hypergroupoid. Then: 
1. t

Tt
A

∈
∩ ∈Id(K) and t

Tt
A

∈
∪ ∈Id(K)  for any At∈Id(K); 

2. t
Tt

B
∈
∩ ∈Id+(K) and t

Tt
B

∈
∪ ∈Id+(K)  for any t∈Id+(K); 

3. t
Tt

C
∈
∩ ∈Id_(K) and t

Tt
C

∈
∪ ∈Id_(K) for any Ct∈Id_(K). 

 The proof is clear. We next consider the 
multiplication operation A⋅B on 2K. 
 
Definition 3.3: Hypersemigroup is a hypergroupoid K 
such that (A⋅B)⋅C=A⋅(B⋅C) for any A, B, C∈2K. 
 If K is hypersemigroup then A⋅B∈Id(K) for any A, 
B∈Id(K). But there are a hypergroupoid K and A, 
B∈Id(K) such that A⋅B∉Id(K). Therefore for any 
hypergroupoid K we define a multiplication operation 
of ideals as follows: 
 For A, B∈Id(K) denote by A⋅B the intersection of 
all ideals of K containing the set G={x|x=a⋅b, a∈A, 
b∈B} 
 Multiplication operations on Id+(K) and Id_(K) are 
introduced similarly. 
 
Proposition 3.4: For any hypergroupoid K, the lattices 
Id(K), Id+(K), Id_(K) are complete �-groupoids with 
respect to above multiplication operations. 
 
Proof: We give a proof for Id(K) and the proofs for 
Id+(K) and Id_(K) are similar. Suppose A, Bt∈Id(K), 
t∈T. It is clear that A⋅ )BA()B( t

Tt
t

Tt
⋅∪⊇∪

∈∈
 

 Conversely the ideal A⋅(∪Bt) is the smallest ideal 
containing all elements a⋅b, where a∈A, b∈ t

Tt
B

∈
∪ . 

Let a, b∈A⋅ )B( t
Tt∈

∪ . 

 Since b∈Bt for some t∈T then a⋅b∈A⋅Bt. Therefore 
A⋅ )BA()B( t

Tt
t

Tt
⋅∪⊆∪

∈∈
 

 Now, we apply the definitions and designations of 
the prime and semiprime elements of ordered groupoids 
to 2K, Id(K), Id+(K), Id_(K). Put  

RG(A)=R(A), r s
G (A)=rs(A), r w

G (A)=rw(A) for 

G=Id(K), A∈Id(K) 

RG(A)=R+(A), r s
G (A)=r s

+ (A), r w
G (A)=r w

+ (A) for 

G=Id+(K), A∈Id+(K) 

RG(A)=R_(A), r s
G (A)=r s

− (A), r w
G (A)=r w

− (A) for 

G=Id_(K), A∈Id_(K) 

RG(A)=Ro(A), r s
G (A)=r s

o (A), r w
G (A)=r w

o (A) for 

G=2K, A∈2K. 
 For A∈Id(K) the ideal R(A) will be called radical 
of A. An ideal A is called radical if A=R(A) 
 
Definition 3.5: An ideal H is maximal if H≠K and 
H⊆B⊆K, B∈Id(K) implies that H=B or B=K. 
 For a∈K denote by [a] the intersection of all ideals 
of K containing a. 
 
Proposition 3.6: Let K be a hypergruopoid.  Then any 
maximal ideal of K is prime if and only if K=K2. 
 
Proof: Let K=K2 and M be a maximal ideal of K. 
Assume that A⋅B⊆M, A, B∈Id(K). If A⊄B and B⊄M 
then A∪M=K, B∪M=K. Therefore 
K⋅K=(A∪M)(B∪M)=A⋅B∪AM∪MB∪MM⊆M⊆K by  
Proposition 3.4. Hence M=K. This is a contradiction. 
Thus M is prime. 
 Conversely, Let K2≠K and a∈K\K2. We prove that 
M=K\{a} is a maximal ideal of K and it is not prime. 
Let b∈M\{a}. Then hb∈M and bh∈M for all h∈K. 
Indeed, if there is h∈K such that hb∉M then a∈hb.  
 Hence a∈K2. It is a contradiction. Thus hb∈M and 
bh∈M for any h∈K. It is clear that M is a maximal 
ideal. Prove that M is not prime. By a∉M we have 
[a]⊄M. But [a]⊆K2⊆M. Therefore M is not prime. 
 
Remark: This proposition is known for semigroups[5]. 
 Every sequence {xo, x1,..., xn,...}, where xo=a, 
xn+1∈[xn]

2, will be called an s-sequence of the element a. 
 
Definition 3.7: Let A∈Id(K). An element a∈K is 
strongly A-nilpotent if every s-sequence of a meets A.  
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Remark: This definition is similar to the definition of 
the n-sequence[6]. 
 Denote by n(A) the set of all strongly A-nilpotent 
elements of K. 
 
Theorem 3.8: Let K be a hypergroupoid. Then for any 
ideal A of K, we have n(A)=rs(A)=rw(A)=R(A). 
 
Proof: From the definitions rs(A), rw(A), R(A) we 
obtain rs(A)⊆rw(A)⊆R(A) for any A∈Id(K). 
 We prove that n(A)⊆rs(A). If there is not an s-
semiprime ideal of K containing A then rs(A)=K and 
n(A)⊆rs(A). 
 Assume that there exists an s-semiprime ideal of K 
containing A. Let a∈n(A) and S be s-semiprime ideal of 
K containing A. We first prove that a∈S. If a∉S, then 
[xo]⊄S, where xo=a. There exists x1∈[xo]

2 such that 
x1∉S since [xo]

2⊄S.  
 By continuing in this manner we obtain an s-
sequence {xo, x1, ..., xn, ...} of the element a such that 
xn∉S for all n. But this is a contradiction since every s-
sequence of the element a meets A. Thus a∈S and 
a∈rs(A) since S is any semiprime ideal containing A. 
Hence n(A)⊆rs(A)⊆rw(A)⊆R(A). 
 Now we prove that R(A)=n(A). If n(A)=K then 
n(A)=rs(A)=rw(A)=R(A)=K. Let n(A)≠K. Hence there 
exists b∈K such that b∉n(A). Then there exists an s-
sequence X={xo, x1, ..., xn, ...} of the element b such 
that X∩A=∅. Denote by Σ the set of ideals M in K 
such that X∩M=∅, M⊇A. Σ is not empty since A∈Σ. 
 We can apply Zorn’s lemma to the set Σ so there 
exists a maximal element P of Σ. We show that P is 
prime. 
 First, P is proper since b∉P. Let B, C∈Id(K), B⊄P, 
C⊄P. Then P∪B≠P and P∪C≠P. By the maximality of 
P in Σ. We have P∪B∉Σ and P∪C∉Σ. Hence there 
exist xm∈X, xq∈X such that xm∈P∪B, xq∈P∪C. Then 
[xm]⊆P∪B, [xq]⊆P∪C. Hence xm+1∈[xm]2⊆P∪B, 
xq+1∈[xq]

2⊆P∪C. By continuing in this manner we find 
xm+1∈P∪B, xq+1∈P∪C for all t. Put n=max(m, q). Then 
xn∈P∪B, xn∈P∪C. Hence, xn+1∈[xn]

2 ⊆(P∪B)⋅ 
(P∪C)⊆ P∪B⋅C by the Proposition 3.4. But xn+1∉P. 
Hence B⋅C⊄P. Therefore P is prime. Thus there exists a 
prime ideal P such that b∉P. Thus 
n(A)=rs(A)=rw(A)=R(A). From    the     Theorem   3.8,   
we   obtain   that   every s-semiprime ideal of K is 
radical. 
 The ideal R(∅) will be called the prime radical of 
the hypergroupoid K and will be denoted by Pr. rad(K). 
 
Corollary 3.9: For any ideal A of K the following 
conditions are equivalent: 
1. R(A)=A; 
2. If B(n)⊆A, B∈Id(K), for some n then B⊆A. 
3. If B2⊆A, B∈Id(K), then B⊆A. 
 

Proof: (1)�(2)�(3) is clear. (3)�(2): Let B(n)⊆A, 
B∈Id(K), for some n. Then B(n)=(B(n–1))2⊆A implies 
that B(n–1)⊆A. By induction on n we obtain B⊆A. 
(2)�(1): The condition (2) implies that rs(A)=A. By the 
Theorem 3.8 we see R(A)=rs(A)=A.  
 
Corollary 3.10: For a hypergropoid K the following 
conditions are equivalent: 
1. Every ideal of K is radical; 
2. A⋅B=A∩B for all A, B∈Id(K); 
3. [a]2=[a] for all a∈K. 
 
Proof: We use the following lemma: 
 
Lemma 3.11: R(A⋅B)=R(A∩B)=R(A)∩R(B) for any 
A, B∈Id(K). 
 The proof of this lemma follows from the 
Proposition 1.6[7]. 
(1)�(2): If every ideal of K is radical then using the 
lemma we obtain 
A⋅B=R(A⋅B)=R(A)∩R(B)=A∩B. (2)�(3): Let 
A⋅B=A∩B for all A, B∈Id(K). Then A2=A for all 
A∈Id(K). (3)�(1): We prove that every ideal of K is s-
semiprime. Let A be an ideal of K. Then A=

a A∈
∪ [a]. 

Using the Proposition 3.4 we have 
A2=

Aa
(

∈
∪ [a])2= (

a A∈
∪ [a]2) ∪ (

a A∈
∪ [a][b])=

a A∈
∪ [a]=A since 

[a]⋅[b]⊆[a]∩[b] for any a, b∈A. Thus A2=A for all 
A∈Id(K). Assume that B2⊆A, B∈Id(K). Then 
B=B2⊆A. Therefore A is s-semiprime. From the 
Theorem 3.8 we obtain that A is radical. 
 
Remark: This corollary is an analog of the similar 
theorem for associative rings[8]. 
 
Definition 3.12: Let A∈Id(K). An ideal B of K is As-
nilpotent if B(n)⊆A for some n. 
 
Proposition 3.13: Let K be hypergroupoid and A, 
B∈Id(K). If C is Bs-nilpotent and B is As-nilpotent then 
C is As-nilpotent. 
 
Proof: Since C is Bs-nilpotent then C(n)⊆B for some n. 
Hence C(n+m)=(C(n))(m) ⊆B(m) ⊆A for some m.  
 
Theorem 3.14: Let K be a hypergroupoid satisfying the 
ascending chain condition for ideals. Then for any 
ideals A of K, R(A) is As-nilpotent.  
 
Proof: Let A∈Id(K). Denote by Σ the set of all As-
nilpotent ideals H of K such that H⊇A. Σ is not empty 
since A∈Σ. There exists a maximal element P in Σ.  We 
prove that P is s-semiprime. Let B2⊆P. Then 
(B∪P)2=B2∪BP∪PB∪P2⊆P. By Proposition 3.13 the  
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ideal B∪P is As-nilpotent. By the maximality of P we 
have B∪P=P. Hence B⊆P. This means that P is s-
semiprime. Since P⊇A then R(A)⊆P by Theorem 3.8. 
But P(n)⊆A⊆R(A) for some n. Since R(A) is s-
semiprime then P⊆R(A). Thus P=R(A) 
 
Remark: This theorem is similar to the proposition for 
associative rings[9]. 
 
Corollary 3.15: Let K be hypergroupoid satisfying the 
ascending chain condition for ideals. Then the 
following conditions are equivalent: 
1. K(n)=∅ for some n. 
2. K doesn’t have a prime ideal; 
3. K doesn’t have a s-semiprime ideal. 
 A proof follows from Theorem 3.14 and the 
definition of Pr. rad(K). Denote by Idr(K) the set of all 
radical ideals of K. Idr(K) is a complete lattice with 
respect to the inclusion relation. Denote by ∨ and ∧ the 
lattice operations in Idr(K). 
 
Theorem 3.16: Let K be a hypergroupoid. Then the 
lattice Idr(K) satisfies the infinite ∧-distributive 
condition: 
A∧ ( )tt T

B
∈
∨ =∨ ( )tt T

A B
∈

∧  for any A, Bt∈Idr(K)  

 
Proof: The proof follows from Theorem 1.3[7].  
 
Theorem 3.17: Let K be a hypergroupoid satisfying the 
ascending chain candition for ideals. Then any radical 
ideal of K is an intersection of finite prime ideals and a 
such representation is unique.  
 
Proof: First we prove the following lemma.  
 
Lemma: H∈Idr(K) is prime ideal if and only if H is an 
∧-indecomposable element of the lattice Idr(K). 
 
Proof: Let A be a prime ideal of K and A=A1∧A2, A1, 
A2∈Idr(K). Then[7].  
 A1A2⊆A1∩A2⊆R(A1∩A2)=A1∧A2=A. Hence 
A1⊆A or A2⊆A. Then A=A1 or A=A2 Let A be an ∧-
indecomposable element in Idr(K) and BC⊆A, B, 
C∈Id(K). Then R(B⋅C)⊆A. By the lemma 1.6[7] we 
have R(B)∧R(C)=R(B⋅C)⊆A. By the distributivity 
Idr(K) we obtain A=A∨(R(B)∧ R(C))=(A∨R (B))∧ 
(A∨R(C)). Then A=A∨R(B) or A=A∨R(C) since A is 
∧-indecomposable. This means that B⊆R(B)⊆A or 
C⊆R(C)⊆A.  
 Thus A is prime. The lemma is proved. By the 
lemma and the Corollary[1] we obtain that every radical 
ideal of K is an intersection of finite prime ideals and a 
such represantation is unique.  
 
4. The Right Prime Radical of an Ideal 
Definition 4.1: A right ideal H of K is maximal if H≠K 
and H⊆B⊆K, B∈Id+(K), implies that H=B or B=K. 
 

Proposition 4.2: Let K be a hypergroupoid such that 
A⊆K⋅A for all A∈Id+(K). Then any maximal right ideal 
of K is prime element of Id+(K). 
 
Proof: Let M be a maximal right ideal of K and 
A⋅B⊆M, A, B∈Id+(K). If A⊄M then M∪A=K. By 
Proposition 3.4 we have B⊆K⋅B=(M∪A)⋅B=MB∪AB ⊆M. 
 
Definition 4.3: An element 1∈K is called identity of K 
if 1⋅a=a⋅1=a  for all a∈K. 
 
Remark: The conditions of Proposition 4.2 are 
satisfied for groupoids with 1. Thus there exists a prime 
right ideal in such groupoids. 
 For an element a∈K denote by [a]+ the intersection 
of all right ideals containing a. Every sequence {xo, ..., 

xn, ....}, where xo=a, xm+1∈[xm] 2
+ , is called an s+-

sequence of the element a. 
 
Definition 4.4: Let A∈Id+(K). An element a∈K is 
strongly A+-nilpotent if every its s+-sequence meets A. 
 Denote by n+(A) the set of all strongly A+-nilpotent 
elements of K. 
 
Proposition 4.5: Let K be a hypergroupoid. For any 
right ideal A of K are satisfied the following 
inequalities: 

R(A)⊆n+(A)⊆r s
+ (A)⊆r w

+ (A)⊆R+(A). 
 

Proof: A proof of n+(A)⊆r s
+ (A) is similar to the proof 

of n(A)⊆rs(A) as in the Theorem 3.8. The inequality 
R(A)⊆n+(A) immediately follows from the equality 
R(A)=n(A) and definitions of n(A) and n+(A). 
 
Theorem 4.6: Let K be a hypergroupoid satisfying the 
following conditions: 
(K⋅A)⋅B=K⋅(A⋅B), (A⋅K)⋅B=A⋅(K⋅B) for all A, 
B∈Id+(K). Then 

R(A)=n+(A)=r s
+ (A)=r w

+ (A)=R+(A) for any A∈Id(K). 
 
Proof: By Proposition 4.5 it is enough to prove that 
R+(A)⊆R(A). 
 Denote by P(K) the set of all prime ideals of K and 
by P+(K) the set of all prime right ideals of K. We prove 
that P(K)⊆P+(K). Let Q∈P(K) and B⋅C⊆Q, B, 
C∈Id+(K). Then, (B∪K⋅B) (C∪K⋅C)= (B⋅C)∪ (B⋅(KC)) 
∪((K⋅B)⋅C)∪(K⋅B)⋅(K⋅C)⊆Q.  
 Note that B∪KB and C∪KC are ideals of K. 
Indeed K⋅(B∪KB)=K⋅B∪(K⋅(K⋅B))⊆B∪KB. 
 From (B∪KB) (C∪KC)⊆Q we obtain 
B⊆B∪KB⊆Q or C⊆C∪KC⊆Q since Q is prime. This 
means Q∈P+(K).  
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Thus P(K)⊆P+(K). Therefore we have R+(A)⊆R(A). 
 
Remark: The conditions of this theorem are satisfied 
for hypersemigroup. Therefore the same theorem is 
given for nonasociative hypergroupoid K and A∈Id(K) 
such that R(A)=R+(A) and R(A)≠R_(A). 
Let A∈Id+(K). For b∈K put b(o)=b, b(n+1)=(b(n))2. 
 
Definition 4.7: An element b∈K is As-nilpotent if 
b(n)⊂A for some n. An element b∈K is Aw-nilpotent if 
f(b)⊆A for some f(b)⊆<b>. 

 Denote by n s
o (A) (n w

o (A)) the set of all As-
nilpotent (respectively, Aw-nilpotent) elements of K. 
 
Proposition 4.8: For any ideal A of K are hold the 
following inequalities: 

R(A)⊆n+(A)⊆n s
o (A)⊆r s

o (A)⊆Ro(A) 

R(A)⊆n+(A)⊆n w
o (A)⊆r w

o (A)∈Ro(A) 
The proof is smilar to the proof of Proposition 4.5. 
 
Theorem 4.9: Let K be a hypersemigroup satisfying 
the condition K⋅a=a⋅K for all a∈K. Then 
R(A)=no(A)=ro(A)=Ro(A) for all A∈Id(K). 
 The proof is smilar to the proof of Theorem 4.6. 
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