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Abstract: The main objective of the study is the development of a linear filter to extract the signal 
from a spatio-temporal series affected by measurement error. We assume that the evolution of the 
unobservable signal can be modelled by a space time autoregressive process. In its vectorial form, the 
model admits a state space representation allowing the direct application of the Kalman filter 
machinery to predict the unobservable state vector on the basis of the sample information. Having 
introduced the model, referred to as a STARG+Noise model, the study discusses Maximum Likelihood 
(ML) parameter estimation assuming knowledge of the variance of the noise process. Consistent 
method of moments estimators of the autoregressive coefficients and noise variance are also derived, 
primarily to be used as inputs in the ML estimation procedure. Finally, we consider some simulation 
studies and an investigation involving sulphur dioxide level monitoring. 
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INTRODUCTION 
 
 The study is concerned with parameter estimation 
and smoothing of a spatio-temporal series corrupted by 
noise. In particular, we assume that y(s, t) is a spatio-
temporal process observed over time t and general 
location s within the geographical domain of interest D 
at a finite number of points, i.e. we consider y(s, t) at 
(si, t) for i = 1, 2, …, n and t = 1, 2, …, T. We assume 
the observed series is generated by the process 
y(s, t) = µ(s, t) + x(s, t) + e(s, t) (1) 
where µ(s, t) is a deterministic spatial trend, x(s, t) is a 
zero mean, L2-continuous, second order Gaussian 
stationary process; e(s, t) is a white noise measurement 
error with second moments 
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E[x(si, t) e(sj, t-h)] = 0 ,  ∀ si, sj, t, h  (3) 
 
 In (1), x(s, t) represents the variable of interest and 
constitutes the state or the signal process. In what 
follows, we will in general assume that t∈Z+, the set of 
positive integers and that s=(r, c)∈ Z2. Such setting is 
particularly well suited for the analysis of agricultural 
field trials or digital image data or, in general, for 
spatial data that are collected over regular lattices. 
However it can be extended to deal with point data 
collected with an irregular pattern, provided a suitable 
lattice is superimposed on the given area or reasonable 
methods of spatial weighting are considered[1]. 

 In this study the state process is assumed to be 
represented by a STARG (p,λ0,λ1,…,λp) (Space Time 
Autoregressive Generalised) model[2,3], stationary 
around a possibly time-varying deterministic spatial 
trend. Under   this   assumption,   expression    (1) for 
the   state  process will be referred to as a 
STARG+Noise model. Given the structure of the signal 
and considering assumptions (2)-(3), we also consider 
the estimation and the identifiability of model 
parameters. 
  
 Under normality assumptions for the signal and 
noise processes, we discuss maximum likelihood (ML) 
estimators under general boundary conditions. 
Following Dryden et al.[4], we also propose the Space-
Time Adjusted Maximum Likelihood Estimator (ST-
AMLE), which is an approximation to the ML 
estimators, provided the noise variance is known or can 
be consistently estimated. The ST-AMLE has the 
appeal of being robust to the specification of the noise 
process distribution. The remaining portion regards the 
state space formulation of the model and provides some 
computational insights to obtain a block Kalman filter. 
Consistent moment based estimators of the 
autoregressive coefficients and noise variance are also 
derived, which are primarly used as starting values for 
the ML estimation procedures. Finally, we carry out a 
simulation study to assess the performance of the 
proposed estimators and a demonstration of the 
methodology using data on sulphur dioxide levels in 
Milan.  
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THE STARG+NOISE PROCESS 
 
Specification of the model: In space-time data 
analysis, one class of models that has been found useful 
is the Space Time Autoregressive (STAR) family. The 
characteristics and properties of such models are well 
documented[5], but the lack of simultaneous spatial 
interdependence structure was identified as a weakness 
of these models. The deficiency is particularly serious 
in situations where data have been aggregated across 
both a region and a period of time. A typical example 
concerns environmental data in which there is quite 
likely to be correlation between neighboring regions 
within the same time of observation. Failure to handle 
this spatial structure at zero time lag will result in a 
deficiency in the model. To address this problem, we 
assume that the zero-mean unobserved state process x(r, 
c, t), (r, c, t) ∈ Z2×Z+ evolves in space and time 
according to the STARG(p,λ0,λ1,…,λp) model which 
involves the introduction of lagged spatial variables at 
time lag zero[2,3] 
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where p is the temporal order of the model; λh is the 
spatial order of the h-th autoregressive component; κ = 
(lk, mk) is a spatial displacement operator; ∆k is the 
distance defining the k-th order set of neighbours, given 

a distance measure on Z2,   . ; φhlkmk is the auto-

regressive parameter at temporal lag h and spatial lag 
(lk, mk); Nk(r, c) is a scale factor equal to the number of 
k-th order neighbours of spatial unit (r, c); u(r, c, t) is a 
homoskedastic space-time white-noise process with 

variance 2
uσ , independent of the x’s.  

 To ensure identifiability the following restrictions 
are imposed on the autoregressive coefficients 
φ000 ≡ 0 

φhlkmk ≡ φh,-lk,-mk. 
 Note that when the further condition φ0lkmk ≡ 0 is 

considered, expression (4) represents a STAR model[5]. 
Furthermore, when λ0 = λ1 = … = λp = λ say, the model 
will be referred to as a complete STARG(p, λ). We 
shall write Λ for the total number of autoregressive 
parameters. 
 To deal with possibly anisotropic processes the 
autoregressive coefficients φ are allowed to vary not 
only with lag in time and space but also with direction 
in space. However, the isotropic specification can be 
immediately derived from (4) by imposing the further 

restrictions that φhlkmk = φhk for each (lk, mk) such that 

κ  = ∆k, ∀h,k. As the isotropic specification is nested 

in the anisotropic one, expressions will be mostly given 

with reference to the general anisotropic case. 
Introducing the displacement operators the model can 
be given the following compact formulation 

φ(B)xrct = urct (5) 

where φ(B) is a polynomial in the three-dimensional 
displacement operator B = [Br Bc Bt]′ with expression 
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where the individual displacement operators are defined 
by the following general expressions 
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 The process is stable and hence asymptotically 
stationary, if the characteristic polynomial φ(B) has all 
the roots outside the unit circle. Stable processes can be 
given the following convergent moving average 
representation 
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from which the process autocovariance generating 
function (AGF) is readily seen to be 
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 The spectral density of the process is directly 
linked to its AGF and has expression 

)(z(z))2(
)(

3

2

∗φφπ
σ

=ω u
x   f   (7) 

where ω =[ω r,ω c,ω t]′ and z = [e-iωr, e-iωc, e-iωt]′ 
and z∗ is the complex conjugate of z. 
 Considering a finite rectangular portion of the 
process (4) with R rows and C columns, sorting the 
lattice cells by lexicographic order and stacking the 
observations for each time period, the model can be put 
in the following vector form 
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where xt = [x1t, x2t,…, xi-1t, xit, xi+1t,…, xn-1t, xnt]′, xit = 
x(r, c, t) with i = (r-1)C+c (r = 1, 2,…, R; c = 1, 2,…, 
C), n = RC and ut defined accordingly. The n×n 
matrices W lkmk have non zero entries wlkmk(i,j) = 

)(iNk
1−  if j = i+lkC+mk, 1≤ i,j ≤n and are defined so 

that ∑W lkmk = Wk. The summation entends over all κ 

such that κ  = ∆k and Wk is the usual k-th order spatial 
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weights matrix with equal scaled weights[5]. 
Consequently, in the isotropic case, model expression 
simplifies to 

∑∑
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φ uxWx    (9) 

as in Di Giacinto[2]. For example, the 1st order isotropic 
STARG(1,1,1) model has three autoregressive 
parameters: 1st order temporal φ10, 1

st order spatial φ01, 
and 1st order spatio-temporal φ11 parameters. 
Finally, to complete the definition the STARG+Noise 
model is given by (1), with the noise defined in (2), (3) 
and x(r, c, t) follows the STARG model of (4). 
 
Identifiability: A general issue in errors-in-variables 
models refers to the identifiability of the structural 
parameters based on the likelihood function of the 
observable process. Now, following a common ap-
proach in the literature[6,7] we will only deal with zero 
mean purely stochastic Gaussian processes, for which 
the identification problem involves the assessment of 
whether the autoregressive coefficients and the shock 

and error variance parameters 2uσ  and 2
eσ  can be 

uniquely recovered from the covariance function or, 
equivalently, from the spectral density function of the 
observed process. 
 In time series analysis, when the unobservable 
signal has an autoregressive structure the errors-in-
variables model is known to be identifiable[7]. Based on 
the approach of Anderson and Deistler for rational 
spectral density functions, the following proposition 
proves that an analogous result holds also in the spatio-
temporal case. 
 
Proposition 1: Let  δ (φ (z)) indicate the degree of φ (z) 
and ΦΦΦΦ⊂RΛ indicate the  admissible parameter space for 
the vector φ of the autoregressive coefficients. The 

model parameters 2
eσ , 2

uσ  and φ∈ Φ Φ Φ Φ are identifiable  

if δ (φ(z))>0.  
 
Proof: Given assumptions (2)-(4), the spectral density 
of the observable process, apart from a constant, has 
expression 

fy(ω) = fx(ω)+fe(ω) = 2
uσ φ-1(z)φ-1(z*)+ 2

eσ  (10) 

where fy(ω) and fx(ω) have the same poles. Since the 
coefficients of the polynomial φ (z) can be uniquely 
recovered from the poles of fy (ω), they are identified. 
Consequently, we can write 

fy(ω)φ(z)φ(z*) = 2
uσ + 2

eσ φ (z)φ (z*) (11) 

and equating coefficients corresponding to non zero 
powers of z, which exist under the assumption that δ>0, 

gives 2
eσ . Finally, once 2

eσ  is identified, 2
uσ  is given 

by the usual factorization of fy(ω)- 2
eσ . 

Separability conditions: In modelling space-time 
processes one often makes use of separable covariance 
structures. Letting ξ = vec([ξ1, ξ2,…, ξT]), its space-
time covariance matrix ΓΓΓΓ = E(ξξ′), has a separable 
structure when 
ΓΓΓΓ = ΣΣΣΣT ⊗ ΣΣΣΣS (12) 
where ΣΣΣΣS is the covariance matrix of a purely spatial 
process and ΣΣΣΣT is the covariance matrix of a purely 
temporal process. As can be immediately verified, 
when the process is assumed to evolve over time 
according to a p-th order autoregressive model, 
assuming a separable covariance is equivalent to 
postulating the following linear model for the observed 
spatial time series 
 
α(B)ξt = εt 
 
where εt is a zero mean multivariate white noise process 
with autocovariance function E(εtε′t+h) = ΣΣΣΣS if h = 0 and 
E(εtε′t+h) = 0 elsewhere and α(B) is the scalar 
autoregressive polynomial α(B) = 1-α1B-α2B

2-…-αpB
p, 

where α1, α2,…, αp are scalar parameters and B is the 
usual backward shift operator. 
 In the case of the STARG process, the VAR 
(Vector AutoRegressive) form has the following 
expression 
 
A(B)xt = ut (13) 
 
where A(B) is the matrix polynomial A(B) = A0-A1B-

A2B
2-…-ApB

p, E(utut′) = 2
uσ I n (I n the n-dimen-sional 

identity matrix) and 
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 Pre-multiplying by 1
0
−A  (the invertibility of A0 can 

always be achieved provided adequate constraints are 
imposed on model coefficients), the model can be put in 
the equivalent form  
 
Ã(B) = ũt  
with Ã(B) = I - Ã1B- Ã2B

2-…- ÃpB
p, ut = 1

0
−A ut and 

Ãh= 1
0
−A Ah, h = 1, 2,…, p. Of course, the modelling of 

temporal interaction by means of a matrix polynomial 
allows for much more general dependence structures 
than those that can be dealt with using a separable 
covariance assumption. However, separable structures 
can be obtained from the STARG specification by 
imposing appropriate parameter constraints, that can be 
derived under the assumption that the matrix 
polynomial Ã(B) reduces to a scalar polynomial α(B), 
implying that the following equality holds  
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Ã(B) = α(B)I                (14) 
 Equating coefficients on both sides of equation 
(13) leads to the following set of matrix equalities 
Ãh = αhI  ,   h = 1, 2,…, , p,  from which constraints on 
model coefficients can be derived.  To illustrate the 
issue let us consider the case of an isotropic 
STARG(1,1,1) with parameters: φ10, φ01 and φ11. In this 
case we have Ã(B) = I - Ã1B and Ã1 = 1

0
−A A1, where 

A0 = I - φ01W1 and A1 = φ10I+φ11W1. 
To generate a separable covariance the following 
relation must hold 

Ã1 = 1
0
−A A1 = α1I  

which implies A1 = α1A0, i.e. matrix A1 must be 
proportional to A0. In this case, imposing 
proportionality amounts to setting 

I−φ 01W1 = φ 10 
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and consequently, the isotropic STARG(1,1,1) model 
reduces to a separable model when the three 
autoregressive coefficients lie on the surface in R3 with 
expression 

10
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 When the previous equality holds, the covariance 
matrix of the process has precisely the form given by 

expression (12), with ΣΣΣΣS = E(ũtũt′) = 2
uσ (A0′A0)

-1 and 
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so that it represents the composition of a univariate first 
order autoregression in time and a simultaneous first 
order autoregression in space, equivalent, for lattice 
data, to a third order Gaussian Markov random field 
with specific parameter constraints. Note that the 
separable STARG model is a parsimonious model. 
 Under these constraints the STARG process 
reduces to a sequence of time-correlated Gaussian 
Markov random fields and the choice between the 
separable and non-separable model specifications 
becomes essentially an empirical matter that can be 
subject to hypothesis testing based on the available 
data. In particular, given the fact that the separable 
specification is fully nested in the general STARG 
formulation, it can easily be tested against the 
unrestricted model by means of the usual likelihood 
ratio or Wald test criteria. 

MAXIMUM LIKELIHOOD ESTIMATION 
Maximum likelihood estimation with toroidal 
boundary condition: Setting the initial values of the 
process equal to their unconditional zero mean and 
assuming that T contiguous observations in time are 

available for each location, the STARG(p, λ0, λ1,…,  λp) 
model can be written as 
A x  = u  (16) 

where x  = vec([x1, x2,…, xT]), u  = vec([u1, u2,…,uT]), 

A = (I⊗A0) − ∑
=

⊗
p

h
hh

1

)A(C with Ch a T×T matrix 

having ones along the h-th lower diagonal and zero 
elsewhere. 
 With analogous notation, the STARG+Noise 
model expression becomes 
y  = µµµµ + x +e     

with y  =  vec([y1, y2,…, yT]), µµµµ = vec([µ1, µ 2,…, µ T]) 

and e  = vec([e1, e2,…, eT]). 

 The mean component is assumed to be represented 
by a parametric spatial trend f(s, βt) of general 
functional form and possibly time-varying parameters 
βt. Assuming a polynomial approximation for f we can 
set 
µt = Dβt 
where βt is a d-dimensional vector of coefficients and D 
is an n×d suitable design matrix. As a consequence we 
have 
µ = Dβ (17) 
where D = (IT⊗D) and β = vec([β1, β2,…, βT]). When 
the trend coefficients are fixed over time, i.e. when β1 = 
β2 =… = βT = β, D in (17) simplifies to (ιT⊗D), with ιT 
a T-dimensional vector of ones. 
 Assuming a Gaussian distribution for both state 
and noise processes, the log-likelihood function of the 
STARG+Noise model parameters has expression 

l( y |φ, 2
uσ , 2

eσ ;Y0)= 

−
2

nT
log(2π)−

2

1
log(|ΩΩΩΩ|)−

2

1
( y −µ)′ΩΩΩΩ-1( y −µ)       (18) 

where Y0 = [y0, y-1,…, y-p+1], φ is the vector of the 
autoregressive coefficients and 
ΩΩΩΩ = E[( y −µ)( y −µ)′] = E( x x ′)+E( e e ′) 

                                     = 2uσ (AA′)-1+ 2
eσ I     

 If toroidal boundary conditions are assumed, the 
computational burden is low – of order of O(nT 
log(nT)) steps − through use of the 3D discrete Fourier 
transform[4,8]. Accordingly, Ch and W(.) are slightly 
modified to take into account the required edge 
corrections[8]. By the matrix spectral decomposition 
theorem, we can write 

 Ω Ω Ω Ω-1 = ( 2
uσ PQ-1P′+ 2

eσ I )-1(remembering that PP′ = I ) 

       = P( 2
uσ Q-1+ 2

eσ I )-1P′ = PQP′ 

where Q = diag(q1,…, qn), qi = ( 2
uσ 1

iq− + 2
eσ ) the i-th 

diagonal element of ( 2
uσ Q-1+ 2

eσ I ) and qi is the i-th 

eigenvalue of AA′. The log-likelihood will be therefore 
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l( y ;φ, 2
uσ , 2

eσ |Y0)= −
2

nT
log(2π)−

2

1
∑

=

nT

1i
ilog )(q − 

   
2

1
( y −µµµµ)′PQP′( y −µµµµ)            (19) 

 Hence, we can use the 3D discrete Fourier 
transform to evaluate the log-likelihood and the ML 
estimates of the parameters can be found by numerical 
maximization. 
 

EXACT MLE FOR GENERAL 
BOUNDARY CONDITIONS 

 
 In most cases toroidal boundary conditions are 
used as a computationally convenient approximation of 
more realistic boundary conditions. In the following, 
we will consider estimation using Dirichlet or other 
boundary conditions. Notice that the same results hold 
for any other boundary conditions that are different 
from the toroidal one. For a review of the most 
commonly employed boundary conditions see Moura 
and Balram[20]. 
 The log-likelihood function of the observable 
process (see eq. 18), including the determinant and 
inverse of a non sparse nT×nT matrix, can become 
computationally intractable even for moderate sample 
dimensions. A direct calculation would need O((nT)3) 
steps. However, in the case of Gaussian measurement 
noise, it is possible to reduce the computational effort to 
O((nT)2) steps[4], by noting that in general, for a noisy 
model, the log-likelihood can be written as follows: 

lY(y| φ, 2
uσ , 2

eσ ) = 

log f(x,y| φ, 2
uσ , 2

eσ )-log f(x| y, φ, 2
uσ , 2

eσ ) (20) 

 
where f(x,y|·) denotes the joint p.d.f. of X and Y and f(x| 
y,·) denotes the conditional p.d.f. of X given Y. Since 
Equation (20) holds for all x, we can evaluate the right-
hand side setting x equal to its constant mean µ. With 
reference to our STARG+Noise model, the first term of 
the right-hand side is evaluated in O ((nT)2) steps, since 
f( x = 0 , y |·) = f( x = 0 |·)f( y | x = 0 ,·) which only 

requires the calculation of the determinant of the n×n 
matrix A0. 
 Furthermore, using the usual results for the 
conditional multivariate normal distributions, we have 
that f( x | y ,·) can be evaluated in O((nT)2) steps. In 

fact, by putting z  = [ 'x y ′ ]′ and assuming that all the 

requested inverses exist, it is possible to derive the 
elements of the partitioned matrix 
 

1−
zΩ  = 









yyyx

xyxx

ΘΘ

ΘΘ

 

 Hence, the conditional density f( x | y ,·) is also a 

Gaussian Markov Random Field (GMRF), with ΘΘΘΘxx = 

y|xΘ  = 1−
y|xΩ  = ( 2−

uσ A′A)+ 2−
eσ I  and conditional 

mean 
y|x

µ  obtained as solution of the large but sparse 

and positive definite linear system ΘΘΘΘxx y|x
µ  = −ΘΘΘΘxy y , 

with ΘΘΘΘxy = 2−
eσ I . 

 We use the notation EMLE to denote the Exact 
Maximum Likelihood Estimator. 
 
The adjusted space-time ML estimator: An 
alternative ML estimator is the Space-time Adjusted 
Maximum Likelihood Estimator (ST-AMLE). It is 
obtained as a direct extension of the AMLE derived in 
the spatial context by Dryden et al.[4]. The main feature 
of this estimator is that it can be applied under very 
general conditions on the noise, provided we are able to 
estimate only the first two measurement noise 
moments. 
 From a theoretical standpoint, ST-AMLE is based 
upon the possibility of expressing the likelihood 
function of the unobservable state process through the 
observed variableY . Using (1)-(3), we get 

xl ( ey − ; φ, 2
uσ | Y0) = −

2

nT
log(2π 2

uσ )+Tlog(|A0|)− 

                    
22

1

uσ
( y − e−µ)′A′A( y − e−µ) 

=−
2

nT
log(2π 2

uσ )+Tlog(|A0|)− 22

1

uσ
[( y −µ)′A′A( y −

µ)+2 e′ A′A( y −µ) − e′ A′A e ] 

 

Now, since E[ e′ A′A e ] = E[ e′ A′A y ] = 2
eσ tr(A′A), it 

follows that 

xl ( ey − ; φ, 2
uσ | Y0)= 

         −
2

nT
log(2π) −

2

nT
log( 2

uσ )+Tlog(|A0|) − (21) 

   
22

1

uσ
[( y −µ)′A′A( y −µ)− 2

eσ tr(A′A)]+Op((nT)1/2) 

= clx ( y ; φ, 2
uσ | Y0) 

which, apart from an adjustment term in the sum of 
squares component, is equivalent to the likelihood 
function of a STARG process in the observable variable 
Y. The first order derivative conditions for the 
maximum of the adjusted log-likelihood are 

β∂
∂ clx

 = 
2

1

uσ
D′A′A( y − µ) = 0 
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kkmhl

cl

φ∂
∂ x

 = −Ttr( 1
0
−A W lkmk)δ0h+

2

1

uσ kkmhl
y′ A y  

                    −
2

1

uσ
2
eσ tr[(Ch⊗W lkmk)A] = 0 

2
u

cl

σ∂

∂ x
 = −

22 u

nT

σ
+

42

1

uσ
[ y ′A′A y − 2

eσ tr(A′A)] = 0 

where 
kkmhl

y = (Ch⊗W lkmk) y ; h = 0, 1,…, p; k = 0, 

1,…, λh. 
 If the noise variance is assumed to be known a 
priori , the adjusted likelihood can be directly 
maximized to obtain the ST-AMLE estimators of 
remaining parameters. If the noise variance is unknown, 
a consistent estimator can be employed in its place, 
leaving the asymptotic properties of the estimators 
unaffected. 
 From the first order conditions closed form 
solutions for the maximum can be obtained for the 
trend coefficients and innovation variance and these 
have expressions 
 

β̂  = (D′A′AD)-1D′A′A y  (22) 

2
uσ̂  = 

nT

1
[( y − µ)′A′A( y − µ) − 2

eσ tr(A′A)] (23) 

Substituting expressions (22) and (23) for β̂  and 2
uσ̂  

in expression (21) we have 
 

clx  = const+Tlog(|A0|)− 

2

nT
log[( y − µ̂ )′A′A( y − µ̂ )− 2

eσ tr(A′A)]             (24) 

where µ̂  = D β̂ . 

  
 Since µ̂  is a non linear function of the AR 

coefficients φ, maximization of (24) is not an easy task, 
but it can be greatly facilitated by the adoption of the 
following stepwise optimization procedure: 

* a preliminary estimate 
0

β̂  of β̂  is computed 

setting A = I  in (22), i.e. taking the OLS estimates 

of the regression of y  on D; given the 

deterministic nature of D the OLS estimators are 
consistent and thus provide a valid and easily 
computed starting point; 

* 
0

µ̂  = D
0

β̂  is substituted for µ̂  in (24) and this is 

maximized through an iterative search algorithm 
(e.g. a Newton-Raphson iterative procedure) to 

give estimates 0φ̂  of φ̂ ; 

* based on the estimates 0φ̂  the matrix 0Â  is 

derived and the GLS estimates 
1

β̂  are computed 

from (22); 
* steps 2 and 3 are iterated until convergence is 

achieved. 
 Upon convergence, hypothesis tests on model 
coefficients β  and φ can be based on the asymptotic 

covariance matrices of the estimators 

VAR[ β̂ ] = 2
uσ (D′A′AD)-1 

VAR[ φ̂ ] = 
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Filtering and smoothing in a state-space framework: 
From expressions (1) and (13) it is straightforward to 
obtain the state space representation of the 
STARG+Noise model[9] through the following 
equations 
X t = ΦΦΦΦX t-1+Ut    state equation (25) 
yt = HX t+et       measurement equation (26) 
where X t is the state vector, ΦΦΦΦ is the transition matrix, 
H is the measurement matrix and Ut is the model noise; 
their structure is as follows: 

X t = 
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0
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 In the framework of state-space models, 
estimation, filtering and smoothing algorithms are 
naturally performed by means of the well-known 
Kalman filter[10]. Following Shumway and Stoffer[11], 
Stoffer[12] also combined the EM algorithm with 
Kalman filter to derive a recursive procedure for 
estimating the parameters of a STARMAX model as 
well dealing with missing data. The implementation of 
such algorithms is not a difficult task on its own; 
however, for huge spatial temporal datasets, the filter 
dimensionality as well as matrix inversions may 
suggest the adoption of some “tricks” which can reduce 
the computational burden. 
 Thus, we will briefly deal with some relevant 
computational simplifications.  
 
1. Inversion of A0: The task of inverting A0 is not 
always a big problem, but it may require a strong 
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computational effort for large lattice sizes (say, e.g., 
256×256); in these cases we suggest adopting an 
approximate inversion for A0 using the corresponding 
convergent series. Let us define 

∑ ∑
= ∆=

=
0

0
0  

λ

κ
φ

k
mlml

k

kkkk
WS  

i.e. A0 = (I  - S). Now, we know that 

0SAS)(IS →⇔=−=
∞→

∞

=

−−∑ j

j
i

i lim    
0

1
0

1  . 

 It is often very difficult to find the conditions under 
which the generic term of the series converges to 0, but 
a sufficient condition which ensures the possibility to 
adopt the convergent series approximation is[13,14] 

0S →⇒<
∞→= ∆=

∑ ∑ j

j
k

ml

k

kk
lim    1

0

0
0

λ

κ
φ   . 

In this case, the following holds 

1
0

00

−
∞

==
=≈∑∑ ASS

i

i
a

i

i   , 

where a may be chosen to be a low integer (10≤a≤15) 
with a very low loss of precision, since the convergence 
of Si is very fast. 
 
Implementation of a block Kalman filter: For the sake 
of simplicity, we will treat the problem for the 
STARG(1,1,1) model, for which the transition matrix is 
represented by A1; provided p and λ0, λ1,…¸ λp are 
small, the extension to higher temporal order models is 
straightforward at a low additional computational cost. 
 If we are prepared to accept a small loss of 
precision, the following block Kalman filter produces 
good results in a computationally efficient way. A point 
worth noting is that the Markovian structure of A0 and 
A1 is very helpful for our problem. In fact, given the 
space-time n×T data matrix, where the sites si; i = 1, 
2,…, n are stacked in lexicographic order, we exploit 
the Markovian structure of the model to select, for each 
observation time t, the same block of v sites in yt; t = 1, 
2,…, T with v a subset of consecutive rows of the lattice 
such that n/v is a suitably large integer. We then embed 
our block into a guard area given by one upper and one 
lower row of the lattice, as shown in Fig. 1. 
 When implemented this way, the block Kalman 
filter has a dimension (v+2×C) instead of n = R×C, 
where as aforementioned R and C are, respectively, the 
numbers of lattice rows and columns. Accordingly, we 
extract the corresponding (v+2×C)×(v+2×C) blocks 

from the matrices 1
0
−A  and A1, which are involved in 

the recursion. 
 Notice that, owing to the structure of A0, its inverse 

has entries 01
0 →−

),(,A ji  for (i,j) outside the 

neighbourhood of site si. For a (32×32) lattice, a spatial 

parameter φ01 = 0.5 and a block of v sites represented 
by two rows of the lattice, Fig. 2 shows the the 

complete structure of 1
0
−A  and its residual part which is  

 
Fig. 1: The block v and the lower and upper guard 

area for a (8×8) lattice 
 

 

 
Fig. 2: (Above) Structure of the inverse of the A0 

matrix, for a (32×32) lattice and a spatial 
parameter φ01 = 0.5. (Below) The entries of 

1
0
−A  which are not involved in the reduced 

Kalman filter for the same model 
 
not involved in the reduced Kalman filter procedure. As 
is evident, only a small amount of very small entries are 
left out and hence  

f(yt(v)|block Kalman f.)≈f(yt(v)|ordinary Kalman f.) 
 
Kalman filtering to evaluate the likelihood function: 
The Kalman filter provides a computationally 
convenient approach for evaluating the likelihood 
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function for state space models[10]. If the initial state X0 
and the innovations Ut and et are independent 
multivariate Gaussian, then the distribution of yt 
conditional on X t and ℑt-1 is 

yt|X t,ℑt-1~MVN(H 1−tt|X̂ ;HΣΣΣΣt|t-1H′+R), t=1,…,T      (27) 

where ℑt-1 ≡ (yt-1, yt-2,…, y1, X t-1, X t-2,…, X0), ΣΣΣΣt|t-1 is 

the MSE of the state vector forecast 1−tt|X̂  obtained 

via the Kalman filter and R is the measurement noise 
covariance matrix. From (27), following the block 
Kalman filter strategy described above, it is 
straightforward to construct the sample log-likelihood 

),X|(y
/

1
1 1

 log −
= =

ℑ∑∑ ttt

vn

i

T

t
if  (28) 

where fi(·) is the Gaussian density of yt|X t,ℑt-1 evaluated 
at the i-th block consisting of v sites. 
 Expression (28) represents an appealing procedure 
to compute the likelihood, however, the presence of the 
double summation leads to slow numerical 
maximization so its use is not recommended in practice 
for data sets with large spatial dimension. 
 
Generalized moments estimation: When a priori 
information on the magnitude of the measurement error 
is not available, a consistent estimator of the noise 
variance is needed to implement the adjusted maximum 
likelihood estimation procedure. Moreover, given the 
need for an iterative search procedure to obtain the ST-
AMLE of the autoregressive coefficients, the 
availability of consistent preliminary estimators of these 
parameters can reduce the computation time 
substantially, especially when the spatial sample is 
large. Here, the issue of consistent estimators of AR 
coefficients and noise variance is considered based on 
relating the moments of the observable process to the 
parameters of the underlying process. For the sake of 
brevity the exposition focuses on the isotropic case, but 
analogous results hold for the anisotropic model. 
 
The isotropic case: In the case of the isotropic model 
on Z2 and by analogy, in the case of an irregular spatial 
configuration, the preliminary estimation can be based 
on the spatio-temporal autocovariance function of the 
observed process yit, i = 1,…, n; t = 1,…, T. Using the 
definition of Pfeifer and Deutsch[5] the autocovariance 
function has expression 

y
skvg  = E(Lsyit Lkyit-v) 

where Lk is the spatial lag operator of order k, defined 
by the expression 

Lkyit = ∑
=

n

j
jtk yjiw

1

),(  

 Setting yu
kg  = E(uit Lkyit), the following set of non 

linear equations relating the Λ+2 isotropic model 

parameters to the space-time covariances yg⋅  and yug⋅ , 

can be obtained by E(Lsyit-v yit) for v = 0, 1,…, V; s = 0, 
1,…, Sv  

y
vsg 0  = ∑∑

= =

p

h k
hk

h

0 0

λ
φ ( y

hskvg − − 2
eσ δ0sδ0kδ0v-h)+ 

                         yu
sg δ0v+

2
eσ δ0sδ0v (29) 

where δij is the Kronecker’s delta. 
 The system, derived from the autocovariance 

function of the underlying STARG process xskvg  = 

E(Lsxit Lkxit-v), has M = ∑ =
V
v vS0  equations in Λ+2 

variables and is expressed in terms of observable 

covariances y
skhg , where, given assumptions (2)-(3), 

y
skhg  = x

skhg + 2
eσ , if s = k = h = 0 and y

skhg  = x
skhg  

elsewhere. From the general covariance system, when 
v>0 and s≠0 the following sub-system can be 

extrapolated, consisting of M1 = ∑ = −V
v vS1 1)(  linear 

equations with expression 
g1 = ΓΓΓΓ1φ (30) 
where 

g1 = 
1 2101 01 102 02 10 0, , , , , , , ,

V

y y y y y y
S S V S Vg g g g g g

′
  … … … …  
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 This is a set of Yule-Walker type equations that do 

not involve the parameters 2uσ  and 2
eσ  and provides a 

set of moment restrictions that the autocovariance 
function of a STARG process must satisfy. 
 When exactly Λ moment restrictions are imposed, 
the system (30) can be directly solved to give the φ 
coefficients in terms of the observable autocovariances, 
obtaining a Yule-Walker type estimator, with 
expression 

φ~  = 1
1
−
Γ̂ 1ĝ  (31) 

where 1
1
−
Γ̂  and 1ĝ  are obtained from ΓΓΓΓ1 and g1 by 

replacing theoretical covariances yskhg  with the  

 
corresponding sample estimators 
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y
skhĝ  = ∑ ∑

= +=

n

i

T

ht
it-hkits y LyL

nT 1 1

1
 . 

 For stationary and ergodic processes the 

autocovariances y
skhg  can be estimated consistently 

from the corresponding sample statistics and 

consequently the Yule-Walker estimators φ~  will be 

consistent. 
 If M1>Λ covariance restrictions are imposed, a 
generalized method of moments estimator can be 
derived by minimizing an appropriate distance function  

f : RR 1 →M , i.e. by setting 

≈
φ  = 

φ
min arg f( 1ĝ − 1Γ̂ φ)   . 

 Following Klajisen and Prucha[15], we choose the 
following simple quadratic form for the function f(·) 

≈
φ  = 

φ
min arg ( 1ĝ − 1Γ̂ φ)′( 1ĝ − 1Γ̂ φ) 

from which the Generalized Moment Estimator is 
simply given by the least squares solution of the 

overidentified system 1ĝ  = 1Γ̂ φ, i.e. 

≈
φ  = ( 1Γ̂′ 1Γ̂ )-1

1Γ̂′ 1ĝ    . (32) 

 The generalized moment estimators, exploiting 
more sample information than the standard Yule- 
Walker estimators, are expected to be more efficient, 
altough the asymptotic properties of the two estimators 
and their respective perfomance in finite samples 
remain to be investigated. 
 Setting v = 1, 2,…, V and s = 0 a second subsystem 
can be extracted from (30). This system is composed of 

V equations expressing the noise variance 2
eσ  

y
vg00  = φv0(

yg000− 2
eσ )+ ∑

≠ ),(),( 0

     
vkh

hkφ y
hkvg −0  

in terms of observable covariances and unknown 
autoregressive coefficients. Replacing the latter with 

consistent estimators φ , like φ~  or 
≈
φ  above, a 

consistent method of moments estimator can be 
derived. When only the v-th equation is used the 
following expression for the estimator gives 

2
ve,

~σ  = yg000ˆ − 1
10
−φ 



 y
vg00ˆ −

( , ) ( ,0)
hk

h k v

φ
≠
∑

y
hkvg −0ˆ     




=ϕv.(33) 

 When a system with V>1 equations is considered, 
in analogy with the previous case, we have the 
overidentified system 

ϕ = ιιιιV
2
eσ  

where ϕ = [ϕ1, ϕ2,…, ϕV]′ and ιιιιV is a V-dimensional 
vector with unit elements. Also in this case a 

generalized moment estimator can be obtained from the 
least squares solution of the system, yielding 

2
e

~~σ  = V-1

∑
=

σ
V

1v

2
v,e

~  (34) 

i.e. the simple arithmetic mean of the estimators 2
ve,

~σ  

for v = 1,…, V. Although consistent, the method of 

moments estimators of 2eσ  has the disadvantage that it 

is not constrained to yield positive results and this is 

more likely to happen the smaller is 2eσ . The 

generalized moment estimator, being an average of the 

moment estimators 2
ve,

~σ will be less variable in general 

and consequently it should reduce the frequency of the 
occurrence of negative results in finite samples. 
 

The anisotropic case: Defining y
ijvγ  = E[yrct yr-i ,c-j,t-v], 

yu
ijγ  = E[urct yr-i ,c-j,t-v] the following set of equations 

relating the parameters of the anisotropic model to 
space-time autocovariances can be derived by taking 
expectations for i =−I, −I+1,…, −1, 0, 1,…,I−1, I; j = 0, 
1,…, J; v = 0, 1,…, V  

y
ijvγ  = ( )2

, , 0 0 0
0 0

 
h

k k k k k k

k

p
y

hl m i l j m v h e i l j m v h
h k

λ

κ
φ γ σ δ δ δ− − − − − −

= = =∆

−∑∑ ∑   

                                vmjliev
yu
ij kk 000

2
0 δδδσδγ −−++  

 The system has the same structure of (29) and the 
derivation of method of moments estimators of 

autoregressive coefficients φ and 2
eσ from the 

appropriate sub-systems follows applying the same line 
reasoning given for the isotropic case. 
 

SIMULATION STUDIES 
 
The isotropic case: In order to test the performance of 
the estimators we have selected some example 
situations. In particular, for 8×8 and 16×16 regular 
lattices and T = 30, we have first simulated 100 samples 
from an isotropic STARG(1,1,1)+Noise model (9) with 
parameters: φ01 = 0.5; φ10 = −0.35; φ11 = 0.45 and 2

uσ  = 
1. For all the simulations, the noise variance parameter 

2
eσ  has been fixed to produce a Log Signal-to-Noise-

Ratio (SNR) equal to 5 dB, where SNR is the log of the 
ratio of the signal variance and the noise variance. In 
each simulation the measurement noise variance 2

eσ  
was fixed as being equal to its true value. Furthermore, 
in all cases the optimization procedure was performed 
by setting the starting parameter values at output of the 
Yule-Walker type procedure outlined before. The 
means and the standard errors (in brackets) of the 
estimated parameters are shown in Table 1. As can be 
seen, the standard deviations decrease as the lattice size 
becomes larger.  
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Table 1: The means (and standard errors) of the parameter estimates from 100 simulations of an isotropic STARG(1,1,1)+Noise model. The 

true parameters are φ01 = 0.5; φ 10 = −0.35; φ11 = 0.45 and 2
uσ  = 1 

Lattice Size 8 × 8 16 × 16 
 ------------------------------------------------------------ --------------------------------------------------------------------------------- 

Method φ01 φ10 φ11 
2
uσ  φ01 φ10 φ11 

2
uσ  

EMLE 0.495 -0.353 0.461 0.999 0.494 -0.343 0.444 1.004 
 (0.028) (0.032) (0.043) (0.029) (0.017) (0.015) (0.024) (0.011) 
ST-AMLE 0.501 -0.357 0.464 0.955 0.506 -0.351 0.456 0.954 
 (0.035) (0.036) (0.048) (0.070) (0.018) (0.016) (0.026) (0.026) 
TOROIDAL 0.490 -0.305 0.404 1.033 0.493 -0.326 0.430 1.018 
 (0.030) (0.030) (0.053) (0.031) (0.021) (0.015) (0.024) (0.013) 
KALMAN 0.447 -0.316 0.400 1.026 0.477 -0.325 0.429 1.016 
 (0.028) (0.028) (0.042) (0.019) (0.018) (0.014) (0.021) (0.015) 

 
Table 2: The means (and standard errors) of the parameter estimates 

from 100 simulations of a homogeneous 
STARG(1,1,1)+Noise model. For three different lattice 
sizes, the field was simulated with T = 20 temporal 

observations. The true parameters are 
v
01φ  =0.3; 

h
01φ  = 

−0.15; φ10 =−0.3; 
v
11φ  = 0.4; 

h
11φ  = 0.2 and 

2
uσ  = 1 

EMLE T = 20 
 ----------------------------------------------------------- 
 Lattice Size 
 -------------------- ------------------- -------- 
Parameters 8×8 16×16 32×32 

v
01φ = 0.3 0.248 0.268 0.282 

 (0.069) (0.043) (0.018) 
h
01φ = −0.15 -0.127 -0.145 -0.148 

 (0.062) (0.040) (0.019) 

φ10 =−0.3 -0.297 -0.297 -0.297 
 (0.040) (0.015) (0.008) 

v
11φ = 0.4 0.300 0.357 0.384 

 (0.105) (0.056) (0.029) 
h
11φ = 0.2 0.172 0.186 0.198 

 (0.124) (0.049) (0.025) 
2
uσ = 1 1.003 1.009 1.006 

 (0.028) (0.014) (0.008) 
ST-AMLE T = 20 
 ------------------------------------------------------------ 
 Lattice Size 
 ----------------- ------------------ --------- 
Parameters 8×8 16×16 32×32 

v
01φ = 0.3 0.256 0.275 0.288 

 (0.073) (0.044) (0.020) 
h
01φ =−0.15 -0.126 -0.148 -0.150 

 (0.064) (0.040) (0.020) 

φ10 =−0.3 -0.301 -0.304 -0.304 
 (0.043) (0.017) (0.009) 

v
11φ = 0.4 0.312 0.367 0.395 

 (0.109) (0.059) (0.031) 
h
11φ = 0.2 0.179 0.186 0.198 

 (0.123) (0.055) (0.028) 
2
uσ = 1 0.978 0.989 0.993 

 (0.030) (0.015) (0.009) 

Table 3: The means (and standard errors) of the parameter estimates 
from 100 simulations of a homogeneous 
STARG(1,1,1)+Noise model. For three different lattice 
sizes, the field was simulated with T = 50 temporal 

observations. The true parameters are 
v
01φ  =0.3; 

h
01φ  = 

−0.15; φ10 =−0.3; 
v
11φ  = 0.4; 

h
11φ  = 0.2 and 

2
uσ  = 1 

EMLE T = 50 
 ----------------------------------------------------------- 
 Lattice Size 
 ---------------- ------------------ -------- 
Parameters 8×8 16×16 32×32 

v
01φ = 0.3 0.250 0.281 0.290 

 (0.048) (0.023) (0.014) 
h
01φ =−0.15 -0.133 -0.138 -0.145 

 (0.043) (0.025) (0.009) 

φ10 = −0.3 -0.300 -0.301 -0.300 
 (0.029) (0.015) (0.006) 

v
11φ = 0.4 0.340 0.376 0.387 

 (0.073) (0.031) (0.013) 
h
11φ = 0.2 0.169 0.186 0.195 

 (0.078) (0.040) (0.008) 
2
uσ = 1 1.006 1.002 1.002 

 (0.018) (0.010) (0.004) 
ST-AMLE T = 50 
 ----------------------------------------------------------- 
 Lattice Size 
 ------------------ --------------- --------- 
Parameters 8×8 16×16 32×32 

v
01φ = 0.3 0.257 0.285 0.297 

 (0.054) (0.026) (0.014) 
h
01φ =−0.15 -0.137 -0.144 -0.148 

 (0.043) (0.024) (0.011) 

φ10 =−0.3 -0.303 -0.305 -0.302 
 (0.030) (0.015) (0.006) 

v
11φ = 0.4 0.344 0.379 0.392 

 (0.073) (0.033) (0.015) 
h
11φ = 0.2 0.172 0.187 0.197 

 (0.076) (0.040) (0.011) 
2
uσ = 1 0.993 0.995 0.995 

 (0.020) (0.012) (0.007) 
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Table 4: The means (and standard errors) of the parameter estimates 
from 100 simulations of a homogeneous 
STARG(1,1,1)+Noise model. For three different lattice 
sizes, the field was simulated with T = 100 temporal 

observations. The true parameters are 
v
01φ  =0.3; 

h
01φ  = 

−0.15; φ10 =−0.3; 
v
11φ  = 0.4; 

h
11φ  = 0.2 and 

2
uσ  = 1 

EMLE T = 100 
 ------------------------------------------------------------- 
 Lattice Size 
 ---------------- ---------------- ------------ 
Parameters 8×8 16×16 32×32 

v
01φ = 0.3 0.259 0.283 0.292 

 (0.029) (0.024) (0.005) 
h
01φ =−0.15 -0.134 -0.138 -0.144 

 (0.025) (0.013) (0.004) 

φ 10 =−0.3 -0.305 -0.298 -0.300 
 (0.014) (0.005) (0.004) 

v
11φ = 0.4 0.345 0.373 0.390 

 (0.044) (0.019) (0.009) 
h
11φ = 0.2 0.168 0.189 0.194 

 (0.037) (0.014) (0.007) 
2
uσ = 1 0.998 1.002 1.001 

 (0.012) (0.004) (0.002) 
ST-AMLE T = 100 
 --------------------------------------------------------- 
 Lattice Size 
 ------------------- -------------- --------- 
Parameters 8×8 16×16 32×32 

v
01φ = 0.3 0.259 0.283 0.296 

 (0.030) (0.025) (0.008) 
h
01φ =−0.15 -0.139 -0.146 -0.148 

 (0.030) (0.016) (0.006) 

φ10 =−0.3 -0.302 -0.300 -0.302 
 (0.017) (0.006) (0.003) 

v
11φ = 0.4 0.343 0.379 0.390 

 (0.050) (0.025) (0.008) 
h
11φ = 0.2 0.179 0.189 0.195 

 (0.031) (0.018) (0.008) 
2
uσ = 1 0.990 0.994 0.995 

 (0.014) (0.007) (0.005) 
 
Furthermore, as expected, EMLE and ST-AMLE are by 
far the best estimators, while a slight bias is observed 
for the Kalman and the toroidal cases. This might be 
explained by the suboptimal block-algorithm strategy 
and the mis-specification of the boundary conditions. 
 
The anisotropic case: To complete the study of a 
STARG(1,1,1)+Noise model, we have considered a 
more complete simulation of fields which are 
homogeneous in space. In particular, for different 
lattice sizes and observation time T, we have generated 
100 samples from model (8) with temporal parameter 

φ10 =−0.3; spatial parametersv01φ  =0.3; h
01φ  =−0.15; and 

spatio-temporal parameters v11φ  = 0.4; h
11φ  = 0.2 

(where v and h denote vertical and horizontal 

autocorrelations) and 2
uσ  = 1. Also in this case, the 

noise variance parameter 2eσ  has been fixed to produce 

a Log Signal-to-Noise-Ratio equal to 5 dB and was 
considered fixed at its true level. However, to avoid the 
boundary and the block filter approximations, in this 
simulation we have only compared the performance of 
EMLE and ST-AMLE estimators which are valid for 
general boundary conditions. In particular, considering 
three different lattice sizes, Table 2-5 show simulation 
results, respectively, for T = 20, 50, 100. As can be 
seen, also in this case both EMLE and ST-AMLE 
perform very similarly, although, according to our 
Matlab code, ST-AMLE is much faster than EMLE. 
 
Simulation based on sulphur dioxide levels in the 
Milan district: The model and inferential methods 
outlined previously find a natural field of application in 
an environmental pollution context. In particular, we 
have chosen pollutant data from the Milan district in a 
test bed simulation study for our analysis and statistical 
modelling. The data set consists of 365 daily averages 
(from January to December 2001) of Sulphur Dioxide 
(SO2) levels at 24 monitoring stations. The data were 
provided by the Environmental Agency (ARPA) of the 
Lombardy Region. The coordinate system of the 
monitoring stations is referred to the Italian national 
grid system (Gauss-Boaga), which is based on the 
Universal Transverse Mercator (UTM) projection. To 
demonstrate the performance of our spatiotemporal 
model for large data sets, given the irregularly spaced 
data, we have created a “synthetic” data set 
representing a temporal sequence of (32×32) regular 
grids of interest. In particular, using an inverse distance 
procedure, we have first predicted the process at each 
spatial location on the grid for each data time. Then, for 
each spatial location, we have smoothed the data over 
time using a cubic smoothing spline with smoothing 
parameter equal to 0.5 (see the matlab command 
“csaps” in the Matlab spline toolbox). To test the 
method’s ability to recover the underlying signal (state-
variable) xt, we have added independent Gaussian 
measurement noise with variance 2eσ  = 0.0158 (SNR 
equal to 5) to give the noisy data yt. This procedure 
generates a large final data set of 373760 observations 
arranged in a data matrix of n = 1024 rows and T = 365 
columns. Our aim is to determine how well we can 
predict the unobservable variable of interest xt given the 
noisy data yt. However, note that for temporal 
prediction purposes, we have taken out the last week (t 
= 359,…,  365) from the exploratory analysis. 
 The study of the temporal pattern of the data set 
highlights the highest values of SO2 in the autumn and 
winter months. Furthermore, for each of the 358 spatial 
series, locations in the city of Milan show a higher daily 
average with respect to the other sites. 
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Table 5: Summary statistics for real and predicted series 
Series Obs. Time Mean St. Dev.  Min Max MSE Corr. Coef. 
Real – 25 Dec 2001            359 0.000 0.245 -1.142 0.938 - - 
Predicted 359 0.000 0.165 -0.614 0.658 0.009 0.962 
Real – 26 Dec 2001 360 0.000 0.229 -0.803 0.903 - - 
Predicted 360 0.000 0.157 -0.528 0.609 0.008 0.964 
Real – 27 Dec 2001 361 0.000 0.213 -0.684 0.873 - - 
Predicted 361 0.001 0.150 -0.462 0.569 0.007 0.961 
Real – 28 Dec 2001 362 0.000 0.200 -0.675 0.824 - - 
Predicted 362 0.001 0.144 -0.411 0.537 0.006 0.950 
Real – 29 Dec 2001 363 0.000 0.189 -0.644 0.758 - - 
Predicted 363 0.001 0.138 -0.371 0.509 0.006 0.938 
Real – 30 Dec 2001 364 0.000 0.187 -0.622 0.734 - - 
Predicted 364 -0.001 0.133 -0.339 0.484 0.006 0.933 
Real – 31 Dec 2001 365 0.000 0.204 -0.859 0.753 - - 
Predicted 365 -0.001 0.129 -0.313 0.462 0.012 0.878 
 
 This is not surprising and may be attributed to a 
variety of factors as emissions from vehicles, 
manufacturing and heating systems. Because 
concentration data are always positive, it is convenient 
to operate on a logarithmic scale to remove the effect of 
heteroskedasticity and thereby stabilizing the variance. 
The exploratory data analysis indicates a spatial trend 
parametrized as a six-parameter quadratic surface is 
appropriate and this has been subtracted from the 
original data to create a zero mean data set. 
 Variogram based analysis confirms that isotropy is 
reasonable for the process and the omnidirectional 
variogram also allowed us to asses the presence of a 
nugget effect which, as a result of its temporal mean, 
provided an estimate of the measurement error equal to 

2
eσ̂  = 0.0137. The generalized moment estimator 

provided an estimate of 2eσ̂  equalt to 0.0134. As can be 

seen, although they provide very similar results, both 
procedures underestimate the real value of the noise 
variance confirming that its estimation is a very 
difficult task. The estimation of the measurement noise 
variance can be carried out through several methods 
(Olsen[16], provides a wide range of methods on this 
topic), but in this study we have chosen the variogram 
approach following Huang and Cressie[17] who also 
propose to estimate the noise as a nugget effect. Given 

2
eσ̂ , for a STARG(1,1,1) ST-AMLE provided the 

following parameter estimates (standard errors in 

brackets) 01φ̂  = 0.489 (0.003), 10φ̂ = 0.680 (0.002), 11φ̂  

= 0.174 (0.003), which highlights a strong spatial 
interaction structure. Finally, we used the state-space 
formulation and the block Kalman filter to perform the 
smoothing of the observed series as well as the 
predictions of the state variable. To show the prediction 
ability of the filter, Table 5 presents some summary 
statistics for the zero mean real signal xt and the 
predicted state variable tx̂ . 

 As can be seen, predictions are able to track the 
true signal although, as is typical for the Kalman filter, 

there is some difficulty in predicting the extreme values 
of the series. 
 

CONCLUSION 
 
 In this study we have advocated the use of a 
STARG+Noise model for describing the dynamic of 
noisy random fields in climate and environmental 
systems. We have shown that the model can be 
fruitfully used when the available spatio-temporal data 
is rich both in time and spatial dimensions and when the 
purpose of the analysis is to provide time-forward 
predictions at the spatial locations where historical data 
is available. To deal with huge data sets, we have 
exploited the Markovian structure of the model to 
implement a reduced Kalman filter to be used for 
smoothing and prediction aims. Although the state-
space formulation also allows for estimating the model 
parameters, we have suggested an “off-line” inference 
which can be implemented efficiently. This is critical in 
problems related to the monitoring of pollutants, where 
fast algorithms are necessary to issue warnings in a 
timely manner. For example, as also remarked by 
Stroud et al.[18], when large data sets are considered the 
EM algorithms are computationally inefficient because 
they relay on the repeated inversion of large matrices. 
 Conversely, it is relatively straightforward to 
compute the ST-AMLE estimator when the noise 
variance is known. The estimation method is useful 
when only the moments of the noise are specified or 
when the exact maximum likelihood estimator is 
difficult to compute (e.g., for certain non-Gaussian 
noise distributions). As remarked in Dryden et al.[4], 

simultaneous estimation of 2
eσ  is very difficult and 

there are usually confounding problems. There are 
several methods which can be carried out to estimate 
the noise variance. For example, following a 

geostatistical approach, one could estimate 2
eσ  as the 

time average of the nugget effects obtained from the 
sample semi-variogram of the spatial series. 
Considering the median absolute deviations (MAD) of 



J. Math. & Stat. 1 (4): 309-321, 2005 

 321 

wavelet coefficients, a robust estimator was also 
provided by Donoho et al.[19]. In this study we also 
proposed a consistent Yule-Walker type estimator 
comparable to the ones mentioned above. As well as the 
STARG model presented in the study extensions are 
possible. For example, it can be applied to multivariate 
data (where multiple observations are observed at each 
point in space and time) or also tailored to allow spatial 
predictions at unobserved spatial locations. 
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