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Abstract: Recently, neural network models have been popular and found useful for forecasting a wide 
variety of time series data in many disciplines. This is due to their favorable modeling properties of 
simplicity, fault and noise tolerance and their capability to adapt to process changes. Nevertheless, 
applications in climatology have been less widespread than other disciplines such as economics. In this 
study, feed-forward neural-network (FFNN) and autoregression (AR) time series models are used in 
forecasting the annual air temperature time series data in Jordan. The performance of the two 
predictors was compared using out-of-sample forecasts. The test period was shifted through the whole 
available time.  As demonstrated by the forecasting experiments, the FFNN models gave better 
forecasts and were able to identify the dynamics of the temperature time series and gave more realistic 
forecasts. Both predictors showed a cooling trend in annual air temperatures for the coming 10 years.  
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INTRODUCTION 

 
  Recently, neural network models have been 
popular and found useful in forecasting a wide variety 
of historical data, although applications in climatology 
have been less widespread than other disciplines, even 
though climatic data often takes the form of series 
measures over time.  Forecasting global temperature 
variations by neural networks was implemented using 
regularization network, multilayer perceptrons, linear 
autoregression and a local model known as the simplex 
projection method[1]. The forecasting results are 
consistent with the hypothesis that the climate 
dynamics is characterized by low-dimensional chaos 
and that it may have changes at some point after 1965, 
which is also consistent with the recent idea of climate 
change. 
 Different neural-network prediction algorithms 
have been proposed in the literature and used in many 
disciplines. Lapedes and Farber[2] reported that simple 
neural networks can outperform conventional methods 
for identifying historical data. Anderson et al.[3], 
compared different recurrent training algorithms for the 
identification of time series data. Gómez-Ramírez et 
al.[4]  implemented an adaptive algorithm of the 
architecture of Polynomial Artificial Neural Network 
(PANN) using Genetic Algorithm (GA) to improve the 

learning process. The performance of this algorithm 
was compared to a multilayer perception network. Peter 
Zhang and Min Qi[5] considered the issue of how to 
effectively model time series with both seasonal and 
trend patterns. They concluded that detrending and 
preprocessing of data is essential for obtaining reliable 
predictions. Other applications of neural networks in 
this area can be found elsewhere[6-8].   
 In the Middle East, investigations of long term 
variations in temperature data are not receiving enough 
attention even though, these countries suffer serious 
environmental, agricultural and water resources 
problems. In this work, feed-forward neural-network 
(FFNN) and autoregression (AR) time series models 
were used in forecasting the annual mean temperatures, 
annual mean minimum temperatures and annual mean 
maximum temperatures during the period 1923-2003 in 
Amman Airport station, Jordan. The Amman station is 
a strategic and historical station in the Middle East, due 
to its location, reliability and length of the record. The 
performance of the two predictors was compared by 
out-of-sample forecasts and examining the mean square 
errors. Finally, forecasts of the annual mean 
temperature mean minimum temperature and mean 
maximum temperature for the coming 10 years at 
Amman station in Jordan are given using the two 
prediction models. 
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MATERIALS AND METHODS 
 
 In the following, the feed-forward neural-network 
(FFNN) algorithms and Autoregression (AR) time 
series models were described.  
 
Feed-forward neural networks (FF-NN): When used 
as a black-box modeling tool, the FF-NN artificial 
neural network structure approximates the behavior of 
certain mechanistic phenomena by the use of 
optimization search techniques. This is accomplished 
into two steps; the network is fed with the input-output 
data of the actual process to be modeled and then these 
data are used to train the network for emulating the 
training data. 
 Basically, the neural networks are constructed in 
layers namely; input layer, hidden layer(s) and an 
output layer. Each layer is composed of one or more 
neurons. The neuron is the building block of these 
networks. The neuron, has a scalar input p which is 
passed through a connection that multiplies its strength 
by the scalar weight w, to form the product wp. The 
product wp is fed as an argument to a transfer function 
f, which produces the scalar output a. A scalar bias, b, 
of unity value is added to the product wp. Thus, the 
neuron has two inputs p and b and one output a. This 
structure can be written mathematically as: 
 a f (wp b)= +  (1) 
 The transfer function which is some times called 
the activation function may take different mathematical 
forms. Some of these commonly used forms are; the 
linear, log-sigmoid, tan-sigmoid  and the radial basis 
transfer functions. Selecting a proper activation 
function depends on the application used and network 
structure. 
 Neurons are stacked to form one layer as shown in 
Fig. 1. The R input vector p is fed to the first layer. 
These inputs are multiplied by an S×R weight matrix W 
and an S bias vector b is added to the product to 
produce an output vector a. This can be expressed as:  

( )a = f Wp + b  (2) 
For n layers connected in series, the output vector at a 
certain time step k can be expressed as: 

( )n n n n
n na f W f W f W p b b b1 1 1 2

, 1 1,1 1,1
−

−
  = + + +    

 (3) 

Thus, for a 3 layer network equation 12 becomes: 

( )y a f W f W f W p b b b3 3 2 1 1 2 3
3,2 2,1 1,1

  = = + + +    
 (4) 

where y represents the network product vector. As 
shown in Fig. 1, the input vector p to the FF-NN 
network architecture consists of the recent input u(k) 
and the n past inputs u(n), n=k-1,…,k-n. 
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Fig. 1: Structure of the feedforward neural-network 
 
 The network is fed with a set of input-output pairs 
and trained to reproduce the outputs with a predefined 
degree of tolerance. For the case of time series data, the 
input is a vector of n+1 values and the output is a single 
value at the k+1 incidence of time.  Network training is 
done by adjusting the neurons weights using an 
optimization algorithm to minimize the quadratic error 
between observed data and computed outputs.  
 Input-target training data are usually pretreated in 
order to improve the numerical condition of the 
optimization problem and to make better behavior of 
the training process. The input-target data is normally 
subdivided into three subsets namely; training, 
validation and testing subsets. The training subset data 
is used to accomplish the network learning and fit the 
network weights by minimizing an appropriate error 
function. Backpropagation is the training technique 
usually used for this purpose. It refers to the method for 
computing the gradient of the case-wise error function 
with respect to the weights for a feedforward network. 
The performance of the networks is then compared by 
evaluating the error function using the validation subset 
data, independently. The testing subset data is then used 
to measure the generalization of the network (i.e. how 
accurately the network predicts targets for inputs that 
are not in the training set) this is some times referred to 
as hold-out validation.  
 
Autoregressive models: Assuming { }tX t n, 1,...,=  is a 
zero mean stationary time series, a popular and wide 
class of time series models is the autoregressive 
models, AR(p), where p  is nonnegative integer and the 
order of the autoregressive model. The model is given 
in a form of difference equation. This model can be 
represented as[9] 

1 1 ... ,      1,...,t t p t p tX X X Z t nϕ ϕ− −= + + + =  (5) 
where Zt is a sequence of uncorrelated random 
variables, with zero mean and variance σ2 and is written 
as Zt ~WN(0, σ2), (WN stands for white noise).  
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The model could be written in the following form: 
( ) t tB X Z=Φ , (6) 

where 1( ) 1 p
pB B Bϕ ϕ= − − −Φ  ,  and  , BkXt=Xt-k. 

Important properties of the AR(p) models like 
stationarity and causality  depend on the location of the 
roots of the characteristic polynomial Φ(B)[9]. The 
following four steps are required to build an AR model: 
(i) Model identification. 
(ii) Estimation of the model parameters 1, , pϕ ϕ   

and σ2 . 
(iii) Checking the Model. 
(iv) Forecasting.  
 Model parameters estimation can be achieved 
using different methods. Among these methods, Yule-
Walker estimates, which are moment type estimates, 
least squares estimates, conditional maximum 
likelihood estimates, and maximum likelihood 
estimates[9,10]. The maximum likelihood estimator 
which is used in this work is one of the popular 
estimation methods. For the AR(p) model given in (5), 
assuming independent identically normally distributed 
white noise {Zt}, the likelihood function is given by 
Brockwell and Davis[9]. 

2 / 2
1 1

1/ 2 '

( , , , , , , ) (2 )

| det | exp[ ]

n
p n

n n

L x x

x x

ϕ ϕ σ π −

−

=

Γ − Γ
  (7) 

Where '
1( ,..., )nx x x=  and nΓ  is the matrix of 

covariance's; 

, 1[ ( )]n
n i ji jγ =Γ = −  (8) 

 
 This can be computed from (1). The maximum 
likelihood estimators 2

1, , ,pϕ ϕ σ are the values of  
2

1, , ,pϕ ϕ σ  which maximize (7) for given 
observed data. Different optimization algorithms are 
available in the time series literature to numerically 
estimate the parameters 2

1, , ,pϕ ϕ σ . The ITSM 
software package was used in this study to estimate 
these parameters. 
 The AICC (a bias-corrected form of Akaike's 
information criterion) is chosen as a selection criterion 
of the order of AR(p) model by selecting the value of p 
that minimize  

2
1 1

2( 1)2 ln ( ,..., , ; ,..., )
2p n

p nAICC L x x
n p

ϕ ϕ σ +
= − +

− −
 (9) 

 Before accepting the fitted model and developing 
forecasts of future values, the model must be validated 
by reconciliation its predictions with actual time series 
data. 

RESULTS AND DISCUSSION 
 
 The fitted autoregression models of annual mean 
minimum, annual mean and annual mean maximum 
temperatures based on the minimum AICC criterion are 
given as follows: 
 The fitted model of annual mean minimum 
temperature is 

1 2 30.4457 0.1662 0.2266t t t tX X X X− − −= + + ,

3029.0ˆ 2 =σ . 
The fitted model of annual mean temperature is 

1 2 30.2303 0.0809 0.2572t t t tX X X X− − −= + + ,

3203.0ˆ 2 =σ . 
The fitted model of annual mean maximum temperature 
is 

1 2 30.2107 0.0990 0.2187t t t tX X X X− − −= + + ,

4985.0ˆ 2 =σ . 
Where  2σ̂  is the estimated white noise variance. 
 The fitted models are of the same order, AR(3), 
This indicates that there was a fairly consistent behavior 
in the annual mean, annual mean minimum and annual 
mean maximum temperature data. None of the two 
portmanteau tests (Ljung-Box and McLead-Li) rejects 
the hypothesis of i.i.d residuals at level 0.05 and the 
minimum-AICC Yule Walker AR model for the 
residuals is of order zero.   
 The FFNN modeling was performed using the 
following procedure; data preprocessing, network 
structure selection, network training, early stopping, 
out of sample testing. A series of exploratory 
experiments were performed to select the best NN 
structure. A three layers network was finally selected 
with 4 sigmoidal neurons in the input layer, 30 
sigmoidal neurons in the hidden layer and 1 linear 
neuron in the output layer. Due to the time dependence 
of the data, the network output was fed back to the 
input as shown in Fig. 1. Three time delays were 
selected, making the total number of inputs four in any 
time prediction instance. In order to guarantee the 
generalization of the trained neural network and 
confirm the acceptance of the network performance 
over a wide range of process operating conditions, the 
network needs to be trained with data which covers the 
entire range of possible network inputs. For the process 
under consideration, the input-target range spans all the 
experiments data (the period 1923-2003). The original 
historical data set of inputs was subdivided into three 
subsets for network training, validation and testing in a 
ratio of 4:1:1, respectively. The inputs and the targets 
were normalized so that they have zero mean and unity 
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standard deviation. This would make the neural 
network training more efficient. Network training was 
accomplished by changing its weights and biases to 
achieve certain performance criteria. This is 
accomplished by using an optimization algorithm that 
searches for network parameters which minimizes the 
performance index.  
 The networks' training was stopped before reaching 
the performance criterion of 1× 10-3. This is because of 
the increase of the validation error. The normalized 
mean square error (MSE) attained for each network is 
less than 0.5, but the search gradients indicate that the 
training goal was not achieved completely. This is 
because the time series data is so complex and it can 
not be modeled with a high degree of efficiency such as 
the case with other function approximation 
applications. A certain degree of model deviation must 
be accepted in this case. The attained MSE for the three 
series give an indication of the good accuracy of 
prediction. 
 In forecasting, out-of-sample forecasts was 
implemented by a leave-three-out technique (need at 
least 3 years in an AR(3)). In this case we fit/learn with 
the total interval minus three years (81-3= 78 years) and 
test in the remaining three years. The test period was 
shifted through the whole available time. As 
demonstrated by the forecasting experiments, FFNN 
models gave the best forecasts. The FFNN and AR 
predictors for test period (78) years along with the time 
series plots of annual mean temperatures, annual mean 
minimum temperatures and annual mean maximum 
temperatures are shown in Fig. 2. 
 
 Since temperature memory decays, one expects 
that in a AR model the higher lag coefficient should be 
smaller than the lower lag regression coefficient. 
However, in the calculated models it is noticed that the 
third coefficient is larger than the second one for the 
three different time series. Also it is larger than the first 
coefficient for the mean temperature and slightly higher 
for the maximum temperature (0.2107 and 0.2187).  
One good reason for this contradicted trend in the 
values of the parameters can be attributed to the well 
known abrupt climatic changes in the time series 
behavior at this station. Major statistically significant 
change points in the mean minimum (night-time) and 
mean maximum (day-time) temperatures occurred in 
1957 and 1967, respectively[11]. The presence of these 
abrupt changes might affect the natural behavior of the 
time series structure and a general conclusion about the 
comparative values of models parameters can not be 
drawn. 
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Fig. 2: FFNN versus Autoregression forecasts of 

annual air temperatures 
 
 The   MSE  for  the two predictors are shown in 
Fig. 2. The MSE of the AR predictors are 0.3379, 
0.3326 and 0.5122 for the annual mean, annual mean 
minimum and annual mean maximum temperatures 
respectively whereas the corresponding FFNN 
predictors MSE for the three time series are 0.1772, 
0.0943 and 0.1231 respectively. It is clear that the MSE 
using the FFNN predictor are all through significantly 
smaller than the corresponding AR predictor, from 
which we conclude that the FFNN models gave the 
better forecasts than AR predictors. The AR models 
forecasts showed steady temperature profiles, on the 
other hand, the FFNN models were able to identify the 
dynamics of the temperature time series and gave more 
realistic forecasts. Generally, predicted annual 
temperatures shows steady rise from 1923 to 1950, then 
a decreasing (cooling) trend until late 1970’s, followed 
by a further clear rise in temperature from late 1970’s to 
the end of the record in 2003. These results agree 
generally with the trend patterns of the global annual 
mean temperatures by Smith[12].  
 The forecasts for the future 10 years (2004-2014) 
are also shown in Fig. 2 for the three temperatures data 
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sets. The AR and FFNN models show a decreasing 
pattern in annual air temperatures for the coming 10 
years, especially, the annual mean minimum 
temperature.  
 

CONCLUSION 
 
          As demonstrated by the forecasting experiments, 
FFNN models gave better forecasts than AR models. 
The neural network based models exhibited lower MSE 
as compared to the AR models. The AR models 
forecasts showed steady temperature profiles. On the 
other hand, the FFNN models were able to identify the 
dynamics of the temperature time series and gave more 
realistic forecasts. Finally, both predictors revealed a 
cooling trend in the annual air temperatures for the 
coming 10 years.  
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