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Chord Length Distributions of the Hemisphere

Wilfried Gille
Department of Physics, Martin-Luther-University Halle-Wittenberg
Hoher Weg 8, D-06120 Halle, Germany

Abstract: The distribution laws for two types of isotropic uniform randem chords of the hemisphere,
cap-chords and basic-chords, are investigated separately. From both distribution densifies, the chord
length distribution density of the whole hemisphere is derived.
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INTRODUCTION

In material research microheterogeneities of selected
materials are investigated by scattering methods.
Physical structure functions, which are closely
connected to the geometric covariance, result from the
experiments. They allow to obtain an approximation of
the chord distribution of the typical microparticles of
interest. The characterization of practically all particle
shapes can be completed by comparing, in each case,
the experimentally obtained chord distribution with the
theeretical cnes, the latter requiring a large spectrum of
chord distributions of geometric figures in an analytic
form as compact as possible. In the present study
isotropic uniform randem cherds in a hemisphere are
investigated. Detailed explicit sclutions of distribution
density functions f {1} are presented.

The following methedelogy was applied: Two different
types of random chord lengths 1 were simultaneously
operated with. On the one hand, chords which hit the
base  surface of the hemisphere are considered.
Independent of these, on the other hand, those chords
which do not hit the basic surface are investigated
likewise. Finally, the final result for all chords is
obtained from these independent parts by averaging.

Chord Length Distributions: Chord length
distributions result whenever a geometric figure of any
dimension is randomly intersected by straight lines. The
investigation of chord distribution is a special
geometric matter; [1]. There exist different types of
randomness for the intersection of a convex body by
straight lines. Mainly three types of chords are in use.
p-chords or isofropic uniform random chords (IUR-
chords) result, if the geometric figure is expesed to a
uniform isotropic flow of infinite straight lines. On the
other hand, the so-called weighted randomness and the
two-point randemness, which are considered by Guinier
and Fournet [2], are somefimes in use. All the three
types are closely connected with one ancther, as
demonstrated by Enns and Ehlers [3]. For the fellowing
exclusively u-chords are regarded. In practice this case
corresponds to the situation when an isotropic sample
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containing microheterogeneities with uniform shape
scatters a beam of monochrematic X-ray light.

The Physical Background: There exist physical
apparatuses in sfructure research which indirecily
measure the distribution laws of random chords of a
three-dimensional sample. In Small-Angle Scattering
{(SAS} the scattering intensity I{h} is recorded as a
function of a variable h. The practical background and
the theoretical foundations of this experiment are
described by Guinier and Fournet [2]. From the
function I{h) the so-called correlation function y(r}of
the sample, defined by Debye and Bueche [4], which is
equivalent to the set covariance K(r} of stochastic
geometry, [3], can be obtained. In physics a
normalization strategy of K(r} which uses the particle
volume V is usual y{r}=K(r)/V. The function y(r)

can be calculated from I(h) by the Fourier
transformation:
sm h -r
j h®.1 )dh
h-r (1)

Ihz

By use of 1 for the first moment of the distribution
density £, (1) andy(0)=1, which conforms with (1}, a

connection between y(r} and £, (1} is obtained
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Some synonvmous relations, well-tried in practice,
follow from (1,2}, Gille [6], which directly connect the

functions 1 (b} and £, (1} . For example

0" h*-1{h}] sin(h-1)
; (1)=I~J.0 ohZ - ™ dh,
" 1"+ ["0” I{n)dh

=711, (), (3
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holds true, if the particle system consists of two phases
with different electron densities (so-called isotropic,
infinitely diluted two-phase system) which, for physical
reasons, can be approximated by means of an indicator
function. This function equals 1 inside and O outside the
particles. The characterization of many real particle
systems can be achieved by comparing experimental
chord distributions (3) with theoretical ones, provided
the latter are available.

The Method Applied to the Determination of f,(I):
For the formulation of chord length distributions
different methods exist. In the cases of cylinder and
parallelepiped Gille [7, 8] and for the cone Gille and
Handschug [9] handled the problem by use of Theorem
1 from the publication of Enns and Ehlers [3]. This
theorem formulates the distribution of the length of
random secants through a convex region in terms of the
intersection volume of the convex region with its
translated self. This method corresponds to (2). The
calculation here is based on the mere definition of the
distribution function of a random chord length variable

¢, F1)=pr(¢<1). In the final step f(1)=F'(1) is
performed.

Fundamental Geometric Constellations: Let R be the
radius of the hemisphere. The cases O0<R < are
possible. Because of the rotational symmetry only

chords 1= AB whose projection 1-cos(a) into the

base plane is parallel to an invariably chosen x-axis will
be considered, (Fig. 1).

Fig. 1: The Position of a Chord 1 with Direction Angle
in the Hemisphere Distinctly Demonstrates the
Rotational Symmetry of the Problem

The possible chords will be classified into two
fundamental types. For the following, chords of any
length I, 0 <1< 2R, which hit the base plane of the
hemisphere are called base chords (bc), and the chords
of any length I, 0 <1< 2R, which exclusively intersect
the cap of the hemisphere are called cap chords (cc).
Because of rotational symmetry it is sufficient to
consider the one random angle . The random variable
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is distributed with density cos( ) on the interval
0<a <7z/2. The concrete interval limits depend on 1,
see Table 1.

Table 1: The Fundamental Limits of the Direction-

angle
Case1: O0<I<R Ofa<m/2
Case2: R<I<2R 0< a <arcsin (R /1)
Case3: 2R <I<2R 0< o <arccos(1/(2R))

Within these intervals a further interval-splitting of
cases 1 and 2 is essential, if concrete integrals for
averaging over are evaluated. The probability
F(I)=Pr({<1) is expressed by ratios of projection-

portions  perpendicular to the direction . For the
moment, for a constant the whole projection area
being "possible” in terms of probability is subdivided
into two parts, Fig. 2. For bc the "possible” area S, (o)
perpendicular to the chord direction follows from

Sy (@) =7-R*-sin(at) . 4)

The complementary part S..( ) of the projection area
perpendicular to direction for the cc is

n-R* m-R’?
2

S.(a)= (5)

-sin (o) .
After averaging over the angle from (4,5) one obtains
‘R?,

S = IOZ Sie (0t) -cos (o )dow =

R2. (6)

~la ola

Sec = ESCC (o) cos(a)do =

Thus, the sum of the two mean projection areas in (6)
is(3/4)-7R*, which coincides with the general

theorem according to which the mean projection plane
of any convex geometric figure equals one quarter of its
whole surface [10].

S
Sp = Z @)

Therefore, the ratio of the measures of bc and cc equals
2:1, which will be used for considering all p-chords of
the hemisphere,

F ()= 1 2E, (1) (8)

—F_(1)+—=-
3 e (1) 3
Determination of the Favorable Projection-area
Shares: According to Table 1, a constant 1 is

considered. The probabilities F, (1) and FE_ (1)
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correspond to exactly those parts of the projecting areas
(6 which guarantee { <1. These areas can generally be
determined by formal integration in the following way:
Let A(R,L, &} be the area share within the basic circle

of the hemisphere which cannot be reached by the
lower end of any be of length ~ with fixed direction

the condition Evidently A(R,Lo)

represents the common overlapping area of the two
circles

under o<l

X +y' =R?, (x+1-cos(oc))2 +y" =R* =1 sin* ()

in the base plane, where the smaller circle can lie
completely within the greater one. The distribution
function E, can be expressed by use of (6}

%Rﬁ—jﬂ““‘A(R,l,a}-cos(u)-sm(u}du ©

.R?

rala

The factor cos( } in {9) is the I[UR-factor, and
analogously to {4} the factor sin{ } transforms the area
share frem the basic plane inte a direction
perpendicular to the be. The integration limits in (9}
must be specified for each l-interval in Table 1.
Moreover, the integral in {9} in case 1 and 2 must
additionally be split into two parts. This phenomenon is
similar to the interval-splitting in the different cone-
cases, as explained by Gille and Handschug [9].

In case 1 the intervals 0 <o < arccos{l/(2R}} and
arccos{l/(2R)} <o <£m/2 must be distinguished.
Finally, in case 2 the intervals 0 < o <arccos{1/{2R})

must be

and  arccos (1/(2R)) <o <aresin{R /1)

considered. In the cc-case it is simpler to express the
E.{l} by use of (6) already at the

uce
F(R,Lo) which
perpendicular to the -direction,

probability

beginning by an area lies

RE _ jarocus(ll(ER]]

0

F(R,1,at)-cos{ot)do

10
T e (10)
4
In (10} F(R,La} is half the area limited by an ellipse

with semiaxes R and R-sin{a) and a circle with

radius r =4R? —1*/4 with the same centre.
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Hereby, F(r,l,a} is the area within the circle but
outside the ellipse, Fig. 2. The first derivative of
F(R,l,&) with respecttolis

oF(RLe) 1 (11}

_ tan(a)
of

drccos)

which can be used for the differentiation of the
parametric integral {10) with respect to 1. The area-parts
A(R,L,at) and F(R,L,&t) correspond to the l—o—
intervals and follow from pure geometry.

Details of the integration and differentiation strategy
are omitted here. The calculation of the antiderivatives
and derivatives of the integrals (9,10} is troublesome.

The Resulting Distribution Densities: The final
results are surprisingly simple. Certain abbreviations
(12} are expedient:

4R
p= 12 -1
12
q:"4——2
: (12)
1 : p
A= n(p]fn‘la-arctan =
=1
12
b=p-(21' +I'R* + 6R* }+¢-{8IR’ 2RI’}
For be
{b+12m"R* }/{127IR* ) +a, 0<1<R
(1) 1/(127R* }- (b +127R° /1 }+a,  R<1<yZ-R - (13)
. b/{127IR* ) +a, VI R<I<2R
0, 2R <l<
holds. For the cc,
21/{7R*) arctan(p), 0<1<2R
fue (1) = (14)
g, ZR=]<0o

holds. If all the be and cc are considered, £, (1) follows

by use of (8}). Finally, the simplification of the resulting
expressions in all 1-intervals yields:
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Beside the field of SAS, applications of (11-15) are
important to the accustical design of auditory, nuclear
fuels, automatic pattern recognition, so-called mean
free path problems and absorption problems of any
radiation concerning hemisphere geometries. Figure 3
shows the results for the standard R=1.

(e) h " ““E\"‘.
# R 7| ..

Fig. 2: For Each , 0<a<=®/2, There Exist bc and
cc. For a Constant  the bc Area and the cc
Area are Limited by an Ellipse with Semiaxes

Rand h=R -sin{o}

Chord Length Distributions Dengities

0 0.5 1 1.5 2

1
Fig. 3:The Functions f, (1), and £ (1} and £ (1)
are Continuous in the Whole l-interval,
0 <l<=. However, fubo'(l) and fu'(l) are
Discontinuous at 1=R. The Derivativesf  '(1)
and £ '(1} are Discontinuous at 1=2-R

Distinctive Properties of the Resulting Densities:
Confrary to the sphere, cone and parallelepiped the
functions (11-15}, including their first derivatives, are

1-1/{4R*)(1/(xR }+ 2R / (351" )},
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20/{3R*)—{4R" -arcsin(1/(2R }}}/ {3’ }+

0<1=R
(15)

1-1° /(4R )-(1/(aR )+ 2R /351" )} + (4R " - arccos (1/(2R)}}/(3al’), R <1<2R

ZR<=l<=

continuous inC <1< 2R, and particularly, too, at the
transition positions =R and 1= J2R.

In the casel » 0, £, (0)=0 holds and therefore
f, (0+) =(2/’3)-fw3 {0+) is obtained. The final result

18

8
o9x-R

£ (0+)=

The essential result as to the data evaluation in SAS is
£ (1} for 1, <l. Particularly a particle system,
consisting of hemispheres which all ceincide in R,

should lead tc an experimental chord distribution (3).
The largest particle dimension L=2R can be determined

precisely from the left-side derivative of £ (2R),

which equals —oo . Hence the position 1=2R is clearly
marked. This detall extremely differs from the
behaviour obtained for other geometric figures, Fanter

[11]. The global maximum of £, (1} lies at the position

1=R. Further the position 1=v2'R is an interesting
one. The corresponding density-values are

8+7

_15\/§+8n _
6d2 1R

"~ 18x-R

£, (V2R

(16)

£ {R)
The right-side and the left-side derivatives £, '(R +} are

253 %24n

f '(Rt)=
U( ) 18'RR2

The first two derivatives of £ (1} at 1=+2R are the

following:

‘ 16+ 3
g (‘E'R]:_lza:-;’

From (16,17} fellows the fact that the position 1=1, of

a point of inflexion of f (1} lies in the interval

R

3

(7

2R <], <2-R. The theoretical relations for the

moments of f (1}, M;=1, M, =4V/S and
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M, =12-V*/(xn-S} are fulfilled. The second moment
M, equals R .
For more information, please contact the author.

Programs and files for all steps of the calculation
project are available.
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