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Abstract: In this study simple nonparametric techniques have been adopted to estimate the trend 
surface of the Swiss rainfall data. In particular we employed the Nadaraya-Watson smoother and in 
addition, an adapted-by boosting-version of it. Additionally, we have explored the use of the 
Nadaraya-Watson estimator for the construction of pointwise confidence intervals. Overall, boosting 
does seem to improve the estimate as much as previous examples and the results indicate that cross-
validation can be successfully used for parameter selection on real datasets. In addition, our estimators 
compare favorably with most of the techniques previously used on this dataset. 
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INTRODUCTION 

 
Machine learning (Michie et al.[1] p. 2) is generally 
taken to encompass automatic computing procedures 
based on logical or binary operations, that learn a task 
from a series of examples. Attention has mostly focused 
on methods developed for discrimination tasks. In this 
case the data take the form {(xi, yi), i=1,…,n}, where 

i i1 ipx (x , ,x )= …
T  is an attribute vector and 

iy {1, ,g}∈ = …G  is a class label. Given such data, the 

goal is to estimate a rule, say p:δ →ℝ G  , which will 

assign a new observation x to a class in G . The rule is 
assessed by comparing the true class of x (which is not 
used in the learning ofδ ) with the predicted class. 
Since different methods will produce different rules, the 
methods themselves are then judged by the quality of 
the rule that is output, though this is highly dependent 
on the type and quantity of data which is available. 
Boosting (Shapire[2]; Freund[3]) has become a popular 
method in machine learning. Given that the goal is to 
obtain rules which are as accurate as possible, the basic 
idea of boosting is to enhance a method by adaptation, 
whereby the rule is modified according to its 
performance on the original data. More specifically, a 
B-steps boosting algorithm iteratively computes B 
estimates by applying a given method, called a weak 
learner, to B different re-weighted samples. The 
estimates are then combined into a single one which is 
the final output. This ensemble rule can be viewed as a 
“powerful committee”, which is expected to be 
significantly more accurate than every single estimate. 
In the original setting, the weak learner was a 
classification tree, often with only one split (and hence 
weak), but recently other classifiers have been boosted. 
Statistical learning (Vapnik[4]) has been used to 
encompass three previously used methods within 

statistical data analysis: density estimation (often 
referred to as unsupervised learning and a prelude to 
cluster analysis) discrimination (sometimes called 
classification, or pattern recognition) and regression (or 
prediction). All three are commonly used in real-life 
applications and each has its own historical 
development. In all three domains, methods exist which 
make use of a kernel function (kernel density 
estimation, kernel classifiers and kernel regression); 
these are often referred to as simply “nonparametric”. 
Making use of these kernel methods, Di Marzio and 
Taylor[5-7] have indicated how boosting derives its 
success: namely, by reducing the bias of the estimators, 
with only moderate increases in variance. Using this 
result, one is able to use larger smoothing parameters 
and improve the overall quality of the final estimate. 
Other insights into why boosting works are given by 
Bülmann and Yu[8] (who consider boosting of splines in 
regression), Friedman et al.[9] (who use logistic 
regression in classification) and Friedman[10]. 
 Di Marzio and Taylor[7] investigated the use of 
Nadaraya-Watson (N-W) kernel regression estimators 
as a weak learner for L2Boosting. Their study focused 
on the one-dimensional case (i ix ,y ∈ℝ ) and the 

theoretical results were illustrated with simulations. In 
that study, no attempt was made to derive data-based 
methods in which the optimal choice of smoothing 
parameter h and number of boosting iterations B could 
be obtained from the data. Firstly, we focus on the 2-d 
( p 2= ) case. Extensions to higher dimensions are then 
straightforward, but our application is that of some 
spatial data. Whilst simulations are very useful to 
validate theoretical results, real data is often more 
challenging, since many of the assumptions are violated 
in ways which are hard to quantify. The dataset on 
which we focus has been previously used as a 
challenging spatial interpolation problem. Within this 
context, we are thus forced to consider data-based 
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methods of optimal selection of (h, B) and since the 
data have been previously studied we are also then able 
to compare our results with alternative methods. 
Finally, we consider the problem of obtaining 
confidence intervals for the predictions. 
 

EXPLORATORY DATA ANALYSIS 
 
 In 1997 the AI-GEOSTATS mailing list set up a 
“Spatial Interpolation Comparison”. The participants 
were asked to estimate the daily rainfall values at 367 
locations using data of 100 observed measurements (at 
different locations on the same day). Only after the 
predictions were made, was the actual data made 
available. Further details are given, with the results of 
the competition, in Dubois et al.[11]. 
 The training data were 100 randomly selected sites 
from a database of 467 sites in Switzerland. The 
response variable was the amount of rainfall on 8th 
May 1986 (measured in 1/10th mm). Fig. 1 shows the 
locations of the training data and the test data points. It 
is perhaps slightly unusual that the number of training 
points should be so much smaller than the number of 
test points.  
 A summary of the rainfall data (training values) is 
y 180.15= and (y) 116.68=sd . 
 As a first, very naive prediction of the test data, we 
simply considery and this gives a root mean squared 

error (RMSE) value of 111.14. We also note that a 
naive 95% confidence interval y 2 (y)± ×sd has constant 
width 466.72 and actually contains 355/367 96.73%= of 
the test data. 
 However, these predictions take no account 
whatsoever of the spatial structure and correlations 
within the data. A slightly less naive approach is to use 
a nearest-neighbour prediction, that is to predict the test 
value iy  by the training observation jy  such that 

k i kj arg min d(x , x )= , with d denoting the euclidean 
distance between the sites xi and xk . This nearest 
neighbour predictor gives a RMSE of 84.17, but no 
confidence interval is readily available. 
 A digital elevation model was also made available 
and this is also shown as an image in Fig. 1. Rainfall 
often depends on elevation and so the nature and 
strength, of this relationship was explored. We note that 
height above sea level, s, can be negative, whereas 
rainfall y 0≥  in general. There may be physical models 
available but throughout this study, we adopt the 
principle of letting the data speak for themselves. In 
Switzerland all the elevationss c 0≥ >  where c 200≈ , 
so we can consider transformations of the form: 
yα with 0α > and sβ or log(s) and then a linear model.  
 

 

 
Fig. 1: Location of the measurement sites (black 

points indicate the training data and gray 
points the test data) and the relief map 
showing the height above sea level of the 
Swiss region. 

 
A plot of the data and the smooth fit shown in Fig. 2 
suggests a quadratic model may fit tolog(s) . 

 The residual plots from the first fitted model 
indicate some shortcomings (Fig. 3), so we also tried a 
transformation of the response variable and this seemed 
to improve the fit somewhat. The final fitted model has 
three estimated parameters and is given by 
 

2y 13.86 4.06(log(s) 6.65)= − −  

 
which gives R-squared0.095= and a RMSE of 112.52, 
whereas the null model has a RMSE of 116.09. The 
diagnostic plots are shown in Fig. 3. 
 We conclude that fit is not that good. Moreover, 
points which are close in space are likely to have 
similar rainfalls and have similar heights. So it is 
unlikely that height will be of much help and it was not 
considered further in this analysis. 
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Fig. 2: Dependence of rainfall on height. Left: scatter plot with linear fitted line. Right: scatter plot with smooth 

fit. 
 
 

 
 
Fig. 3: Top: rainfall predicted by log (height) using a quadratic model with no linear term. Right panels show 

diagnostics from least squares it. Bottom: using transformation of sqrt(rainfall). 
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NONPARAMETRIC METHODS 
 
Motivation: The most studied and used interpolation 
technique is kriging (see, for example, Stein[12]). 
Unfortunately, standard kriging yields unbiased 
predictions only if restrictive assumptions - typically 
some kind of stationarity or isotropy - are satisfied. 
Thereby, a rigorous check of them is always necessary. 
In fact, a model might not hold across all spatial 
observations, especially if large spatial datasets are 
used. 
 In the last three decades, a number of recent 
researchers focus on nonparametric regression 
techniques as a flexible alternative to kriging. A 
nonparametric analysis seems suitable for exploratory 
purposes in the selection stage of a parametric model, 
or if the information on the specific case study does not 
allow parametric assumptions at all. We can distinguish 
two tendencies: entirely nonparametric or mixed 
approaches, in which nonparametric techniques and 
kriging coexist. A brief outline follows. 
 In pioneering research, Yakowitz and 
Sziradowsky[13] study the robustness of kriging in the 
cases of perturbed data and incorrect variogram 
selection. As a more robust alternative to kriging, they 
extensively discuss a fully nonparametric regression 
technique. In their examples, the nonparametric 
estimator performs similarly to kriging when data are 
correlated and better in presence of a spatial trend. 
Other fully nonparametric methods based on splines 
include works by: Wahba[14], Hutcinson and Gessler[15] 
and Laslett[16]. A common conclusion is that splines 
constitute a serious contender to kriging in several 
cases. Finally, Azari and Müller[17] suggest a particular 
nonparametric estimator that in their case study 
outperforms kriging. 
 Concerning the mixed approach, Høst[18] and 
Altman[19] adopt the same philosophy in enveloping 
techniques where the low-frequency signal (trend) is 
grasped by nonparametric regression techniques, whilst 
the high frequency signal (autocorrelation) by kriging. 
In a similar logic, Opsomer et al.[20] propose a complex 
algorithm where nonparametric techniques are used to 
estimate a variance function, their goal is to carry out 
the variogram fitting step in a standard kriging 
procedure. 
 A nonparametric method suitable for local fitting 
of spatial data is local polynomial regression[21]. 
Prominent features of local polynomial regression are: 
i) a polynomial mapping is selected, but note that 
polynomials constitute a class of response surfaces 
much wider than the commonly used parametric 
families; ii) not particularly restrictive smoothness 
assumptions are needed; iii) not all data are involved, 
but only those lying in a neighborhood of the estimation 
point, with an importance proportional to the their 
inverse distance from it; iv) the possibility to easily 
give specific directions the smoothing process by 

properly structuring the bandwidth matrix. Although 
nothing works better than a properly selected 
parametric model, the above features appear certainly 
promising when spatial phenomena are to be studied 
and parametric assumptions are hard to motivate on the 
basis of the available information. 
 Here, we focus on the N-W estimator (the zero-
degree polynomial fit) because, as it will be explained 
later, it is ideally suited for boosting. 
 
Kernel regression: Given three random variables, 

2X ∈ℝ , Y ∈ℝ  and ε ∈ℝ , assume the following 
regression model for their relationship 
Y m(X) (X) , with 0, 1,σ ε ε ε= + = =E var  (1) 

whereX and ε are independent. Assuming that n i.i.d. 
observations i iS {(X ,Y ), i 1,..., n}= =  drawn from 

(X,Y)  are available, the aim is to estimate the mean 

response curve m(x) (Y | X x)= =E . This is the 

random design model, in the fixed design model as 
design observations we have a set of fixed, ordered 
points so the sample elements are 

i is (x ,Y ;  i 1,...,n)= =  in which the ix  are often 

equispaced. 
 We will assume model (1). Recall that our data is 
given by i i{(x , y ),  i 1, ,n}= …  in which i i1 i2x (x , x )= . 

If m'(x)  exists, then we can use the N-W estimator 

( )
( )

( )
i

i

x Xn1
ii 1nh h

NW x Xn1
i 1nh h

K Y r̂(x)
m̂ x;S,h .

f̂ (x)K

−
=

−
=

= =
∑

∑
 (2) 

Here, we used the multiplicative kernel 
2

j iji

j 1

1 2 i i1 i1

x xx x
K ,

h h

(x (x , x ), (x (x , x ))

κ
=

− −  =        

= =

∏  

in which the function :κ →ℝ ℝ , called a kth-order 

univariate kernel, satisfies the following conditions: 

1κ =∫  and 
jx 0,κ ≠ ∞∫  only for j k≥  and the scale 

h 0>  is called the bandwidth or smoothing parameter. 

 Note that f̂ (x)  is a standard kernel density 

estimate (kde) of the design density f at x and r̂(x)  can 

be interpreted as a kernel estimator of yg(x, y)dy∫  

where g is the joint density. Thus, the N-W estimator 
can be considered a kernel estimator of 

m(x) yg(x, y)dy / f (x) (r / f )(x)= =∫ . For the 

simplest motivation, note that a N-W fit is a locally 
weighted average of the responses. 
 Clearly, the shape of the kernel weights is 
determined by κ  that in our case is the univariate 
Normal density and the degree of smoothing along the 
coordinates by the scale h. So the multiplicative kernel 
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amounts to a bivariate gaussian density with a diagonal 
covariance matrix. Other than for sake of simplicity, we 
make this choice because in a spatial context it seems 
natural to use the same degree of smoothing in each co-
ordinate, though there could be anisotropy is some 
applications. The univariate properties of the N-W 
estimator are detailed below; it is straightforward to 
extend to higher dimensions. 
 
Properties: Given x f∈supp  , assume the notation 

1 x
h h h
(x) ( )κ κ=  . Let this usual set of conditions hold:  

a) x is an interior point of the sample space, i.e. 
inf( f ) h x sup( f ) h+ ≤ ≤ −supp supp ; 

b) m and f are twice continuously differentiable in a 
neighborhood of x; 
c) the kernel κ  is a symmetric pdf with 

2
2( ) v (v)dv 0µ κ κ= >∫  ; 

d) nh h 0= →  and nh → ∞  as n → ∞  ; 

e) f ''  is continuous and bounded in a neighborhood of 
x. 
Since ̂r(x)  estimates 

r(x) yf (x, y)dy= ∫  

we have 

h

h h

r̂(x) (x u)yf (u, y)dudy

(x u)f (u)m(u)du (x u)r(u)du

κ

κ κ

= −

= − = −
∫ ∫

∫ ∫

E
 

where f (u, y)  denotes the joint density of (X,Y)  . 

Making a change of variable and expanding in a Taylor 
series gives 

2
2

2
h

r̂(x) r(x) r (x) ( ) o(h ) as h 0.
2

µ κ′′= + + →E  (3) 

Similarly, using 
2

2
2

h
f̂ (x) f (x) f (x) ( ) o(h ) as h 0

2
µ κ′′= + + →E  (4) 

we have the approximation 
2

2

12
2

2

r̂(x) h
m̂(x) r(x) r (x) ( )

ˆ 2f (x)

h
f (x) f (x) ( ) o(h )

2

µ κ

µ κ
−

 
′′= ≈ + 

 
 

 
′′+ + 

 
 

E

 

( )
2

22h ( )
m(x) r (x) f (x)m(x) o(h )

2f (x)

µ κ ′′ ′′= + − +  

and so the bias in ̂m(x)  is 

2
22h ( ) 2m (x)f (x)

m (x) o(h ).
2 f (x)

µ κ ′ ′ ′′ + + 
 

 

Similar calculations give the variance as 

21 (x) 1
R( ) o

nh f (x) nh

σ κ  +  
 

 

where 2(x)σ  is the conditional variance. So: 

• the regression curve is more stable (lower 
variance) when there are more observations;  

• the bias-squared is dominated by the second 
derivative m (x)′′ (close to a turning point) or 

by m (x)′ when there are few observations. 

 
Results for swiss rainfall data: We choose the 
bandwidth h in Equation (2) by leave-one-out cross-
validation, i.e. select h to minimize 

n
( j) 2

j j
j 1

ˆCV(h) (y m (x ))
=

= −∑  (5) 

in which ( j)m̂ (x) is the N-W estimate which uses all the 

data except the jth observation: 

( )
( )

i

i

x x
ii j h( j)

x x
i j h

K y
m̂ (x) .

K

−
≠

−
≠

=
∑

∑
 

We have plottedCV(h) , as given by Equation (5), in 

Fig. 4. There is a unique minimum at h 1124=  (which 
corresponds to a RMSE value of 

CV(1124) / n 69.69= ) and this value of h is then 

used in Equation (2) to estimate the rainfall over a grid 
of values. A contour plot of the predicted rainfall is 
shown in Fig. 4. As expected, it can be seen that there is 
broad agreement between the y values and the fitted 
values. 
 The fitted model, in which ̂m(x) is estimated from 

the training data, can be used to obtain fitted values for 
the training data and to predict the test data. As 
expected, the RMSE is much reduced (from 69.69 to 
34.43) when the training data is simply resubstituted, 
but the RMSE from the test data is 61.17, which is very 
similar to the minimized CV estimate. Fig. 5 shows the 
residuals from the fitted model, the locations of the 
larger residuals and how the residuals are related to the 
predicted values for the test data.  
 

L2BOOSTING 
 

Introduction: L2Boosting stagewisely optimizes the 

squared loss function 2ˆ(m m) / 2− . Specifically, it is a 

procedure of iterative residual fitting where the final 
output is simply the sum of the fits. Formally, consider 

a weak learner. ( )m̂ ;S,γ⋅ , that in the L2Boosting 

terminology is simply a crude smoother. An initial least 
squares fit is ( )0 0ˆ ˆm ( ) m ;S,γ⋅ = ⋅ . For b 1,2, ,B= … , 
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bm̂ ( )⋅  is the sum of b 1m̂ ( )− ⋅  and a least 

 

 
Fig. 4: Cross-validation function of residual sum of 

squared errors, which gives optimal value of 
h=1124 and resulting trend surface contour 
plot, of the N-W estimator. The original data 
are shown as circles with size corresponding to 
the rainfall. 

 
squares fit of the residuals 

e i i i b 1 iˆS {X ,e m (X )}Y −= = − , i.e. ( )e bm̂ ;S ,γ⋅ . The 

L2Boosting estimator is Bm̂ ( )⋅  . 

 The two main issues are the bandwidth selection 
and the choice of the number of boosting iterations B . 
As the end is to get a weak learner, a natural and direct 
way for reducing the complexity of whatever kernel 
method is oversmoothing. This is because large values 
of the bandwidth reduce the locality of the method and 
consequently, overfitting. Thus the smoothing 
parameter can be viewed as a potential component of 
regularization. A quite similar point of view is 
supported by Vapnik[4] (pp. 327-330) who upholds that 
in kernel density methods regularization can be 
achieved by modifying the window width. This is 
because regularization is interpreted as a method that 

“makes robust” problems whose solutions have big 
changes for small changes in data, as kernel smoothing 
is considered. From this perspective we can well 
understand that big bandwidths regularize the learning 
process. 
 We propose to boost the N-W estimator in an 
obvious L2Boosting manner. Our boosting algorithm is 
described by the following pseudocode: 
 
Algorithm: L2boostNW 
(Initialization) Given S and h 0>  , 

calculate ( ) ( )1 NWˆ ˆm x m x;S,h=  . 

(Iteration) Repeat for b 2,...,B=  

compute the residuals ( )i i b 1 iˆe Y m X−= − i 1,..., n;=  

update ( ) ( ) ( )b b 1 NW eˆ ˆ ˆm x m x m x;S ,h−= + , where 

e i iS {(X ,e ), i 1, , n}= = …  . 

 Note that our choice of using a fixed smoothing 
parameter along the iterations seems appropriate. In 
fact, if we optimally select the smoothing parameter for 
every estimation task, we would encourage the 
overfitting tendency, since the “learning rate” of every 
single step is maximized. However a formal 
justification is presented later, in which small bias 
properties are proved to hold when the bandwidth is 
fixed over boosting iterations. 
 
L2boostNW reduces the bias of the N-W estimator: 
Here, we will show (for the univariate case, d 1=  ) how 
boosting reduces the asymptotic bias, up to boundary 
effects, of the N-W estimator. The result clearly extends 
to d 2≥  by considering multivariate Taylor series' 
expansions. 
 Assume conditions (a)-(e) hold, after the first 
boosting step we have 

( )
( )

( )
( )

( )

i i

i i

i

x X x Xn n
i ii 1 i 1h h

2 x X x Xn n
i 1 i 1h h

x Xn1
0 ii 1nh h

K Y K e
m̂ (x)

K K

ˆ ˆ2r(x) K m (X )
.

f̂ (x)

− −
= =

− −
= =

−
=

= +

−
=

∑ ∑

∑ ∑

∑
 

 We take the expectation of the numerator and 
denominator as before. We already have r(x)E

⌢
 from 

Equation (3) and f (x)E
⌢

 from equation (4). So the only 
thing we need is the expectation of the second term in 
the numerator. By ignoring the non-stochastic term 
(when i j=  ), expanding in a Taylor series and 
integrating, Di Marzio and Taylor[7] eventually obtain 
the following expression for the asymptotic expectation 
up to terms of order 2O(h )  

12 2
2 2

2
h h f (x)1

m̂ (x) r(x) m(x)f (x) 1
2 f (x) 2f (x)

µ µ
−    ′′    ′′≈ + +            

E  

2
2

2 2
2 2

h f (x)r(x) 2f

f (x) 2f h f (x) 2f h f (x)
m(x).

µ
µ µ

 ′′ = + 
′′ ′′+ +  

=

. 
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 As a consequence, we observe a reduction in the 
asymptotic bias from O(h2) to o(h2). This conclusion is 
consistent with that found by Di Marzio and Taylor[5,6], 
where boosting kernels gives higher order bias for both 
density estimation and classification. However, note 
that the current result uses L2Boosting for regression, 
rather than the Adaboost-like algorithms used in 
classification and density estimation. Remarkably, note 
that we have reduced the bias without requiring any 
new smoothness assumption. Although p-order 
polynomials smoothers become less biased when p 
increases, they require that at the same time the quantity 

(p 1)m (x)+ exists. 

 
Boosting the Swiss rainfall data predictions: We 
need to find the optimal pair (h, B) for our data and this 
can be done by leave-one-out cross-validation. Fig. 6 
shows the estimates of RMSE for various values of B 
and h. The optimal value was found for B=2 and 
h=1269.4, which gave a resulting CV estimate of 
RMSE of 69.244. This is only a very small 
improvement on B=1 (no boosting). Using the pair 
(1269.4,  2) the RMSE on the test data was 60.99 

which is a again a very small improvement on B=1 
(61.17). The resulting trend surface of the boosted 
model is also shown in Fig. 6; it is very similar to that 
of Fig. 4. 
 

COMPARISONS 
 
Trend surface analysis: A standard method for the 
analysis of spatial data, is to fit a trend surface and then 
carry out kriging for predictions[22]. To be consistent 
with the previous approach we use cross-validation for 
parameter estimation and model selection. Firstly, we 
obtained the proper order of the fitted trend surface. 
The results are shown in Table 1 which indicates a 
quadratic (or possibly linear) model is optimal. 
 An assessment of the spatial structure was made by 
examining a correlogram (Fig. 7) of the residuals, 
which indicated that points close in space tended to be 
similar. Various models for the covariance function 
were fitted: gaussian, exponential and spherical. Using 
cross-validation based on the training data alone, it was 
found that the gaussian model was best (giving an 
estimated RMSE of 74.5 using leave-one-out CV on the 
training data). 
 
Table 1: RMSE estimated by leave-one-out cross-validation of 

trend surface fitted by ordinary least squares 
Surface order 0 1 2 3 4 5 
RMSE 117.3 112.4 112.0 115.1 115.5 112.4  

  
 The gaussian model was used to predict the test 
data, with a resulting RMSE of 72.66 and the fitted 
surface is shown in Fig. 7. Note that the fitted surface is 

less smooth than that of the N-W estimator in Fig. 4, or 
of the boosted N-W estimator in Fig. 6. 
 
Other predictions: The edited volume Dubois et al.[11] 
contains many results from the original competition. 
Table 2 contains a summary. The kriging values given 
there are slightly better than we obtained and our N-W 
estimator (and its boosted version, in particular) 
performs reasonably well overall.  
 We note that the best combination of (h,B)  
(chosen with reference to the test data) is 
h 2040.8,  B 3= =  which gave RMSE=56.37 and so we 
might conclude that boosting N-W works reasonably 
well for this dataset. 
 
Confidence intervals: Here, we consider confidence 
intervals for N-W estimates. In particular, we present 
two naive approaches and a paired bootstrap strategy 
discussed by Härdle[23]. We firstly discuss the naive 
approaches. 
 
Table 2: Summary of results (RMSE values) from Dubois et al.[11], 

with page numbers as given. 

 
 
A totally naive method is to simply use 
Y±2×SD(Y)=(L, U)  

(in which the mean and SD are estimated from the 
training data). 
Using the kernel regression model we could simply use: 
ˆ ˆm(x) 2 (L, U)σ± =  

in whichσ̂ is estimated by CV. 
These methods (1 & 2) give, respectively, 
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Fig. 5: Residuals from fitted model for the test data (top left) and dependence of the residuals on the fitted values 

(top right). The spatial structure of the residuals is also shown with gray-scale colors (bottom left) 
dependent on the sign and absolute size (bottom right). 

 

 
 
Fig. 6: Left: cross validation estimates of RMSE for various h and various B. Right: fitted surface of boosted N-W 

estimator using (h, B) found from CV. 
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Fig. 7: Left: Correlogram of residuals from fitted quadratic surface, with Gaussian covariance function fitted by 

eye. Right: Fitted trend surface by generalized least squares. 
 
and these give fixed CI widths (U L− ) of 466.7 and 
278.7, respectively. Note that, although the coverage 
rate of these intervals is similar, the average width of 
the second naive method is much less. 
 A description of the naive bootstrap follows. Let 

i i{(x , y ), i 1, ,n}∗ ∗ = … be a sample, with replacement, 

from i i{(x , y ), i 1, ,n}= … . Taking B bootstrap samples 

of size n and forming a N-W estimate for each one at x, 
gives a population of B bootstrap estimates 

{ bm (x),b 1, ,B}∗ = … . From these latter we can then 

obtain an empirical α th percentile as the value t̂ (x)α  

such that 
B

b
b 1

1 ˆI[m (x) t (x)]
B α α∗

=

≤ =∑ , 

where I[A]  is the indicator of the event A, equal to 1 if 

A is true and 0 otherwise. Then, for any x, we could 

interpret / 2 1 / 2
ˆ ˆ(t (x), t (x))α α− as a (1 )100%α−  

confidence interval for m(x)  (interpolating as 

necessary for small B). 
 We have drawn 1000 bootstrap samples of size 
n 100=  (with replacement) and got 248 counts, but 
with a quite low meansize of 140. Of the 119 which lie 
outside the confidence intervals, 71 are outside the 
lower interval and 48 are outside the upper interval. 
However, although 248/367 is only 68% (rather than 
95%), note that the CIs are not simultaneous and those 
which are not in the CIs tend to be either clustered 
together, near the boundary, or are in regions where the 
density of test points is low; Fig. 8. However, the main 
cause of this rather poor coverage rate lies in the bias of 
the estimator. In particular, note that the above naive 
algorithm does not explicitly take into account accuracy 
when deriving the coverage rate. In fact, Hall[24] points 
out that the naive procedure is doomed to a poor 

coverage rate because of the bootstrap estimator 

 
Fig. 8: Test points which are inside 95% bootstrap 

confidence intervals (x) and outside (+). The 
dots indicate the training locations. 

 

m (x)∗  is not centered on m(x)  but on 

ˆ ˆm(x) m(x) (m(x))= +error . Hall[25] argues that 

undersmoothing is preferable to an explicit bias 
estimation step as a strategy for improving the coverage 
rate. But undersmoothing worsens the point estimate. 
So the conclusion seems to be that the value of h 
optimal for the coverage rate differs from that one 
optimized for point estimation. Actually, if in our case 
study h is reduced to 450, then the coverage increases 
to 75% and the mean width increases to 164. However, 
the RMSE becomes 77 and further reductions in h lead 
to numerical instability in the N-W predictor. 
 Recall that the boosted N-W estimator has a bias-
reduction property, so deriving confidence intervals for 
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the boosted estimate may yield improved coverage 
rates. In a similar manner to that described above, we 
can resample from the data and calculate a boosted N-
W estimate of the test data using the bootstrap sample 
(a “boosted bootstrap”). In order to follow this 
approach, we have drawn 1000 bootstrap samples of 
size 50 and estimated by using, for every sample, the 
CV-optimzed values of (h, B). The resulting confidence 
intervals have coverage 337/367=92%, with an average 
width of 234 (searching a grid of h [300,2400]∈  and B 
in the range (1,2,3,4). So there is good evidence that 
higher order bias potentialities of boosting can be 
conveniently employed to improve the coverage rate. 
 

CONCLUSIONS 
 
 The Swiss rainfall data are an extensively studied 
spatial dataset[11]. As seen, several approaches were 
employed to fit these data, both traditional and 
parametric like kriging and more recent nonparametric 
techniques. We have seen that locally adaptive 
techniques have been successfully employed for 
estimating the signal content of spatial data taken as a 
whole. This is additional evidence that a nonparametric 
analysis seems suitable for exploratory purposes in the 
selection stage of a parametric model as well as when 
the information on the specific case study does not 
allow parametric assumptions at all. 
 In this study we have proposed a new approach 
based on kernel smoothing and an adapted version of it 
by boosting. Our smoother was the popular N-W 
regression estimator with product kernels and cross-
validated bandwidths. Quite interestingly, the N-W 
smoother has given very good performance, ranking 
among the methods with the best behavior. Moreover, 
its boosted version drastically improves on the 
construction of confidence intervals. Note that all of our 
results have been obtained with an automated approach 
using cross-validation and the selection of bandwidth 
and number of boosting steps has worked well. Overall, 
we should not draw conclusions from only one dataset, 
particularly given various user-inputs which can vary in 
a subjective manner and further simulations are 
necessary. However, our results confirm that 
confidence interval construction based on the N-W 
estimator is still an open and quite challenging problem. 
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