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Abstract: We presented a feasible direction method to find all optimal extreme points for the linear 
programming problem. Our method depends on the conjugate gradient projection method starting with an 
initial point we generate a sequence of feasible directions towards all alternative extremes.  
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INTRODUCTION 

 
 The problem of linear programming (LP) is one of 
the earliest formulated problems in mathematical 
programming where a linear function has to be 
maximized (minimized) over convex constraint 
polyhedron X. The simplex algorithm was early 
suggested for solving this problem by moving toward a 
solution on the exterior of the constraint polyhedron X.    
In 1984, the area of linear programming underwent a 
considerable change of orientation when Karmarker 
[1984] introduced an algorithm for solving (LP) 
problems which moves through the interior of the 
polyhedron. This algorithm of Karmarker's and 
subsequent additional variants[1,2] established a new 
class of algorithms for solving linear programming 
problems known as the interior point methods . 
 In the case of the linear programming sometimes 
the solution is not unique and decisions may be taken 
based on these alternatives, in this study we present a 
feasible direction method to find all   alternatives 
optimal extreme points for the linear programming 
problem. This method is based on the conjugate 
gradient projection method for solving non-linear 
programming problem with linear constraints[3,4]. 
 
Definitions and theory: The linear programming 
problem (LP) arises when a linear function is to be 
maximized on a convex constraint polyhedron X. this 
problem can be formulated as follows: 
Maximize F(x) =    cTx  
Subject to  
x Є X = {x, Ax ≤ b} (1) 
 Where c, x Є Rn, A is an (m + n) × n matrix, b Є 
Rm+n ,we point out that the nonnegative conditions are 
included in the set of constraints. This problem can also 
be written in the form: 
 

Maximize   F(x) = cTx  
Subject to  
a T

i x ≤  bi        i = 1, 2... , m + n.  (2)  

 Here a T
i  represents the  i th row of the given 

matrix A, then we have  in the non degenerate case an 
extreme point (vertex) of X lies on some n linearly 
independent subset of X. We shall give an iterative 
method for solving this problem and our task is to find 
all optimal alternatives extreme points for this program, 
this method starts with an initial feasible point then a 
sequence of feasible directions toward optimality is 
generated to find all optimal extremes of this 
programming, in general if xk-1 is a feasible point 
obtained at iteration k-1 (k = 1, 2 …) then at iteration k 
our procedure finds a new feasible point xk given by  
xk = xk-1 +α k-1dk-1  (3) 
Where dk-1 is the direction vector along which we move 
and given by  
dk-1 = Hk-1c  (4) 
Here Hk-1 is an n х n symmetric matrix given by 
 
                            I    for k =1 
Hk-1 = (5) 

   
q
kH 1−  If k > 1                                                             

in (5) we have  I is an nxn identity matrix and q is the 
number of active constraints at the current point while  

q
kH 1−  is defined as follows, for each active constraint   

s; s = 1,2,…,q. 
q
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With 0
k 1H −  = I .Then Hk-1 is given by Hk-1 = H

q
k 1−  . The 

step length αk-1 is given by 
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αk-1 =  
i 1,...,m n

min
= +

 { gi / gi = 
T K 1

i i
T K 1
i

b a x
a d

−

−

−
  and gi >0} (7)  

 This relation states that αk-1 is always positive. 
Proposition 2-2 below shows that such a positive value 
must exist if a feasible point exists. Due to the well 
known Kuhn-Takucer condition[5,6] for the point xk to 
be an optimal solution of the linear program (1) their 
must exist u ≥ 0 such that  
A T

r u = c    , or simply  
u = (ArA T

r )-1Arc (8)                                         
 Here Ar is a submatrix of the given matrix A 
containing only  the coefficients of the set of active 
constraints at the current point xk .This fact will act as a 
stopping rule of our proposed algorithm, also we have  
to point out that  the matrix  Hk-1  =  H 2

k 1− ,so we have the 
following proposition.  
 
Proposition 2-1: Any solution xk given by equation (3) 
is feasible and increases the objective function value. 
 
Proof 
F (xk) − F (xk-1) =cT xk - cT xk-1  
= cTα

k-1 dk-1   
=α k-1 cT Hk-1c 
=α k-1 cT H 2

1−k c    

=α k-1 || Hk-1 c||   >0   
 This proves that xk increases the objective function. 
Next, we shall prove that xk is a feasible point. For xk to 
be a feasible point it must satisfy all constraints of 
problem (2-1), then  
  a T

i  (xk-1 + α k-1dk-1) ≤  bi  
 Must hold for all i Є {1, 2… m+n} which can be 
written 
a T

i k-1dk-1 ≤  bi − a T
i xk-1,   i =1, 2…, m+n 

And this is valid for any i since if there is p Є {1, 2… 
m+n} such that 
a T

p dk-1 > 0 and  a T
p dk-1

 > bp− a T
p xk-1   , then 

Y k 1
p P

T K 1
p

b a x
a d

−

−

−
 <α k-1       

That will contradict our definition of α k-1. 
 Next, we shall give a result that guarantees the 
existence of α k-1 defined by relation (7) above. 
 
Proposition 2-2: At any iteration k if a feasible point 
that will increase the objective function exists thenα k-1 
as defined by relation (7) must exist. 

 
Proof: To prove this result it is enough to prove that  
a T

i dk-1 ≤  0 (9)                                   
cannot be true for all i ∈  {1,2,…, m+n}.Now suppose 
that relation        (2-9) is true for  i ∈  {1,2…, m+n}then 
writing(2-9 )in matrix form and multiplying both sides 
by uT≥ 0, we get  
uT A dk-1   ≤  0 
 i.e.,        uTA Hk-1c ≤  0 (10)                                    
 Since the constraints of the dual problem for the 
linear programming problem (1) can be written in the 
form   
uTA = cT, u ≥ 0, then (2-10) can be written as: 
cT H 2

1−k  c     ≤  0, since Hk-1= H 2
1−k  

i.e.,      || Hk-1 c||    ≤  0 
 This contradicts the fact that the norm must be 
positive, which implies that relation (7) cannot be true 
for all, i ∈  {1, 2… m+n}. Thus if a feasible point xk 
exists then α k-1 as defined by relation (7) must exist. 
 Based on the above results we shall give in the next 
section a full description of our algorithm for solving 
the linear programming problem (LP) problems, to find 
all alternative optimal extremes in two phases as 
follows: 
 
New algorithm for solving (LP) problems: Our 
algorithm for solving (LP) problems to find all optimal 
alternatives extreme points consists of the following 
two phases as follows: 
 
Phase I 
Step 0: set k=1, Ho =I, do=c, let x0 be an initial feasible 
point and apply relations (2-7) to compute α0. 
Step 1: Apply relation (3) to find a new solution xk. 
Step 2: Apply relation (8) to compute u, if u ≥ 0 stop. 
The current solution xk is the optimal solution otherwise 
go to step 3. 
Step 3: Set k = k+1, apply relations (5), (4) and    (7) to 
compute Hk-1, dk-1and αk-1 respectively and go to step 1. 
 
Phase II 
 Assuming that q is the number of active constraints 
at point xk then if q<n and relation (7) is satisfied this 
indicates that xk is an optimal non-extreme point, in this 
case the objective function can not be improved through 
any feasible direction and in this case we have Hk c=0 at 
this point xk. let the columns of Hk represents the 
allowed directions of movement  dk  from xk towards 
the optimal extremes x* of the form: 
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x*= xk +α *dk , α* is free and is obtained by solving 
the system of linear inequalities of the form αA dk ≤  b-
A xk, hence the boundary point of this interval define 
α*. 
Remark 3-1: In the case when q=n and relation (2-7) is 
satisfied this indicates that xk is an optimal extreme 
point then the columns of Hk has to be computed via a 
subset of these active constraints at xk such that (2-8) is 
satisfied.   
 
4- Example 
Maximize F(x) = x1 + 2 x2 
Subject to: 2 x1 + x2  ≤  8 
x1 + 2x2 ≤  6   
x1 ≥ 0, x2 ≥ 0 
 
Phase I  
                                    1            0               1 
Step 0: k=1,   H0=                    .d0 =                
                                    0            1                    2     
                 1   
Let x 0 =          be an initial feasible point, then (2-7) 
                 1 
 
gives α0 = 3/5 and we go to step 1                                                                                                                                                                  
 
Step 1: apply relation (2-3) to get  
 
 1  1   8/5 
x1 =         + 3/5          = 
 1  2   11/5 
and we go to step 2 
 
Step 2: for this point x1 the second constraint is the 
only active constraint and since relation (2-8) is 
satisfied indicates that the point is optimal non extreme 
for this linear program and we start phase 2. 
 
Phase II 
We notice that the objective function value can not be 
improved since   
H1 c = 0, where 
             4/5    -2/5    
H1=                 , 
           -2/5     1/5                                                                                                        
    
solving the system of linear inequalities 

                                         
  2     1            4/5                    13/5 
  1     2                     α ≤             0 
 -1     0          -2/5                     8/5 
  0    -1                                      4/5 

Gives αε    [-2    13/6], using these end values of the 
interval above we get for α*= -2  
 
  
            8/5                      4/5               0 
x 1

*
 =                         +   (-2)                  = 

                  11/5                   -2/5               3 
 
And also for α * =13/6 we get  
 
 
                8/5                     4/5              10/3 
x 2

* =                 + 13/6                 =  
               11/5                   -2/5             4/3 
 
 
 Both x 1

*   , x 2
*   are optimal extreme points for this 

linear program problem, we notice that the second 
column of H1 can be used to get the same result since 
the columns of H1 are linearly dependent 
 

CONCLUSION 
 
 In this study we gave a feasible direction method to 
find all optimal alternative extreme points of linear 
programming problem .since decisions may be taken 
depending on these alternatives, our method is based on 
conjugate projection method and doesn't depend on the 
simplex version of linear program 
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