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Abstract: It is common in geographic modelling to use a one-parameter spatial model to specify the 
inverse covariance matrix in terms of I-βW, for some known matrix W. Exact Gaussian maximum 
likelihood estimation of β requires evaluation of the determinant of the covariance matrix. For large 
data sets, this evaluation of the determinant can be slow and good approximations can be useful. 
Seventy regional configurations are used to consider some approximations to the determinant of I-βW 
that are fast to evaluate, and their usefulness is compared. 
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INTRODUCTION 

 
 In much geographical spatial regression modelling 
it is assumed that for n sites or regions the n-vector of 
observations y has mean E(y)=Xθ for an n×p matrix of 
regressors X and a p-vector parameter θ; and has 
covariance matrix Vσ2=var(y), where σ2 is a scale 
parameter. Usually, one-parameter spatial models, with 
V depending on T=In-βW for a known weights matrix 
W (e.g. [1]) and Gaussian maximum likelihood 
estimation, are used.  

 Then θ̂ = 1 1 1ˆ ˆ(X 'V X) X 'V y− − − , where V̂  uses ̂T = 

In- β̂ W. Exact estimation of β (e.g. [2]) minimizes with 

respect to β the profile likelihood |V-1|-1/n ×(e'V-1e), 

or its logarithm, where e=y-X̂θ . Iterative estimation of 
θ and β is usually needed. This requires numerous 

evaluations of the quadratic form e'V-1e and the 

determinant |V-1|. Neglecting this determinant term can 
lead to inconsistency in the estimator of β[3] and serious 
bias for finite n. If p/n is not small, REML estimation 
may be better (e.g. [4]), where θ is estimated as above, 
but β is estimated by minimizing  

{|X'V -1X|/|V-1|}1/(n-p)×(e'V-1e). This additionally 

requires the evaluation of |X'V-1X|. 
 The simultaneous autoregression (SAR) model has 

V-1=T'T, so |V-1|=|T|2. The conditional (CAR) form, 

with conditional variance var(yi|{y j, j≠i})=v iσ2 for 

known {vi}, has V-1={D i(vi-1)}T, where Di(si) denotes 

diag(s1,...,sn), and so |V-1|={Πvi-1} ×|T|. In both cases, 

e'V-1e is easy and quick to calculate. For the SAR, 
estimation   of   θ,   for   a   given   β,   can   use 
ordinary least squares on the transformed model for 

which Ty has mean TXθ. Unless p is large, |X'V-1X| 
can   be calculated   quickly. If  necessary  for  the  

CAR, |X'V-1X| =|X' {Di (vi-1)} X|× 

 |I-β(X'{D i(vi-1)}X) -1X'{D i(vi-1)}WX| can be used, 
where the second term can be calculated as below using 

the eigenvalues of (X'{Di(vi-1)}X) -1X'{D i(vi-1)}WX. 
Thus, the most time-consuming element in calculating 
the log profile likelihood is usually the evaluation of |T|, 

considered here in the form J(β)=ln(|T|-1/n)= 

-n-1ln|T|. 
 Let the eigenvalues of W be {λi(W)}, or { λi} when 

it is clear what W is, and let λ=maxi{ λi} and 

λmin=mini{ λi}. Then J(β) can be found using the {λi} 

since |T|=Π(1-βλi) and J(β)=-n-1Σln(1-βλi). However, 

the {λi} need to be found, which can be very slow for 

large n and each evaluation of J(β) requires an n-fold 
product, or, more accurately but slower, the sum of n 
log terms. 
 Some quicker numerical methods for obtaining J(β) 
exactly have been discussed by Martin[5] and Pace and 
Barry[6,7]. However, good quick approximations to J(β) 
should suffice in preliminary investigations, for instance 
when different sets of regression variables and different 
forms of the spatial dependence, are being considered. 
Griffith [8] considered approximations to J(β) using a 
specified functional form. Apart from a postulated 
general form, those in Griffith[8] require the {λi} to be 

found first, or |T| evaluated for a set of values of β. 
Martin[5] considered some approximations based on 
using the first few terms of the series expansion of J(β). 

The 4th-order approximation is 

J(β) ≈ 
4 k k

k 1

1
{tr(W ) / k}

n =
β∑ , (1) 

where tr(W) denotes the trace of W. Martin[9] (M05 
henceforth), looked at the theoretical results available 
for known types of graphs. Some comparisons of the 
timings of some different approximations are in Griffith 
and Sone[10]. Berry and Pace[11] give a Monte Carlo 
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method for estimating J(β) for a sparse stochastic 
matrix W. 
 Another possibility for approximating J(β) is to 
regard the {λi} as a discrete probability distribution on 

[λmin, λ] of the random variable Λ, with a probability 

of ri/n at each different value λi (where each λi is 
repeated ri times) and then to approximate this discrete 

distribution by a continuous distribution (of Λ*) with 
probability density function (pdf) f(x) on [λmin, λ]. 

Then, J(β) is the average value of -ln(1-βλi), which is 

approximated   by   J*(β),   the   expected   value       of 

-ln(1-βΛ*), 

J*(β)=-

min

ln(1 x)f (x)dx
λ

λ

−β∫ . 

 The use of J*(β) for a suitable approximate pdf f(x) 
may produce worthwhile approximations for 
geographical regions. Since approximate results may 
suffice, the integral can itself be approximated. Various 
simple numerical rules of the form K(β)= 
-Σwi f(xi) ln(1-βxi) could be used (for example, §10 of 
Fröberg[12]). Griffith's[13] approximation of the form 
w1g(λ)ln(1-βλ)-w2g(λmin)ln(1-βλmin) with weights 
w1, w2, can, if f(x) is finite at the endpoints and 
g(x)=f(x), be regarded as a 2-point rule using the 

endpoints (or a 3-point including x=0). That J*(β) need 
not be of the form g(λ)ln(1-βλ)-g(λmin)ln(1-βλmin), 
for a function g(x), can be seen for equidistant points on 
a line (the path graph Pn - M05, §4.2), for which J(β) 

tends to -ln[{1 + (1-a2β2)1/2}/2] as n→∞ (a=4 or 1 for 
W a contiguity or standardized contiguity matrix, 
respectively). 
  
 As well as the CAR and SAR models, other one-
parameter assumptions using T could be tried. These 
include having V=T (T symmetric), or V=T'T. Provided 
|β| is not too large, T-1 can be approximated by, for 
example, I-βW + β2W2, to give a quick approximation 

to e'V-1e. 

 In this paper, seventy readily available regional 

configurations are used to suggest and compare some 

possibilities for K(β), with particular interest in the 

shape of the eigenvalue distributions. The W matrices to 

be considered are defined in section 2. The 

configurations are given in section 3, their statistical 

properties described in section 4, and their eigenvalue 

properties discussed in section 5. Section 6 gives the 

possible approximations, and section 7 contains two 

examples. 

PROPERTIES OF GEOGRAPHICAL ONE-
PARAMETER PROCESSES 

  
 Assume, as usual, that W has zero diagonal 
elements, so that Σλi=0 and non-negative off-diagonal 
elements wi,j  which reflect the dependency between 
regions i and j. Often only a small proportion of the wi,j  
are non-zero. 
 Here, for simplicity, the two main forms of W 
which are frequently used in practice, are concentrated 
on (other W may be better for a given data set). The 
binary symmetric contiguity or adjacency matrix, 
denoted C, has ci,j=1 if sites (or regions) i and j are 
connected in some sense, assumed here to be adjacency 
or sharing a common boundary, and 0 otherwise. Let c 
be the vector of row sums of C, C1n=c, where 1n is an 
n-vector of ones and let D=Di(ci). Then the asymmetric 

row standardized form of C is R=D-1C. The C matrix is 
equivalent to a graph, with ci the vertex degree. The 
eigenvalue (spectral) properties of C and R have been 
studied theoretically - see M05.  
 For four configurations the row-standardization U 
of a symmetric weight matrix G is also considered, 
where the weights are based on inter-centroid distances. 
Both R and U have all row sums equal to 1, W1n=1n 
and so are stochastic matrices. Their eigenvalues are 
real and λ(W)=1. For all of C, R, U, |λmin(W)| < λ(W), 
unless the graph is bipartite (M05), i.e. the only edges 
are between two disjoint sets, which is very unlikely for 
two-dimensional geographical configurations (except 
for rectangular grids). 

 For the one-parameter CAR, {Di(vi-1)}W must be 
symmetric, so that W must be asymmetric with 
wi,jvj=wj,ivi unless the vi are constant[14]. Although it is 

usually preferable that the conditional variance viσ2 is 
smaller for interior regions, geographic modelling often 
uses W=C, implying the vi are constant. If W=R is 

used, var(yi|{y j, j≠i}) must be σ2/ci, which seems more 

appealing. Then vi=ci, V-1=D-βC=D(In-βR) and |V-

1|={Πci} ×|In-βR|. Using W=U is similar. Since T must 

be positive definite, β must lie between 1/{λmin(W)} 

and 1/{λ(W)}. For the one-parameter SAR, W does not 
need to be symmetric or positive definite and any of C, 
R, U can be used. Often β is restricted to the CAR range 
to avoid |T|=0 when β=1/{λiW)}. 
 

THE REGIONAL CONFIGURATIONS 
 
 The possible relevance of the exact and 
approximate results in M05 is considered and the 
distribution of the eigenvalues for geographic regions is 
now investigated. The 70 regional configurations which 
are used to consider approximations to J(β) are listed, 
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with their abbreviations, in Appendix 1. They were 
chosen by their availability and may not be 
representative of all regional sets. 
 The exact and approximate results on graphs that 
are available may be very limited for geographical 
applications because of the structures of the graphs, or 
the small value of n, or the number of badly-connected 
regions (end-vertices). Because of the nature of political 
regions, no precise general results are possible. 
 Forty-four of the configurations are census tracts 
for enumeration districts in Canadian cities in 1971 (27 
cities) or 1986 (18 cities) (compiled using census tract 
maps from Statistics Canada). Another 12 
configurations are formed from the 73 municipios of 
Puerto Rico and its subregions (the five agricultural 
administrative regions and six adjacent pairings of 
these). The remainder are for China (provinces); Henan 
province in China (counties); Eire (counties, Cliff and 
Ord[15]); Ghana (subregional units, Cliff and Ord[15], 
Fig. 8.4); Nigeria (subregional units, Cliff and Ord[15], 
Fig. 8.5); plus Columbus, Ohio (neighborhoods, 
Anselin[16], Fig. 12.1, p. 188); Houston (census tracts, 
US Bureau of the Census, 1980); South-Western Ohio 
(counties, Anselin[16], Fig. 12.2, p. 204); three sets using 
Syracuse (US Bureau of the Census, 1990)-
Syracuse:CT (143 census tracts), Syracuse:BG (447 
block groups), Syracuse:CB (7249 census blocks); 
Buffalo police precincts (Annual report of the Buffalo 
Police Department, 1978) and Thiessen polygons 
formed from weather stations in part of Kansas-
Nebraska[17]. 
 Most configurations have relatively few regions 
(between 11 and 53). There are a few larger ones (71, 
73, 76, 77, 79, 99, 101, 101, 143, 192), four much 
larger (351, 363, 447, 731) and one extremely large 
(7249). There are C and R matrices are for all 70 
configurations. Four of the configurations (Eire, 
Houston, Ottawa-Hull:86, Puerto Rico) also have U 
matrices. 
 Henan province has some unusual properties. It has 
five city counties, each completely within another 
county. It has three outlying counties, each only 
adjacent to one other. It also has two 'peninsulas' 
(attached path graphs), one of two counties and one of 
three. 
 Note that some common boundary lengths in the 
mapped configurations are very small and may be due 
to inaccuracies in the diagram that has been used. 
Conversely, a true adjacency with a small common 
boundary may not be apparent in the diagram. For this 
exercise it should not be important whether all 
adjacencies are correct or not. 
 

SIMPLE DESCRIPTIONS OF THE 
CONFIGURATIONS 

 
 The properties of the 70 regional configurations are 
summarized and compared with those for the graphs in 
M05. Several ways of summarising the graphs and the 

spectra, were discussed in M05. Note that some of the 
graphs in M05 are bipartite (§§3.2, 3.3, 3.7, 3.9, 3.11) 
but, as noted earlier, this would be unusual for 
geographical regions. Two descriptive measures of 
graphs are used in M05. The index of (planar) 
connectedness is IC={1n'C1n-2(n-1)}/{2(2n-5)}, which 
ranges from 0 for a tree (a minimally connected graph) 
to 1 for a triangulation (a maximally-connected planar 
graph). The index of regularity, which can be defined as 
the sample standard deviation of the degrees (number of 

neighbours), is IR=√{c'c/n-(c'1n/n)2}. The values of IC 
and IR for the 70 configurations are given in Appendix 
1. 
 Other functions of the degrees which may be of 
interest are the extremes mini{ci} and maxi{ci}, the 
range r(c)=maxi{ci}-mini{ci} and the standardized 
third and fourth moments b1(c)=m3(c)/{m2(c)}3/2, 
b2(c)=m4(c)/{m2(c)}2-3, where mr(c)= 

n-1Σ(ci-1n'c/n)r, with m2(c)=IR2. Note that in the 
following descriptions of sample distributions, the mean 
and standard deviation (sd) are used as measures of 
centrality and spread respectively when there are no 
large 'outliers'. Otherwise, the median and inter-quartile 
range (IQR) are used, respectively. 
 
Index of (planar) connectedness IC: IC ranges from 
0.348 (PR4) to 0.971 (C86:1), with mean 0.712 and sd 
0.125. Only 7 values are below 0.50. This suggests that 
results in M05 for trees and other graphs with low 
connectedness may not be appropriate for irregular 
geographical regions. Also, the very high connectedness 
of some graphs in M05 rarely occurs in practice. 
  
Index of regularity IR: IR ranges from 0.877 (C71:4) 
to 2.402 (O12), with mean 1.414 and sd 0.305. There is 
a suggestion of a small increase in the mean of IR with 
n. Using a log-log regression with and without 
Syracuse:CB (n=7249) suggests that IR approximately 
increases with n1/8. Of the graphs in M05, only the 
Fisher (§3.9.4) and Reduced Fisher (§3.9.5) graphs are 
consistent with a constant, but non-zero IR, whilst none 
are consistent with a very slight increase with n. 
 
Simple functions of the degrees: The mini{ci} is 1, 2 
or 3, with mean 1.93 and sd 0.688. Apart from four 
large values of 17 (O11), 23 (C86:11), 26 (O12, 
C86:23), maxi{ci} ranges from 5 to 13, with median 8 
and IQR 2. The value of r(c) ranges from 3 to 12, apart 
from the four large values of 16 (O11), 22 (C86:11), 25 
(O12, C86:23), with median 6 and IQR 2.25. 
 
The standardized third and fourth moments: The 
value of b1(c) ranges from -0.846 to 3.554, with median 
0.313 and IQR 0.564. There are 13 negative values. All 
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values are below 1.63 except for: 2.447 (O12), 2.593 
(C71:6), 2.737 (C86:11) and 3.554 (C86:23). 
 The value of b2(c) ranges from -1.087 to 27.490, 
with median -0.161 and IQR 1.248. There are 40 
negative values. There are four very large values: 9.905 
(O12), 13.699 (C71:6), 16.338 (C86:11) and 27.490 
(C86:23), with the remainder being below 2.57. 
 

THE EIGENVALUE DISTRIBUTIONS 
 
 The above measures relate to the graph, the C 
matrix and the degrees. Here, the distribution of the 
eigenvalues of W is investigated and some measures of 
the distribution considered. These measures may be 
useful in themselves, for example to characterise 
different types of geographical structures. However, the 
distribution may also be useful if it can be approximated 
to give an approximation to the required determinant 
term, as discussed later. 
 Of particular interest in approximating the 
distribution of the eigenvalues are the extreme values 
λ(C), λmin(C) and λmin(R). Simple descriptions of the 
distribution of the eigenvalues are given by the low-
order moments and standardised moments - the 
measures of skewness and kurtosis. Recall that 

Σλik=tr(Wk). Since tr(W)=0, the mean is always 0 and 
the formulae for the moments are simplified, 

mr(W)=n-1tr(Wk) where mr(W) denotes mr({ λi(W)}). 
The variance is m2(W)=tr(W2)/n. The standardised third 
moment, b1(W)=n1/2tr(W3)/{tr(W 2)} 3/2, describes the 
skewness. The standardised fourth moment, 
b2(W)=ntr(W4)/{tr(W 2)} 2-3, describes the kurtosis of 
the distribution. Some other intuitively appealing 
characteristics are also considered. These include the 
ratio of the extreme eigenvalues 
rmm(W)=-λmin(W)/λ(W), and the ratio of the number 
of positive to negative eigenvalues rpn(W). The 70 

values of λ(C), -λmin(C), b1(C), b2(C), -λmin(R), 

b1(R) and b2(R) and the four -λmin(U), b1(U) and 
b2(U), are given in Appendix 1. 
 
Histograms: Firstly, consider the distributions for each 
of the 70 C and R matrices and the four U matrices. For 
each of the 144 distributions, a histogram, using equal-
width classes (usually 10), of the eigenvalues was 
formed. These were also smoothed, using a 3-point 
moving average (3-pt MA) with weights (1, 2, 1)/4 and 
kernel density estimates (see later) were considered. For 
n small it is difficult to determine the smoothed 
behaviour of the eigenvalues, particularly at the two 
extremes. All histograms suggest a positive skew 
distribution and none demonstrate any of the 
pathological behaviour that can occur with some of the 
graphs in M05. Most histograms for larger n are 
unimodal, but quite a number of the histograms, 
especially for R, suggest another possible mode at an 

intermediate positive value. Most histograms suggest 
something like a typical Gamma-distribution shape 
(with shape parameter bigger than 1). Some histograms 
suggest a non-negligible non-zero density at either or 
both of the extremes. 
 As examples, smoothed (3-pt MA) histograms for 
Winnipeg:71 (n=101), Syracuse:CT (n=143) and 
Syracuse:CB (n=7249) are shown in Fig. 1, 3, 5 (C) and 
2, 4, 6 (R), respectively. 
 
Extreme eigenvalues: The largest values of λ(C) are 
around 7 (7.375 for O12, 7.084 for C86:23, 6.822 for 
C86:11) and the smallest values are around 3.5 (3.373 
for PR4, 3.686 for PR1). The median value is 5.09 and 
the IQR is 0.862. As for IR, there is evidence that λ(C) 
slightly increases in general with n. 
 The range of λmin(C) is even smaller, with the 
lowest around -5 (-5.025 for O12, -4.080 for C86:11, 
-3.563 for O7) and the highest around -2 (-2.120 for 
PR1, -2.125 for PR4, -2.199 for PR3). The median 
value is -2.81 and the IQR is 0.497. Again, |λmin(C)| 
appears to slightly increase in general with n. 
 The   smallest   values  of λmin(R) are around -0.9 
(-0.936 for O12, -0.845 for C71:5, -0.798 for C71:6 and 
O4)   and   the   highest   around -0.5 (-0.510 for C86:7, 
-0.524 for C71:24, -0.526 for C86:1). The median value 
is -0.63 and the IQR is 0.119. 
 In M05, it is noted that the second largest 
eigenvalue λ(2)(C) may be of interest. Tiefelsdorf and 

Boots[18] show that nλ(2)(C)/1n'C1n ≈ λ(2)(C)/λ(C) is 
approximately the largest possible value of Moran's I. 
For many of the graphs in M05, there is a large gap 
between λ(C) and λ(2)(C), but this occurs for none of 

the 70 configurations. For small n, λ(2)(C)/λ(C) or 

λ(2)(R) can be around 0.7, but for the larger n they are 

usually at least 0.95, with usually λ(2)(R) > 

λ(2)(C)/λ(C). 
 
Variance: Since tr(C2)/n is just 1n'C1n/n=1n'c/n, the C-
variance is related to the overall connectedness and IC. 
It ranges from 3.00 (PR4) to 5.45 (Syracuse:CT) with 
mean 4.57 and sd 0.542. 

 The R-variance uses tr(R2), the sum over 
neighbouring vertices (i,j) of 1/(cicj). It ranges from 
0.182 (C86:8) to 0.329 (PR4), with mean value 0.225 
and sd 0.032. The four U's have three very small values 
(0.121, 0.130, 0.164) and one larger value (0.275). 
 
Transformed mean and variance: Transforming from 
the interval (λmin, λ) to the standard interval (0, 1), the 
mean (m) for the seventy C matrices ranges from 0.323 
to 0.405, with mean 0.358; and the variance ranges 
from 0.032 to 0.099 with mean 0.072. The mean for the 
seventy R and four U matrices ranges from 0.338 to 
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0.483, with mean 0.392; and the variance ranges from 
0.045 to 0.124 with mean 0.082. 
 

Skewness: Since tr(C3)/6 is the number of triangles in 
the graph and R can be regarded as a probability 
transition matrix on the graph, both b1(C) and b1(R) are 
non-negative. They are zero if the graph contains no 
triangles, which includes all bipartite graphs. Otherwise, 
the distribution must be positive skew, with |λmin| < λ.  
 The range of m3(C) is from 3.43 (PR4) to 11.10 
(C86:1) with mean 7.34 and sd 1.63. The standardized 
b1(C) ranges from 0.509 (C71:6) to 0.910 (C86:1) with 
mean 0.750 and sd 0.082. 
 The range of m3(R) is from 0.038 (O12) to 0.115 
(PR4) with mean 0.068 and sd 0.0135. The 
standardized b1(R) ranges from 0.401 (C71:6) to 0.837 
(C86:1) with mean 0.638 and sd 0.0915.  
 The four values of m3(U) are 0.029, 0.029, 0.043, 
0.049 and those of b1(U) are 0.342, 0.618, 0.644, 
0.694.  
 All distributions are moderately positively skew, 
with the distribution for C always more skew than that 
of R, i.e. b1(C) > b1(R). The difference b1(C)-b1(R) 
ranges from 0.036 (C86:4) to 0.267 (O6), with mean 
0.112 and sd 0.048. The ratio b1(C)/b1(R) ranges from 
1.052 (C86:19) to 1.443 (O6), with mean 1.184 and sd 
0.097. 
 
Ratio of minimum to maximum eigenvalues: The 
ratio rmm(C) ranges from 0.477 (C86:1) to 0.681 (O12) 
with mean 0.559 and sd 0.049. It is smaller than 
rmm(R)=-λmin(R) in all but two cases (C71:7, C86:7). 
The difference -λmin(R)-rmm(C) ranges from -0.071 to 
0.255, with one exceptional value of 0.398 (O6). This is 
caused by the two 'peninsulas' in Henan province 
(M05). Without Henan, its mean is 0.085 and its sd is 
0.061. The two measures rmm(C) and -λmin(R) are 
reasonably well correlated (0.685 without Henan). 
 
Ratio of numbers of positive to negative eigenvalues: 
The ratio rpn(W)={number of λi(W)>0}/{number of 
λi(W)<0} is the same for C and R (M05), but differs for 
U. It is 1 for bipartite graphs and can exceed 1 for some 
graphs (M05, §5.3.2). For C and R, it ranges from 0.556 
(C71:1) to 0.889 (C71:21) with mean 0.702 and sd 
0.071. It is only fairly lowly correlated with rmm(C) 
(0.372) and -λmin(R) (0.318). It is unusual for a 
geographical configuration to have any zero 
eigenvalues. This occurs in just 5 cases: China, 
Columbus, Henan and Winnipeg:71 have 1 (China, 
Columbus and Winnipeg:71 each have 2 regions with 
the same neighbours, so C and R have two rows the 
same (M05, §4.1); for Henan, one region has the same 
neighbours as two others combined and these two have 
no neighbours in common, so one row of C is the sum 
of two others), but Syracuse:CB has 70. 

Kurtosis: Large values of b2(W), which is always at 
least -2, are associated with a large number of 
eigenvalues concentrated in a small range (e.g. many 
near or equal to 0) and a few (even just 1) eigenvalues 
separated from the clump. 
 M05 notes that b2(C) is highly related to IR. The 
range of m4(C) is from 19.00 (PR4) to 83.50 (C86:1) 
with mean 54.95 and sd 14.45; while b2(C) ranges from 
-0.889 (PR4) to 0.037 (O3) with mean -0.388 and sd 
0.164. Just one b2(C) is positive. 
 The range of m4(R) is from 0.080 (O13) to 0.203 
(PR4) with mean 0.114 and sd 0.026; while b2(R) 
ranges   from -1.128 (PR4) to -0.397 (C86:1) with mean 
-0.751 and sd 0.140. The four m4(U) are 0.043, 0.045, 
0.068,  0.150   and  the b2(U) are -1.017, -0.478, -0.336, 
-0.092.  
 Almost all distributions had negative kurtosis. The 
kurtosis is always larger for the C distribution than that 
of R, i.e. b2(C)>b2(R). The difference b2(C)-b2(R) 
ranges from 0.163 (C71:10) to 0.697 (O3), with mean 
0.363 and sd 0.118. The ratio b2(C)/b2(R) ranges from 
-0.056 (O3) to 0.788 (PR4), with mean 0.504 and sd 
0.178, with only one other value below 0.15 (C86:1). 
 

USING AN APPROXIMATE EIGENVALUE 
DISTRIBUTION TO APPROXIMATE J(ββββ) 

 
Introduction: Although the eigenvalues {λi(W)} 
themselves may be of interest in some applications, the 
aim here is to approximate J(β). Approximations may 
be possible which are quite coarse, but still sufficiently 
good to allow reasonably accurate estimates of β to be 
found. 
 Two different situations can be envisaged with 
different levels of knowledge. In the first, all the 
eigenvalues {λi(W)} are known and just a quick way of 

approximating J(β) is required. In the second, there may 
originally be no eigenvalue information and a good 
estimate of J(β) is required. Since usually there are 
good quick approximations to λmin(W) and λ(W), they 
can be assumed known (see later). The second case is 
perhaps the most realistic and would apply when fitting 
exploratory regression models with a large data set 
where spatial dependence is possible but not certain. If 
the fast method of fitting suggests spatial dependence, 
more accurate methods may then be worthwhile. 
 Assume then that it is reasonable to approximate 
the distribution of the eigenvalues by a pdf over the 
range [λmin, λ]. Extensions are possible to cases with a 
few isolated eigenvalues. In particular, n should be 
sufficiently large, at least 30, say. For smaller n, there 
are few problems in evaluating J(β) either directly, or 
by using the eigenvalues of W. 
 
All the eigenvalues {λλλλi(W)} known: In this case, the 
continuous pdf approximation to the eigenvalue 
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distribution can be estimated by histograms (as earlier), 
or more sophisticated methods of density estimation. 
Particular families of distributions could be used, for 
example the Beta or Gamma distributions which are 
discussed later. 
 A simple possibility if a numerical integration rule 
is to be used is to use a hand drawn (or distribution-free 
estimated) density to estimate its values at the few 
points needed. 
 
At most λλλλmin(W) and λλλλ(W) known: If λmin(W) and 
λ(W) are not known, it is usually possible to get very 
good approximations to them quite quickly. For R and 
other row-standardized W, λ=1. For C, the power 
method x(r)=Cx(r-1) (M05, §4.1.2) gives upper and 
lower bounds for λ(C) and usually converges quickly 
from x(0)=1n (with an improved lower bound from the 
Rayleigh quotient, λ(r)=x(r)'Cx(r)/x(r)'x(r), M05, 
§4.1.2). Some simple lower bounds are often good 
approximations (M05, §4.1.2). It is not usually quite so 
easy to approximate λmin(W). One method is the power 
method on W-aIn, for some a, with the initial vector 
having some negative elements, e.g. the alternating 
vector. The value of a>0 must be large enough for -
{ λmin(W) + a} to be the largest of the {|λi(W)-a|}, but 
otherwise as small as possible. Assuming λmin(W) < 
-λ(W)/2, a reasonable value for a is λ(W)/4. Unless 
λmin(W) is a repeated eigenvalue, this method will 
converge to λmin(W)-λ(W)/4, but convergence will be 
slow if, as is usual, there is another eigenvalue close 
to λmin(W). It can be better to use W-aIn-
λ(W)x(W)x(W)', where x(W) is the eigenvector 
corresponding to λ(W). For λmin(R), it may be better to 
use the symmetric R*=D-1/2CD-1/2, which has the 
same eigenvalues as R. An alternative method, which 
usually converges quicker, but needs a matrix inverse, is 
to use the power method on (W+λIn)-1. Another 
method, usually slower, is to use a numerical routine to 
minimise x'Cx/x'x. 
 Assume now that λ and λmin have been 
determined, or well approximated. A possible method 
for using J*(β) is to approximate the pdf by using an 
appropriate family whose parameters can easily be 
estimated. Families which may have the right shape 
include the Beta, Gamma and lognormal distributions. 
None of these would lead to a simple theoretical 
integral for J*(β). 
 Two possible strategies would be either to calculate 
the means of the n order statistics for the fitted 
distribution and use these as approximations to the λi, 
or to use a numerical rule to approximate the integral. 
The order statistics are usually not easy to calculate 
exactly. Even the approximation to these using the 
inverse cumulative density function (cdf) at i/n (or, e.g., 
(i-0.5)/n) is not easy to calculate for the Beta and 
Gamma distributions except when the shape parameters 
are integers, since the cdf does not have a simple form. 
This suggests that a numerical rule may be the best 

method. These rules only need the pdf value and can 
often give very accurate results with only a very small 
number of points. 
 
Beta and Gamma distributions: The Beta Be(ν1, ν2) 
distribution on (0, 1) can be transformed to the interval 
(λmin, λ). The pdf is asymmetric if ν1 ≠ ν2. Ατ λmin, 

the pdf is unbounded if ν1 < 1 and is 0 if ν1 > 1, and its 

gradient is +∞ if 1 < ν1 < 2. Similar properties hold at λ 

in terms of ν2. Efficient estimation of ν1, ν2 is not 
simple and as only a guide is needed here, the less 
efficient method of moments has been used. Let 
m=-λmin/(λ − λmin)=rmm/(1+rmm) and 

t=-nλλmin/tr(W2)-1. Then ̂ν 1=tm, ν̂ 2=t(1-m). 

 Although (ν̂ 1, ν̂ 2) may be useful summaries of 
the eigenvalue distribution, the Beta distribution usually 

fits badly. A large number of the ̂ν i are less than 1, 

giving the wrong behaviour at λmin or λ. In many of the 

remaining cases, both ν̂ 1 and ν̂ 2 are between 1 and 2, 
which results in the pdf having a 'hump' shape, which is 
again inappropriate. 
 Transforming the Beta distribution to the interval 
(λmin-δ1, λ + δ2) for some δ1, δ2 ≥ 0, but truncated to 

the interval (λmin, λ), may be better. However, this 

would require the estimation of δ1, δ2 also. 

 The Gamma Ga(ν, ζ) distribution (shape parameter 
ν, scale parameter ζ, mean νζ) can be transformed to 
the interval (λmin, ∞). The pdf at λmin is unbounded 

for ν<1 and is 0 for ν>1. Again, using moments for 

simplicity, ν̂ =nλmin2/tr(W2) and ζ̂ =-tr(W2)/(nλmin). 

 The estimated Gamma distributions are more 
satisfactory than the estimated Beta distributions. The 
fitted pdf usually appears to be an adequate, if coarse, 
approximation to the eigenvalue distribution. Estimated 
Gamma distributions for Winnipeg:71, Syracuse:CT 
and Syracuse:CB are shown in Fig. 1, 3, 5 (C) and 2, 4, 
6 (R), respectively. For all four combinations of C, R 

with ν̂ , ζ̂ , there appears to be a good linear log-log 

relationship with n (correlations of 0.859, 0.789, -0.659, 

-0.824). For ̂ν  the approximate relationship is 0.9n1/5 

for both C and R. The approximate relationship for ζ̂  

is 2n-1/14 for C and 0.5n-1/8 for R. Alternatively, 

ζ̂ can be obtained for a given ν̂  using 

ν̂ ζ̂ 2=tr(W2)/n. 
 The Gamma distribution could be truncated to the 
interval (λmin, λ), but the incomplete gamma integral 
would have to be estimated. Again, to allow a non-zero 
density at λmin, but, for ν>1, a mode bigger than λmin, 
the Gamma distribution could be transformed to the 
interval (λmin-δ, ∞) for some δ ≥ 0, but truncated to the 
interval (λmin, ∞) or (λmin, λ). This would require the 
estimation of δ also. 
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Fig. 1: Plot of smoothed histogram (solid) and fitted 

Gamma (dashed) for C for Winnipeg: 71 
 

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1 
 
Fig. 2: Plot of smoothed histogram (solid), fitted 

Gamma (dashed) and kernel density estimate 
(+) for R for Winnipeg: 71 

 
Nonparametric density estimation: If a numerical rule 
is to be used, then a simple nonparametric estimate of 
the pdf may suffice. Possibilities include a histogram, a 
smoothed histogram (see earlier) and a kernel density 
estimate. A kernel density estimate using a Gaussian 
kernel with smoothing parameter h close to that given 
by equation (3.31) in Silverman[19] has been tried. 
Figure 2 shows a kernel density estimate (h=0.16, 
limited to [λmin, λ]) with the Gamma fit and the 
smoothed histogram for the R-distribution for 
Winnipeg: 71.  
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Fig. 3: Plot of smoothed histogram (solid) and fitted 

Gamma (dashed) for C for Syracuse:CT 
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Fig. 4: Plot of smoothed histogram (solid) and fitted 

Gamma (dashed) for R for Syracuse:CT 
 
Estimating J(ββββ) by numerical quadrature: Although 
the Gamma fits do not appear to be too bad, it turns out 
that biases in the fitted pdf can seriously affect the 
estimation of J(β). This seems to be because 
ln(1-βx)f(x) is both positive and negative over the 
range, having the sign of βx. For example, for 
Winnipeg:71, the R matrix, the true value of J(0.6) is 
0.0452. The fitted Gamma (λmin=-0.7267, ν̂ = 2.593, 
ζ̂ = 0.2803) and a 3-pt MA smoothed histogram (from 
a histogram centred at 0.7(0.1)1) estimate of the 
eigenvalue distribution, are shown in Fig. 2. The fitted 
Gamma has area 0.9655 over the range. The mode is 
shifted to the right with respect to the eigenvalue 
distribution. Using a quadrature routine with the fitted 
Gamma, the value of J(0.6) is estimated to be -0.0002. 
 However, numerical methods on approximate 
distributions can give good results - see the examples. 
In practice, only a rough estimate of the distribution 
would be available and it may not be convenient to use 
many evaluation points. Possibilities would be a small-
point Simpson rule or the more complicated but more 
efficient Gaussian quadrature. 
 Since -ln(1-βx)f(x) is negative for βx<0 and 
positive for βx>0, it may be better to estimate the 
integrals for x<0 and x>0 separately. For example, 
using two 3-point Simpson rules would approximate 
J(β) by 
-{f( λ)ln(1-βλ)+ 4f(λ/2)ln(1-βλ/2)- 
4λminf(λmin/2)ln(1-βλmin/2)- 

λminf(λmin)ln(1-βλmin)}/3. 
 Two 3-point Gaussian rules for a quadratic would 
approximate J(β) by 
-{5f(a1λ)ln(1-a1βλ) + 8f(λ/2)ln(1-βλ/2) +  

5f(a2λ)ln(1-a2βλ)-5λminf(a2λmin)ln(1-a2βλmin)-

8λminf(λmin/2)ln(1-βλmin/2)- 

5λminf(a1λmin)ln(1-a1βλmin)}/18, where a1 ≈ 0.8873, 

a2 ≈ 0.1127. 
 Unfortunately, these do not appear to work well. 
For Winnipeg:71, R, the estimated values of f(x) using 
the 3-pt MA smoothed histogram (Fig. 2) would be 
approximately 0.31, 0.32, 0.62, 0.74, 1.10, 0.35, at the 
points a1λ, λ/2, a2λ, a2λmin, λmin/2, a1λmin, 
respectively. Then the Gaussian rule estimates J(0.6) as 
0.007.  
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Fig. 5: Plot of smoothed histogram (solid) and fitted 

Gamma (dashed) for C for Syracuse:CB 
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Fig. 6: Plot of smoothed histogram (solid) and fitted 

Gamma (dashed) for R for Syracuse:CB 
 
 

Table 1: J(β) approximations for Winnipeg:71, C matrix 

β -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15 
true .2973 .1677 .0988 .0534 .0235 .0059 .0066 .0295 .0821 
tr1 .2820 .1766 .1038 .0550 .0237 .0059 .0066 .0287 .0719 
tr2 .2696 .1710 .1018 .0545 .0236 .0059 .0066 .0290 .0757 
SS .1870 .1100 .0616 .0294 .0093 .0004 .0118 .0388 .0934 
SK .2253 .1298 .0745 .0381 .0147 .0022 .0090 .0326 .0810 

 
Table 2: J(β) approximations for Winnipeg:71, R matrix 

β -1 -0.8 -0.6 -0.4 0.2 0.4 0.6 0.8 0.9 
True .1052 .0644 .0355 .0157 .0043 .0182 .0452 .0942 .1360 
tr1 .1078 .0658 .0359 .0158 .0043 .0180 .0436 .0840 .1110 
tr2 .1067 .0654 .0358 .0157 .0043 .0181 .0439 .0861 .1168 
SS .0942 .0576 .0313 .0135 .0048 .0188 .0456 .0941 .1364 
SK .0831 .0487 .0249 .0093 .0064 .0218 .0492 .0970 .1376 

 
Table 3: J(β) approximations for Syracuse:CT, C matrix 

β -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15 
true .3082 .1797 .1067 .0580 .0256 .0065 .0074 .0336 .0987 
tr1 .3168 .1964 .1145 .0603 .0260 .0065 .0073 .0325 .0823 
tr2 .3056 .1914 .1127 .0598 .0259 .0065 .0074 .0327 .0869 
SS .2013 .1181 .0659 .0313 .0097 -.001 .0134 .0445 .1115 
SK .2323 .1321 .0748 .0373 .0136 .0013 .0110 .0387 .0981 

 
Table 4: J(β) approximations for Syracuse:CT, R matrix 

β -1 -0.8 -0.6 -0.4 0.2 0.4 0.6 0.8 0.9 
True .0885 .0555 .0310 .0139 .0038 .0165 .0410 .0853 .1224 
tr1 .0930 .0573 .0315 .0140 .0038 .0163 .0395 .0762 .1007 
tr2 .0922 .0570 .0315 .0140 .0038 .0164 .0397 .0777 .1048 
SS .0789 .0487 .0265 .0113 .0045 .0173 .0413 .0836 .1186 
SK .0738 .0448 .0237 .0095 .0054 .0190 .0436 .0865 .1217 

 
EXAMPLES 

 
 The approximations to J(β) were compared for a 
range of β for two moderately large configurations: 
Winnipeg:71 (n=101) and Syracuse:CT (n=143). The 

following were calculated: the true value  J(β); the 4th-
order trace approximation (1) (tr1); an improved 
version if λ is known which is always better if 
β>0[5](tr2): 

 4 k k k

k 2

1
[{tr(W ) } / k]

n =
−∑ λ β - 

1
n  { ln(1-βλ) + βλ};  

plus four estimated J*(β) using Simpson's rule (usually 
19-point). These were on a histogram (SH); a 3pt-MA 
smoothed histogram (SS); the fitted Beta (SB) and 

Gamma (SG) distributions; and the earlier kernel 
density estimate (SK). The SB and SG estimates were 
usually very bad and the SH estimates were usually 
much worse than the SS ones. The SB, SG and SH 
methods are therefore not discussed further. 
 Tables 1 to 4 give, respectively, the J(β) 
approximations for the C matrix for Winnipeg:71; the R 
matrix for Winnipeg:71; the C matrix for Syracuse:CT; 
the C matrix for Syracuse:CT. The valid ranges of β for 
the CAR are (-0.305, 0.174), (-1.376, 1) (-0.308, 0.165) 
(-1.666, 1) respectively. 
 The values in Tables 1 to 4 confirm that the trace 
methods give simple accurate approximations provided 
|β| is not too large (β between about 0.6/λmin and 

0.6/λ), with tr2 better if λ is known. For the larger 
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values of β>0, the SS and SK approximations are 
usually quite good. Although it is normally unimportant 
if β is appreciably negative, these two approximations 
are less good then, possibly because it is difficult for the 
histograms to pinpoint the start of the distribution and 
the fast ascent in the density there. 
 It is also necessary to know what effect an 
approximate J(β) may have on the estimate of β. Using 
the Winnipeg:71 R matrix and taking e'We/e'e as 0.1, 
0.2, 0.5, the effect of a 10% or a 20% relative error in 
J(β) was considered for a CAR model (with v=1n). The 
10% error led to the relative errors in the estimate of 
about 8, 5 and 0.6% respectively and the 20% error 
gave approximately double these. Thus relative errors in 
approximating J(β) do not appear to be so serious for 
large β, although for the CAR substantial spatial 
dependence means that β must be near its upper limit. 
 

DISCUSSION 
 
 Simple quick methods for approximating the 
determinant term in Gaussian maximum likelihood 
appear to be possible given either all the eigenvalues of 
W, or a good approximation to their distribution, but 
much more problematic otherwise. It appears to be 
difficult to find good summaries of the eigenvalue 
distribution for a general regional configuration. The 
trace approximations are easy to use and good if β is 
not too close to its limits and n is not too large. 
Numerical quadrature using an approximation to the 
eigenvalue distribution can be satisfactory if the 
estimated pdf is not too bad and sufficient points are 
used in the numerical rule. 
 
 

 
Appendix 1: Values of n, IC, IR, λ(C), -λmin(C), b1(C), b2(C), -λmin(R), b1(R), b2(R), for the 70 configurations (plus, in the R columns, 

-λmin(U), b1(U), b2(U) for the four U matrices) 

Region n  IC IR λ(C) -λmin(C) b1(C) b2(C) -λmin(R) b1(R) b2(R) 
PR1 11 0.471 1.052 3.686 2.120 0.737 -0.623 0.719 0.532 -1.041 
PR2 13 0.476 1.389 3.948 2.199 0.741 -0.475 0.685 0.531 -1.035 
C71:4 13 0.667 0.877 4.238 2.564 0.635 -0.615 0.620 0.554 -0.851 
C71:1 14 0.783 1.116 4.800 2.363 0.828 -0.341 0.553 0.740 -0.712 
O1 14 0.696 1.245 4.552 2.312 0.813 -0.428 0.551 0.682 -0.826 
C71:12 14 0.783 1.237 4.700 2.655 0.782 -0.400 0.599 0.703 -0.651 
PR4 14 0.348 0.926 3.373 2.125 0.660 -0.889 0.630 0.608 -1.128 
C71:17 14 0.696 0.915 4.364 2.384 0.762 -0.545 0.553 0.717 -0.742 
C71:7 16 0.593 1.166 4.266 2.613 0.688 -0.611 0.576 0.630 -0.960 
PR3 16 0.630 1.225 4.410 2.279 0.844 -0.406 0.568 0.714 -0.785 
C71:16 16 0.778 0.935 4.740 2.644 0.746 -0.494 0.671 0.625 -0.692 
C86:12 17 0.724 1.234 4.746 2.680 0.738 -0.423 0.621 0.663 -0.745 
C71:21 17 0.724 1.135 4.703 2.500 0.738 -0.473 0.660 0.597 -0.746 
C71:19 18 0.774 1.461 5.070 2.627 0.823 -0.221 0.579 0.724 -0.642 
C86:4 19 0.818 1.250 5.051 3.035 0.705 -0.378 0.602 0.669 -0.670 
PR5 19 0.394 1.163 4.158 2.285 0.696 -0.578 0.754 0.520 -1.044 
C71:20 19 0.667 1.673 4.643 2.651 0.731 -0.542 0.628 0.633 -0.857 
C71:24 19 0.667 1.151 4.862 2.654 0.841 -0.162 0.600 0.659 -0.731 
C86:1 20 0.971 1.646 5.767 2.751 0.910 -0.027 0.526 0.837 -0.397 
C71:10 21 0.811 0.971 4.982 2.684 0.825 -0.354 0.599 0.772 -0.517 
C86:17 21 0.757 1.330 4.945 2.729 0.760 -0.411 0.600 0.660 -0.745 
C86:19 21 0.784 1.084 4.933 2.809 0.794 -0.354 0.578 0.754 -0.555 
C71:18 22 0.744 1.269 5.006 2.571 0.788 -0.430 0.579 0.687 -0.757 
C71:22 23 0.854 1.488 5.534 2.804 0.898 -0.101 0.551 0.828 -0.478 
O10 25 0.689 1.386 4.994 2.536 0.806 -0.401 0.588 0.677 -0.800 
PR7 25 0.467 1.414 4.532 2.482 0.738 -0.475 0.694 0.562 -1.055 
O4 26 0.702 1.599 5.131 2.587 0.808 -0.287 0.634 0.646 -0.776 
O4U 26 * * * * * * 0.798 0.342 -1.017 
C86:24 26 0.915 1.527 5.720 2.872 0.868 -0.200 0.524 0.799 -0.525 
PR6 27 0.612 1.297 4.789 2.413 0.815 -0.426 0.580 0.708 -0.802 
PR9 27 0.510 1.499 4.662 2.406 0.757 -0.452 0.594 0.618 -0.944 
C71:13 28 0.667 1.315 4.789 3.079 0.660 -0.430 0.747 0.523 -0.757 
C86:20 28 0.863 1.557 5.475 3.025 0.807 -0.309 0.557 0.740 -0.581 
C86:22 28 0.804 1.747 5.646 3.001 0.801 -0.112 0.596 0.705 -0.570 
C71:15 29 0.755 1.744 5.357 2.894 0.856 -0.146 0.566 0.711 -0.651 
O2 29 0.679 1.867 5.281 2.835 0.826 -0.147 0.673 0.630 -0.727 
PR8 30 0.455 1.306 4.604 2.448 0.732 -0.479 0.754 0.522 -0.983 
PR11 30 0.491 1.209 4.546 2.408 0.776 -0.522 0.630 0.668 -0.923 
C86:7 32 0.898 2.016 5.893 3.422 0.795 -0.143 0.510 0.742 -0.598 
PR10 32 0.644 1.467 4.968 2.719 0.775 -0.382 0.654 0.613 -0.821 
C86:16 33 0.820 1.403 5.413 2.973 0.788 -0.325 0.580 0.725 -0.627 
C71:25 35 0.708 1.358 5.102 2.769 0.737 -0.473 0.601 0.641 -0.821 
C86:10 36 0.701 1.091 4.867 3.064 0.634 -0.580 0.644 0.558 -0.790 
C86:18 39 0.753 1.270 5.267 2.948 0.694 -0.473 0.717 0.582 -0.724 
O5 40 0.720 1.476 5.385 2.783 0.793 -0.348 0.660 0.665 -0.748 
C71:8 40 0.653 1.136 5.044 2.637 0.748 -0.515 0.622 0.670 -0.750 
O8 41 0.766 1.323 5.402 2.591 0.814 -0.404 0.561 0.716 -0.721 
C71:5 42 0.532 1.290 4.555 3.082 0.600 -0.564 0.845 0.427 -0.960 
C86:13 43 0.630 1.490 4.899 3.167 0.620 -0.487 0.783 0.441 -0.863 
C71:26 45 0.765 1.475 5.492 2.898 0.788 -0.362 0.648 0.637 -0.733 
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C71:14 48 0.637 1.201 4.953 3.020 0.710 -0.433 0.667 0.606 -0.774 
O3 49 0.731 1.946 5.908 3.097 0.903 0.037 0.651 0.714 -0.660 
O9 50 0.800 1.575 5.654 2.834 0.805 -0.304 0.569 0.714 -0.662 
C71:9 51 0.763 1.358 5.399 2.899 0.702 -0.453 0.691 0.580 -0.735 
C86:26 53 0.802 1.523 5.624 2.980 0.775 -0.386 0.599 0.673 -0.726 
C86:9 71 0.737 1.407 5.480 3.017 0.703 -0.459 0.733 0.605 -0.760 
PR 73 0.716 1.544 5.502 2.762 0.812 -0.340 0.601 0.695 -0.737 
PRU 73 * * * * * * 0.618 0.644 -0.477 
C86:8 76 0.884 1.686 5.923 3.274 0.788 -0.259 0.598 0.702 -0.576 
C71:2 77 0.785 1.243 5.461 3.351 0.660 -0.506 0.656 0.600 -0.688 
C71:3 79 0.693 1.146 5.168 3.327 0.597 -0.585 0.742 0.507 -0.802 
C71:6 99 0.606 1.401 5.422 3.426 0.509 -0.534 0.798 0.401 -0.864 
C71:11 101 0.777 1.650 5.742 3.384 0.726 -0.342 0.709 0.626 -0.708 
C71:27 101 0.756 1.594 5.738 3.279 0.684 -0.411 0.727 0.580 -0.713 
O6 130 0.804 1.888 6.111 3.029 0.868 -0.111 0.894 0.601 -0.637 
O13 143 0.883 1.590 6.059 3.250 0.767 -0.355 0.600 0.708 -0.616 
C86:11 192 0.831 2.334 6.822 4.080 0.733 -0.124 0.624 0.627 -0.728 
C86:11U 192 * * * * * * 0.627 0.618 -0.336 
C71:23 351 0.746 1.277 5.582 3.434 0.615 -0.547 0.747 0.542 -0.752 
O7 363 0.756 1.341 5.702 3.563 0.618 -0.536 0.778 0.539 -0.756 
O7U 363 * * * * * * 0.648 0.694 -0.092 
O11 447 0.855 1.866 6.522 3.826 0.739 -0.295 0.696 0.664 -0.657 
C86:23 731 0.776 1.819 7.084 4.749 0.651 -0.366 0.770 0.573 -0.710 
O12 7249 0.711 2.402 7.375 5.025 0.590 -0.115 0.936 0.432 -0.756 
Region codes (U for U matrix) - see the earlier text for details 
Canada 1971 (C71) and Canada 1986 (C86):  C71:1 & C86:1 Brantford;  C71:2 Calgary;  C71:3 Edmonton;  C71:4 & C86:4 Guelph;  C71:5 
Halifax;  C71:6 Hamilton;  C71:7 & C86:7 Kingston;  C71:8 & C86:8 Kitchener-Waterloo;  C71:9 & C86:9 London;  C71:10 & C86:10 
Oshawa;  C71:11 & C86:11 & C86:11U Ottawa-Hull;  C71:12 & C86:12 Peterborough;  C71:13 & C86:13 Regina;  C71:14 St. Catherines - 
Niagara Falls;  C71:15 St. Johns;  C71:16 & C86:16 St. John's;  C71:17 & C86:17 Sarnia;  C71:18 & C86:18 Saskatoon;  C71:19 & C86:19 
Sault Ste. Marie;  C71:20 & C86:20 Sherbrooke;  C71:21 Sudbury;  C71:22 & C86:22 Thunder Bay;  C71:23 & C86:23 Toronto;  C71:24 & 
C86:24 Trois Rivieres;  C71:25 Victoria;  C71:26 & C86:26 Windsor;  C71:27 Winnipeg. 
 
Puerto Rico:  PR & PRU: Puerto Rico;  PR1: Arecibo;  PR2: Caguas;  PR3: Mayaguez;  PR4: Ponce;  PR5: San Juan;  PR6:Arecibo/Mayaguez;  
PR7: Arecibo/Ponce;  PR8: Arecibo/San Juan;  PR9: Caguas/Ponce;  PR10: Caguas/San Juan;  PR11: Mayaguez/Ponce. 
 
Others:  O1: Buffalo;  O2: China;  O3: Columbus, Ohio;  O4 & O4U: Eire;  O5: Ghana;  O6: Henan, China;  O7 & O7U: Houston;  O8: Kansas-
Nebraska;  O9: Nigeria;  O10: South Western Ohio;  O11: Syracuse:BG;  O12: Syracuse:CB;  O13: Syracuse:CT. 
 
 With ever increasing computer power and the 

availability of better algorithms, it becomes easier and 

quicker to evaluate the determinant term for a given n, 

but at the same time, researchers then want to use data 

sets with increasingly large n. Thus, approximate fast 

techniques are always likely to have a use. At present, 

for a large n, a coarse approximation is recommended to 

see if significant spatial dependence is present and 

perhaps to choose a more appropriate form of the model 

(e.g. CAR or SAR), followed by exact methods if it is. 

The Monte Carlo approximation of Berry and Pace[11], 

which also involves finding or estimating λ(C), would 

also be worth considering in many cases. 
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