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Abstract: This study presents a computational procedure for analyzing statistics of steady state 
probabilities in a discrete time Markov chain with correlations among their transition probabilities. The 
proposed model simply uses the first order Taylor’s series expansion and statistical expected value 
properties to obtain the resulting linear matrix equations system. Computationally, the bottleneck is 
O(n4) but can be improved by distributed and parallel processing. A preliminary computational 
experience is reported. 
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INTRODUCTION 

 
 Markov chain has been around for almost one and 
a half century. A.A. Markov initiation (from the 
appendix of the book by Howard[1]) has been 
continuously received attentions and extended 
theoretically and practically by various branches of 
science and technology. Basically, the discrete time 
Markov chain is probably the most popular in term of 
field foundation and linkage. Mathematically, the 
problem statement is to determine the vector π such that 
 
πT = πTP (1) 
eTπ = 1, eT = [1 1 1 …]n×1 (2) 
 
where π = [πi] is an n×1 vector representing steady state 
probability of each system state i, i=1,2,..n and P = [pij] 
is an n×n matrix representing the transition probabilities  
                   n 
among states with the property that Σ pij = 1, ∀ i. 
                 j=1 
 To solve the equations system (1) and (2), a given 
deterministic P must be provided. Practically, each 
element in P can be determined by either the applied 
problem assumptions or statistical approximations. In 
both cases, some parameters must be assumed or 
estimated from a finite sample and most of the time, 
these parameters are not deterministic and independent. 
For an example in marketing, the transition probability 
that customers of product brand i become customers of 
product brand j, estimated from a market survey report 
may consist of its mean, variance and co-variances with 
other transitions. Therefore, the decision problem 
becomes determining an uncertain π according to an 
uncertain P.  
 This study was aimed to propose the use of first 
order Taylor’s series approximations to obtain an 

approximated corresponding linear equations system 
for determining means, variances and co-variances 
statistics of π and analyze its computational complexity 
with a preliminary computation experiments. In the 
following sections, related literatures will be reviewed 
and then, the details of model development with related 
computational procedures will be proposed, tested and 
concluded. 
 
Literature reviews: Solving equations (1) and (2) 
based on the assumptions of irreducible Markov chain 
has been the main focus for many researchers in various 
fields. Trends and directions have changed according to 
available computing technology. An introduction level 
can be found in Kao[2] and Kulkarni[3]. Another original 
state-space approach founded by Howard[1] can be 
considered as a classic. In terms of numerical stability, 
the approach of Sheskin[4] and Grassman et al.[5] are 
basic foundations for numerical solutions with further 
extensions on other special structural transition matrix 
types by Grassman and Heyman[6] and on their passage 
time statistics by Grassman[7]. A more complete detail 
on state of the art of Markov chain computations was 
investigated and systematically organized by Stewart[8]. 
With current technology, MATLAB programming 
language (2000) is an appropriate alternative for 
solving problems with small and intermediate state 
sizes (see some available implemented programs in 
Kao[2]). However, the number of states in real life 
models is usually very large (much more than a million) 
and the transition probability matrix can be either 
sparse or dense. This leads to the use of parallel 
processing to increase computing efficiency. Some of 
these works in recent years are Knottenbelt and 
Harrison[9], Benzi and Tuma[10] and Dingle et al.[11]. 
 Statistical linear modeling with multiple random 
elements by matrix approaches is summarized and 
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illustrated in Moser[12]. Moreover, a good introduction 
on the use of expected value on linear transformation 
can be found in Strark and Woods[13]. Charnsethikul[14] 
used such foundations to develop approaches for 
solving n by n linear equations with correlations among 
right hand side values and equation coefficients. One of 
the aims in this was to simplify the approach and apply 
to the case of discrete time Markov chain analysis for 
obtaining an approximated linear model with variables 
concerning with means and variances of steady state 
probabilities and co-variances among transition and 
steady state probabilities. In the next section, the 
resulting model will be proposed and directed to the 
involved computing schemes for further algorithmic 
analysis and developments.  
 
Model development and a computational procedure: 
A statistical model for determining statistics involving 
with π and P from equations (1) and (2) is developed 
based on the given input of E[P] = [E[pij]] as the 
expected value of the matrix P, K[pkl, P] as the co-
variance matrix between pkl and all other elements in P 
and K[pkpl

T] as the co-variance matrix between 
elements in kth and lth column of P for k,l =1,2,..,n. 
 First, expand the right hand side of equation (1) 
using the truncated first order Taylor series 
approximations around the mean values and take the 
expected value on both sides as shown below. 
 
πT ≈ E[πT]E[P] + (πT – E[πT])E[P] + E[πT](P-E[P]) 
E[πT] ≈ E[π]TE[P] (3) 
 
 The higher order term truncation is due to the fact 
that both E[pij] and E[πT] values are less than one and 
each uncertain value is close to its expected value.  
Now, take the expected value on both sides of equation 
(2) and obtain the following. 
 
eTE[π] = 1 (4) 
  
 Next, multiply both sides of equation (1) by pkl, k,l 
= 1,2,..n and take the expected value resulting the 
equations system as follows. 
 
pkl πT = pkl πTP 
K[pkl, πT] = K[pkl, πT]E[P] + E[πT] K[pkl, P] 
K[pkl, πT][I-E[P]] = E[πT] K[pkl, P] (5) 
 
 For equation (2), multiply both sides by pkl and 
take the expected value lead to a redundant relation. 
Therefore, at this moment, E[π] can be solved using 
equations (3) and (4). The right hand side of equation (5) 
can be obtained for each k and l and K[pkl, πT] as the 
co-variances between pkl and all elements in π, can be 
computed by solving equation (5) n2 times according to 
all possible choice of k and l. Finally, rearrange 
equation (1) and obtain the multiplicative form as 

follows and then, take the expected value getting the 
following matrix relation. 
 
πT = πTP → πT[P-I] = 0 or [PT-I]π = 0 
 
Therefore, 
 
[PT-I]ππT[P-I] = 0 
 
If WT = [PT-I] then W = [P-I]. Next, apply the first 
order approximation to obtain the following matrix 
equation for solving variances/co-variances among the 
steady state probabilities as follows. 
 
E[WT]K[ππT] E[W]+ [E[πT]K[wiwj

T]E[π]] 
+ [E[wi

T]K[πwj
T]E[π]]+ [E[πT]K[wiπT]E[wj]] = 0 (6) 

E[WT]K[ππT] E[W]= [qij] + [rij] +[sij]  
K[ππT] = E[WT] -1[[qij] + [rij] +[sij]] E[W] –1 (7)  
 
where 
  
 E[W] = E[P] – I, 
 K[wiwj

T] = K[pipj
T], 

 K[πwj
T] = K[πpj

T], 
 qij = -E[πT]K[wiwj

T]E[π], 
 rij = -E[wi

T]K[πwj
T]E[π], 

 sij = -E[πT]K[wiπT]E[wj], i,j = 1,2,..,n, 
 K[wiwj

T] and K[pipj
T] represents the co-variance 

matrix between elements of columns i and j of matrices 
W and P respectively, 
 E[wj] represents the mean vector of elements of 
column j of matrix W and  
 K[πwj

T] and K[πpj
T] represents the co-variance 

matrix between elements of column j of matrices W and 
P respectively and elements of vector π. 
 
 Therefore, in summary, a numerical algorithm for 
obtaining statistics of steady state probabilities in case 
of correlated transition probabilities can be stated step 
by step as follows. 
 
Step 1: Find E[πT] by solving equations (3) and (4). 
 
Step 2: Substitute E[πT] found from step 1 to equation 

(5) and solve for K[pkl, πT] for all possible k 
and l. 

 
Step 3: Substitute E[πT] and K[pkl, πT] for all possible 

k and l found from steps 1 and 2, respectively 
to equation (7) and finally, solve for K[ππT]. 

 
 In step 1, the complexity of O(n3) is required for 
general dense P since the computation is involved with 
solving n by n simultaneous linear equations while step 
2 requires at most solving n by n equations n2 times 
with the complexity of O(n4) since each equation has 
the same coefficient matrix [I-P]. Therefore, only one n 
by n system is needed to be solved with O(n3) while 
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others require O(n2). Finally in the last step, solving the 
corresponding matrix equation requires solving the 
inverse matrix of E[W] and two matrix multiplications 
with size n by n, leading to the complexity of O(n3) + 
O(n3) = O(n3). Therefore, the bottleneck complexity of 
the whole procedure can be identified at step 2 with the 
complexity of O(n4). However, for each k and l in step 
2, solving for each K[pkl, πT] is independent and can be 
computed in parallel for efficiency improvements.  
 

RESULTS AND DISCUSSIONS 
 
 The proposed computational procedure in the 
previous section was coded as a MATLAB program 
utilizing its numerical linear algebra objects on solving 
corresponding equations and matrix operations. The 
input test data, E[P] and K[pkl, P] for all k and l were 
randomly generated on various n. The corresponding 
co-variance matrix was generated such that the diagonal 
dominant property holds and also maintains the semi-
positive definite assumption. The observed response is 
the computational time in each procedure step. The 
maximum n is up to 200 due to a clear illustrated 
bottleneck on step 2 of the procedure and excessive 
computation time limit of 2 hours. All generated 
problem were tested on a microcomputer with Pentium 
IV, 2.4 Ghz and 1Gbytes RAM. The results are as 
shown in Table 1.  
 
Table 1: Average time consumed in case of dense matrices 
 Computational Time (sec.) 
 ---------------------------------------------------------------------- 
N Step 1 Step 2 Step 3 
10 <0.000 0.062 <0.000 
25 <0.000 2.516 <0.000 
50 <0.000 33.813 0.031 
75 <0.000 190.172 0.056 
100 <0.000 528.360 0.150 
150 0.005 2,161.423 0.562 
200 0.022 6,152.513 1.786 
 
 From the Table 1, the results are consistent with 
our initial assumption that the computation bottleneck 
is in step 2. Moreover, the time response on step 2 can 
be fitted using direct regression analysis and the 
appropriate relationship with n also hold with the 
theoretical results of O(n4). For a larger scale problem, 
the computations on step 2 can be independently 
distributed among parallel processors by partitioning 
equally the sub-problem set of all possible k and l under 
the assumption that computations in steps 1, 2 (for each 
k and l) and 3 can be efficiently solved in a single 
processor. However, in a much larger scale problem, 
sparse matrix technology with more complicated 
parallel designs and programming will be required. 
       

CONCLUSION 
 
 This study uses the first order Taylor’s series 
approximation to create a linear model for determining 

statistics of steady state probabilities in a discrete time 
irreducible Markov Chain. The proposed procedure to 
solve the corresponding model can be proven 
theoretically and experimentally within O(n4). 
Moreover, distributed computing can be directly 
applied to the procedure for efficiency improvements. 
For an extensive study, the effects of neglecting higher 
order terms in Taylor’s series should be furthered 
investigated especially in case of non-Gaussian 
assumptions with higher order correlations among 
transition probabilities. 
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