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Abstract: We proved the existence of fixed points of non-expansive operators defined on weakly 
Cauchy spaces in which parallelogram law holds, the given normed space is not necessarily be 
uniformly convex Banach space or Hilbert space, we reduced the completeness and the uniform 
convexity assumptions which imposed on the given normed space. 
 
Key words: Fixed points, non-expensive operators, normed spaces, convexity 

 
INTRODUCTION 

 
 Let C be a bounded closed convex subset of a 
Banach space X, and let T be a non-expansive mapping 
from C into itself, as we know, the fixed point set 
F(T):={x∈C: T(x)=x} may be empty. The quest for 
geometric conditions on C which will guarantee the 
existence of at least one fixed point for which non-
expansive self mapping of C has leds to an extensive 
fixed point theory for non-expansive mappings. Many 
results have been given independently by Browder[1], 
Gohde[2] and Kirk[3], they showed that  
 
Theorem 1[2]: Let X be a uniformly convex Banach  
space, C be a nonempty bounded closed convex subset 
of X and T be a non-expansive operator from C into 
itself. Then T has a fixed point.  
 In[4], we used the concept of weakly Cauchy 
normed space to prove the existence of a fixed point of 
a contraction mapping on a given weakly Cauchy 
normed space and we will use this result to prove the 
existence of fixed points of a non-expansive operator on 
that space. 
 
Theorem 2[4]: Let X be a weakly Cauchy normed 
space, C be a closed convex subset of X and T be a 
contraction mapping from C into C. Then T has a 
unique fixed point y ∈  C. Moreover  {Tn(x)}n∈N is 
strongly convergent to y for every x∈C, limn→∞ 

Tn(x)=y for every x ∈  C. 
 We remark that, if y is a fixed point of a 
contraction operator, then the inequality  
||Tn(x)-T(y)||=||Tn(x)-Tn(y)|| ≤ rn ||x-y|| for ever x∈C 
insures that the sequence of iterates Tn(x)}n∈N is 
strongly convergent to y for every x∈C. 
 

 In this study, we will use theorem (3) below to 
prove the existence of a come point of descending 
sequence of bounded closed convex subsets of a weakly 
Cauchy normed space in which the parallelogram law 
holds, in this case we reduced the completeness and 
uniform convexity imposed on the given normed space. 
 
Theorem 3[5]: Let X be a weakly Cauchy normed space 
in which the parallelogram law holds. Then every 
nonempty closed convex subset C of X is Chebyshev. 
Equivalently the metric projection PC exists on every 
nonempty closed convex subset of X, for every x ∈X 
there exists a unique element PC(x)=y∈  C called the 
best approximation element of x in C such that 

{ }.:inf:),( CzzxCxdistyx ∈−==−  
 We mention here that the last result used the 
concept of weakly Cauchy normed spaces to prove the 
existence of the best approximation elements of a 
convex closed subsets in normed spaces not necessarily 
be reflexive Banach space or Hilbert space in general. 
 
Notations and basic definition[6]: Let X be a normed 
space and f be a function f from X into [0, ∞). Then  
1. f is said to be lower semicontinuous if and only if 

for any real number α, the set {x∈  X: f(x) ≤α} is 
closed convex subset of X. 

2. f   is   said  to  be  convex  if  and  only  if  for  any 
x,  y  ∈  X and t∈  [0, , 1],  f(t x +(1-t)y)≤ t 
f(x)+(1-t)f(y). 

 
Definition[4,5]: A normed space X is said to be weakly 
Cauchy normed space if and only if every Cauchy 
sequence in X is weakly convergent to an element x in 
X . 
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Definition[6]: Let X be a normed space, T be a mapping 
from X into itself. Then  
1. T is said to be Lipschitzian if and only if there 

exists a non-negative real number r such that ||T(x)-
T(y)|| ≤  r ||x-y||  for every x,  y ∈X. 

2. T is said to be contraction if and only if there is a 
non-negative real number r<1 with the property 
that ||T(x)-T(y)|| ≤  r ||x-y||  for every x,  y∈X. 

3. T is said to be non-expansive if and only if ||T(x)-
T(y)|| ≤  ||x-y|| for every x, y ∈  X. 

 A point y∈  X is said to be fixed point with respect 
to the operator T if and only if T(y) =y, F(T) will 
denote the set of all fixed points of T. 
 The non-expansive operators may not have fixed 
point even on uniformly convex (not bounded) Banach 
spaces in general.  
 Depending only on the parallelogram law, we have 
the following lemma. 
 
Lemma 1[6]: Let X be a normed space in which 
parallelogram law holds, C be a closed convex subset of 
X. If T is a non-expansive operator on C into C, then 
F(T) is closed convex subset of X.  
We proved the following: 
 
Lemma 2: Let X be a weakly Cauchy normed space in 
which the parallelogram law holds, C be a closed 
convex subset of X. If T is a non-expansive operator on 
C into C and the set of fixed point F(T) is nonempty, 
then F(T) is Chebyshev subset of X. 
 
Proof: Using theorem (3) and lemma (1), we get the 
proof. 
 We have the following main proposition. 
 
Proposition 1: Let X be weakly Cauchy normed space 
in which parallelogram law holds, if {Cn}n∈N is 
descending sequence of closed bounded convex subsets 

of X, then the intersection Φ≠∞
= nn C1∩  is not empty. 

 
Proof: Let z be a point in X not in C1, using theorem 

(3), there is a unique sequence { }∞=1nnx , nn Cx ∈ such 

that 
{ }nnn CyzyCzdistxz ∈−==− :inf:),(  

for every Nn∈ , Let { }∞=1nnr  be a sequence of real 

numbers defined by nn xzr −=: , since  {Cn}n∈N  is 

descending , { }∞=1nnr  is increasing which is bounded 

above by Diam({z} 1C∪ ), hence { }∞=1nnr is convergent to 

some real number r, r=
n

n

rlim
∞→ , we claim that the 

sequence { }∞=1nnx  is a Cauchy sequence in X, to prove 
this claim, let n, m ∈  N and n>m, using the 
parallelogram law, we have 
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Taking the limit as ∞→m , we see that 
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Therefore { }∞=1nnx  is a Cauchy sequence in X, since X is 

weakly Cauchy normed space, { }∞=1nnx  is weakly 
convergent to some point x in X, for every n, the 

sequence ,...,, 21 ++ nnn xxx  is weakly convergent to x, 
since Cn is closed convex, Cn is containing all its weak 
limits as well as all its strong limits, x∈  Cn for every 

n∈  N, thus x∈  nn C∞
=1∩  and Φ≠∞

= nn C1∩ . 
 
Corollary 1: Let X be weakly Cauchy normed space in 
which parallelogram law holds, C be a closed convex 

subset of X, and ),0[: ∞→Cf  be a convex lower 
semicontinuous function from C into [0, ∞ ) with the 

property that f(x) →  ∞ as ||x|| → ∞. Then f 
attains its infimum on X, if in addition 

)}(),({)
2

( yfxfMaxyxf <
+

, then f attains its minimum 
at exactly one point. 
 

Proof: Let 
∞
=1}{ nnλ  be a converging to zero sequence of 

real numbers, apply Proposition (1) with 
})(inf)(:{ nCxn xfxfCxC λ+<∈= ∈ , there exists 

x0 in C such that Nnxfxf nCx ∈∀+< ∈ λ)(inf)( 0 , f 
attains its minimum at x0, if f attains its minimum at 
two different elements x and y, since (x+y)/2 is an 
element of C, the next strict inequality gives a 
contradiction 

)}(),({)
2

( yfxfMaxyxf <
+

=f(x)=f(y)= )(inf xfCx∈ . 
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 The  following   Theorem   is  my   Main   purpose  
to prove. 
 
Theorem 4: Let X be a weakly Cauchy normed space, 
C be a nonempty bounded closed convex subset of X, 
and T be a non-expansive operator from C into itself. 

Then { } .0:)(inf =∈− CxxTx  Moreover, if the 
parallelogram law holds in the given weakly Cauchy 
normed space X, then T has fixed point. Moreover if C1 
[0, 1] is the set of all nonnegative sequence of  real 

numbers { }∞=1nnr , 110  →<≤ ∞→n
nn randr ,  

then CxC1 [0, 1] ⊂  F(T). 
 

Proof: Fix a point y0 ∈  C, let { }∞=1nnr  be a sequence of 
non negative real numbers 

110  →<≤ ∞→n
nn randr . Define corresponding 

sequence of contraction operators as follows: 
).()1(:)( 0 xTryrxT nnn +−=  

In fact,  
.,)()()()( CzxeveryforzxrzTxTrzTxT nnnn ∈−≤−=−
 

 Using theorem (2), for each n, Tn has a unique 
fixed point xn∈C, Tn (xn) = xn. Hence a sequence 
{ } Cx nn ⊂∞

=1 such that )()1(: 0 nnnn xTryrx +−= . 
We have, 

).()1()()1()( 0 CDiamrxTyrxTx nnnnn −≤−−=−  
 Taking the limit as n tends to ∞ , 

0)(  →− ∞→n
nn xTx . This limit insures that 

{ } 0:)(inf =∈− CxxTx . The 

function
),0[:

1}{
∞→∞

=
C

nnx
φ

 defined 

by
||||:)( suplim

1}{
xxx n

n
x nn

−=
∞→

∞
=

φ
 is a convex lower 

semicontiuous function satisfying the properties of 
Corollary (1), hence there is exactly one element z in X 
such that 

}||:||{)(:)( suplimminmin 11 }{}{
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we have 
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This proved that 
∞
=1}{ nnx

φ
is also attained its infimum at 

T(z), since the minimum is unique, T(z)=z, and z is a 
fixed point of T. 
We have the following remarks. 
 
Remarks 1: Let X be a metric space, T be Lipschitzian 

mapping on X, and { } Xx nn ⊂∞
=1  be a sequence in X 

such that .0))(,(  → ∞→n
nn xTxd  If { }∞=1nnx is 

strongly convergent to a point y of X, then y is a fixed 

point of T. In fact, let y be the limit point of { }∞=1nnx , 
we have the following convergent, 

.0))(,(),()1(

),())(,(),(

))(),(())(,(),())(,(

 →++≤

++≤

++≤

∞→n
nnn

nnnn

nnnn

xTxdyxdr

yxrdxTxdyxd

yTxTdxTxdyxdyTyd
 

This proved that T(y)=y. 
 
Remark 2: Since every non-expansive operator is 
Lipschitzian with 0<r<1, we see that remark (1) is true 
for the non-expansive operators. 
 
Remark 3: Let X be metric space, T be Lipschitzian 
mapping from X into X, x be a fixed point of T, and 
{ }∞=1nnx be a sequence in X, if  { }∞=1nnx converges 

strongly to x, then 0))(,(  → ∞→n
nn xTxd , if r not 

equal one the converse is true. In fact, let 
{ }∞=1nnx converges strongly to x. Then  

.0),()1(),(),(

))(),((),(

)),((),())(,(

 →+=+≤
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+≤

∞→n
nnn

nn

nnnn

xxdrxxrdxxd
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This proved that 0))(,(  → ∞→n
nn xTxd . 

Conversely, let r be not equal one and 
0))(,(  → ∞→n

nn xTxd , we have 
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 The following convergent is proved that 
{ }∞=1nnx converges strongly to x. 

0
)1(

))(,(),(  →
−

≤ ∞→nnn
n r

xTxdxxd
. 
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Remark 4: Since a contraction mapping is r-
contraction with 0<r<1, If X is complete metric space, 

T is contraction mapping from X into X, { } Xx nn ⊂∞
=1 , 

then { }∞=1nnx converges strongly to the unique fixed 

point of T if and only if 0))(,(  → ∞→n
nn xTxd . 

 
Remark 5: If T is Lipchitzian, r not equal one, and T 
has a fixed point x, then there is a nontrivial sequence 
{ }∞=1nnx  in C converges strongly to the fixed point of T. 
In fact, let T be r-contraction, r not equal one, and T has 
a fixed point x. The sequence given in (2) is not only 
Cauchy but also strongly convergent to the fixed point 

of T. In fact. To show that { } Cx nn ⊂∞
=1  is Cauchy 

sequence, we have 
{ }
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thus, ),()1( CDiamrrxxrr mnmnn −≤−−   

since { }∞=1nnr  is Cauchy, we see that, 
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 Since X is weakly Cauchy, the sequence { }∞=1nnx  is 
weakly convergent, the weak convergent of the 
sequence is clearly strong convergent. 
 
Remark 6: If T is non-expansive, C is a bounded 
closed convex subset of a weakly Cauchy normed space 

X, { }∞=1nnr  is a sequence of non negative real numbers 

such that 10 <≤ nr , and 1< → ∞→ tr n
n  then the 

sequence given by )()1(: 0 nnnn xTryrx +−=  is 
Cauchy sequence, but not necessarily  
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