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Abstract: Control charts are one of the most powerful tools used to detect aberrant behavior in 
industrial processes. The Shewhart S-control chart is one of the most widely used statistical process 
control techniques developed to control the process variability based on the fundamental assumption 
that the underlying distribution of the quality characteristic is normal. When the underlying normality 
assumption is not met, the robust methods are one of the most commonly used statistical methods 
preferred in such situations. We presented a simple approach to robust estimation of the process 
standard deviation σ based on a very robust scale estimator, namely, the median absolute deviation 
from the sample median (MAD). The proposed method provides an alternative to the Shewhart S-
control chart. A numerical example was given and a Mote Carlo simulation study was conducted to 
illustrate the performance of the proposed method and compare it with that of the Shewhart method. 
The proposed robust method was lead to a better performance than the Shewhart method and has good 
properties for the heavy tailed distributions and moderate sample sizes.  
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INTRODUCTION 

 
 Scale estimators are very important in many 
statistical applications. The most common of scale 
estimators is the sample standard deviation, S. Many 
statistical quality control textbooks recommend the use 
of it for estimating the process standard deviation σ for 
a normally distributed random variable. Unfortunately, 
S is not necessarily the most efficient or meaningful 
estimator of scale in skewed and leptokurtic 
distributions and it is notably that S is non-robust to 
slight deviations from normality[1]. The most 
appropriate measure of scale often depends on 
estimator efficiency, performance of inferential 
methods in realistic settings and effectiveness in 
describing the most interesting aspect of distribution 
variation. The sample standard deviation, S, has good 
efficiency in platykurtic and moderately leptokurtic 
distributions but the classic inferential methods for S 
may perform poorly in realistically nonnormal 
distributions[2]. Therefore, we are looking for a scale 
estimator which is robust, explicit and easily 
computable as an alternative to S. The median absolute 
deviation from the sample median (MAD) is a more 
meaningful measure of variation and may be preferred 
to the sample standard deviation, S, in certain 
nonnormal distributions. 
 
Shewhart S-control chart: The Shewhart S-control 
chart which is one of the most widely used statistical 

process control technique developed to monitor the 
standard deviation of a production process σ in order to 
control the process variability. It is use as a standard 
practice to estimate σ the average of the subgroup 
standard deviation, 4ˆ S cσ = , where the constant c4 is 
needed to make the estimator an unbiased estimator for 
σ. The fundamental assumption of the S-control chart is 
that the underlying distribution of the quality 
characteristic is normal, but unfortunately many 
processes, occur in practice, do not follow the normal 
distribution and due to the fact that the sample standard 
deviation, S, is non-robust to slight deviations from 
normality assumption, the need for alternatives to the 
Shewhart S-control chart comes to play.  
 
Robust Methods: The robust methods are one of the 
most commonly used statistical methods when the 
underlying normality assumption is violated. These 
methods offer useful and viable alternative to the 
traditional statistical methods and can provide more 
accurate results, often yielding greater statistical power 
and increased sensitivity and yet still be efficient if the 
normal assumption is correct. By a robust estimator, we 
mean an estimator which is insensitive to changes in the 
underlying distribution and also resistant against the 
presence of outliers. The robust estimator is considered 
to be good if it has high efficiency, high breakdown 
point which is the maximum fraction of outliers an 
estimator can cape, redescending influence function 
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which measures how an estimator reacts to a small 
fraction of outliers and has low gross-error sensitivity 
which measures the worst influence a small amount of 
contamination of fixed size can have on the value of the 
estimator[3,4]. In this paper, we will restrict attention to 
estimator that have an explicit formula, always yield a 
unique estimate, have a 50% breakdown point, a 
bounded influence function and being easily 
computable and needs little computation time. 
 
Sample Standard Deviation: The sample standard 
deviation, S, is the most commonly used measure of 
scale. It is defined as the square root of the mean of the 
squares of deviations from the common sample mean, 
X . The main advantage of the sample standard 
deviation, is that, it can be regarded as truly 
representative of the data, since all data values are taken 
into account in its calculation, while the main 
disadvantage, is that, it is non-robust to slight 
deviations from normality and can be easily influenced 
by outliers. The breakdown point of the sample 
standard deviation for a sample of size n is merely 1/n, 
that is, it can be destroyed by even a single outlier[5].  
 
Median Absolute Deviation: The median absolute 
deviation from the sample median (MAD) is considered 
one of the good robust estimators for scale which 
satisfies the above combination of requirements. Due to 
the good properties of this estimator, it will be used as 
an alternative to the sample standard deviation, S, in 
estimating the process standard deviation, σ, to 
construct a simple univariate robust control chart when 
the assumption of normality for the Shewhart S-control 
chart is not met. 
 

MATERIALS AND METHODS 
 
 The median absolute deviation from the sample 
median (MAD) is a very robust scale estimator than the 
sample standard deviation. It measures the deviation of 
the data from the sample median. It promoted first by 
Hampel[6] who attributed it to Gauss. This estimator is 
simple and easy to compute. The MAD is often used as 
an initial value for the computation of more efficient 
robust estimators. The MAD for a random sample of 
size n observations x1, x2,...,xn is defined as follows:  
 
 { }iMAD 1.4826MD X MD , i 1,2,...,n= − =  (1) 

 
where MD is the sample median. The statistic bnMAD 
is an unbiased estimator of σ if the random sample x1, 
x2,...,xn are normally distributed[7]. The correction factor 

bn is given in Table 1 for different values of n. The 
main properties of the MAD, is that, it has a maximal 
50% breakdown point which is twice as much as the 
interquartile range, IQR. The influence function of the 
MAD is bounded by the sharpest possible bound among 
all scale estimators. The gross-error sensitivity of the 
MAD is equal to 1.167 which is the smallest value that 
one can obtain for any scale estimator in the case of the 
normal distribution. The MAD efficiency at normal 
distributions is equal to 37%. Let xi1, xi2,...,xin be a 
random sample of size n of independent observations 
taken at period i, where i = 1, 2,... The samples are 
assumed to be equal, independent and taken from 
continuous identical distribution functions. The 
proposed robust control chart based on the MAD 
estimator is a chart of subgroup standard deviations in 
which the control limits for the sake of robustness are 
set using the median absolute deviation from the sample 
median (MAD). Thus we may set the control limits and 
central line for the Shewhart S-control chart based on 

m

i
i 1

MAD MAD m
=

=�  as follows:  

 

  

2
4 4
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where, 
 

  ( ) *
4 4 n 4

4 n 1E(S)
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4n 3

−
= ≈ =

σ −   (5)  
 

  
* 2
5 n 5 n 4 4

* 2
6 n 6 n 4 4

B b B b (c 3 1 c )

B b B b (c 3 1 c )

= = − −

= = + −
  (6) 

 
 The values of the control limit factors c*

4, B
*
5 and 

B*
6 are calculated and given in Table 1. Now, after the 

LCL and UCL and the central line CL, are calculated, 
the values of Si, i = 1, 2,...,m, are plotted on the chart. If 
any of the plotted Si’s is falling outside the control 
limits, the process is considered to be out of control. 
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Table 1: The control limit factors for the proposed robust univariate 
variable control chart 

n    bn   c*
4   B*

5      B*
6 

2 1.196 0.954 0.000 3.117 
3 1.495 1.325 0.000 3.403 
4 1.363 1.256 0.000 2.846 
5 1.206 1.134 0.000 2.369 
6 1.200 1.142 0.035 2.249 
7 1.140 1.094 0.129 2.059 
8 1.129 1.089 0.202 1.977 
9 1.107 1.073 0.257 1.890 
10 1.087 1.057 0.300 1.814 
11 1.078 1.051 0.337 1.765 
12 1.071 1.047 0.371 1.724 
13 1.066 1.044 0.399 1.690 
14 1.061 1.041 0.423 1.658 
15 1.056 1.037 0.445 1.630 
16 1.053 1.036 0.463 1.607 
17 1.049 1.033 0.480 1.585 
18 1.047 1.032 0.497 1.566 
19 1.044 1.030 0.512 1.548 
20 1.042 1.028 0.525 1.532 
21 1.040 1.027 0.537 1.517 
22 1.038 1.026 0.548 1.503 
23 1.036 1.024 0.558 1.490 
24 1.034 1.023 0.568 1.478 
25 1.033 1.022 0.577 1.467 

 
RESULTS AND DISCUSSION 

 
Numerical example: A randomly generated data from 
the normal distribution N(0,1) is used to illustrate the 
two methods. The data consisting of m = 30 subgroups 
of size n = 10 observations each. The summary 
information regarding the control limits, central line 
and length for the S and the proposed robust MAD 
control charts are calculated and given in Table 2 where 
we can note that both methods lead to the same state of 
control and approximately same length with wider 
length in the case of the proposed robust method. Only 
minor differences in the calculated control limits are 
observed and this is to be expected since the data used 
are normally distributed.  
 Figure 1 indicates that the process for the both 
types of the control charts is out-of-control. 
 
Monte Carlo Simulation Study: As indicated by 
Langenberg and Iglewicz[8], the processes generated by 
distributions with heavier tails than the normal are of 
special interest. Such processes tend to have more than 
the expected number of points falling outside the 
control limits. It would thus be instructive to study the 
consequences of using the proposed robust method for 
nonnormal observations. Therefore, to evaluate the 
performance of the proposed robust control chart a 
computer programs written in FORTRAN are used. The 
performance of the proposed robust control chart is 
compared  to that of the Shewhart S-control chart under 

Table 2: The control chart comparison 
Control Chart Shewhart Using S/c4 Robust Using bnMAD 
LCL          0.27221            0.27928 
 CL          0.95847            0.98400 
UCL          1.64473            1.68871 
Length          1.37252            1.40943 
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Fig. 1: The shewhart S and the proposed robust MAD 

control charts 
 
four different distributions using equal sample size. In 
addition to the normal distribution, the logistic, double 
exponential and the Cauchy distributions are considered 
in our simulation. These distributions are typical of 
previous literature regarding robust control charts and 
represent a wide range of distributions extending to the 
extremely heavy-tailed (Cauchy distribution). Without 
loss of generality, special cases are considered where 
each distribution is centered at 0 with variance 1. For 
each distribution, 1000 trials of 20 subgroups of size 5 
and 10 were run. The mean values of dispersion 
measures used are given in Table 3, while the variance 
values of them are given in Table 4. These values are 
used in determining the control limit values given later. 
It is not proper to compare the measures directly, since 
each  measure  something different. From the results, 
the sample  standard deviation, S, has always the largest  
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Table 3: The mean values for dispersion 
               S                              MAD  
 -------------------------- -------------------------- 
Distribution  n = 5 n = 10  n = 5 n = 10 
Normal 0.944 0.975 0.557 0.616 
Logistic 0.927 0.964 0.527 0.568 
DE 0.903 0.949 0.471 0.487 
Cauchy 16.08 20.88 1.202 1.101 

  
 Table 4: The variance of statistics  
                S                MAD  
 ------------------------- -------------------------- 
Distribution  n = 5 n = 10  n = 5 n = 10 
Normal 0.006 0.003 0.005 0.003 
Logistic 0.008 0.004 0.005 0.002 
DE 0.010 0.006 0.005 0.002 
Cauchy 2986.7 5454.0 0.073 0.019 

 
Table 5: Control interval width for the control charts  
               S/c4             bn MAD  
 --------------------------- --------------------------- 
Distribution n = 5 n = 10 n = 5 n = 10 
Normal 1.971 1.396 1.955 1.383 
Logistic 1.937 1.381 1.850 1.276 
DE 1.886 1.358 1.654 1.092 
Cauchy 33.59 29.90 4.220 2.471 

 
 Table 6: Number of points outside control limits 
            S/c4            bn MAD  
 ----------------------------- --------------------------- 
Distribution n = 5 n = 10 n = 5 n = 10 
Normal 4 4 4 4 
Logistic 14 17 21 36 
DE 28 38 53 128 
Cauchy 44 728 338 816 
 
variance for all distributions and all sample sizes 
considered. Even that, the difference is not so big. 
 Table 5 presents the confidence interval width and 
Table 6 presents the number of points falling outside 
the control limits for each method. From the results, we 
note that for the case of the normal distribution, both 
methods leads approximately to the same length and 
also all have the same number of points falling outside 
the control limits for different sample sizes. As the tail 
weight of the distribution increases, the proposed 
method leads to shorter control limits and more number 
of points falling outside the control limits. 
 
The Average Run Length Simulation Study: The 
criterion used to evaluate the performance of a control 
chart is how quick it can detect the change in the 
process and this can be obtained by calculating the 
Average Run Length (ARL) which is the number of 
points plotted within the control limits before one gets 
out. Under the normality assumption and for shewhart 
control charts like S, it is expected that 370.4 points 
would be plotted on the chart within the 3σ control 
limits before one gets out.  

Table 7: The ARL0 for S and the proposed robust MAD control charts  
              Distribution function 
  ---------------------------------------------------- 
Control chart n Normal Logistic   DE  Cauchy 
Shewhart based 5  370.2  375.4 377.3   369.6  
on S/c4 10  370.7  373.7  376.4   364.7  
Robust based on 5  370.2  370.3  370.5   370.3  
bn MAD 10  370.8  370.9  370.8   370.3  

 
The In-Control Average Run Length: If the process 
is in-control, we want the in-control average run length, 
ARL0, to be large. Let N (µ, σ2) be a normal 
distribution, then sets of m = 20 subgroups consisting 
of n = 5 and n = 10 observations were generated from 
N (0, 1) distribution. The control limits for the S-
control chart and the proposed MAD control chart were 
constructed. After determining the control limits, 
random N (0, 1) subgroups of size n were generated. 
The S statistic was computed for each subgroup and 
compared to the control limits of both control charts. 
The number of subgroups required for the value of the 
S estimator to exceed the control limits was recorded as 
a run length observation, RLi. For runs not signaling by 
the 25,000th subgroup, the run length recorded as 
25,000. The same procedure is used to compare the 
Shewhart S-control chart and the proposed MAD 
control chart for the logistic, double exponential and the 
Cauchy distributions. The control charts robust to the 
assumption of normality should exhibit relatively stable 
ARL0 for the four different nonnormal distributions. 
This process is repeated 1000 times and the results for 
this simulation study are given in Table 7. The ARL0 

was calculated as
1000

0 i
i 1

ARL RL 1000
=

=� . From the results 

obtained in Table 7, we noticed that the ARL0 of the 
proposed robust control charts seems to be stable for all 
studied distribution functions where the values of ARL0 
are very closed. The performance of the ARL0 of the 
Shewhart S-control chart is affected by the type of the 
distribution function of the data, where there is a 
difference between the different values. In general the 
performance of the proposed robust method based on 
MAD estimator is better and very close to the nominal 
value 370.4. 
 
The out-of-control average run length: If the process 
is out-of-control, we want the out-of-control average 
run length, ARL1, to be small. The control limits for the 
ARL1 are based on N (0, 1) distribution. The 
observations used to calculate the statistics S are from a 
normal distribution with mean µ = 0 and standard 
deviation λσ, where λ representing the size of the shift 
in the standard deviation. The shifts in the standard 
deviation  are  from σ to λσ. Without loss of generality,  
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Table 8: The values of ARL1 for S and the robust MAD control 
charts from the normal distribution  

                                      Sample size  
 --------------------------------------------------------------- 
                    5                 10 
 ------------------------------- --------------------------- 
Shift size λ Robust  Shewhart  Robust Shewhart 
1.0 370.16 370.15 370.82 370.68 
1.2 191.35 158.4 104.3 94.7 
1.5 53.25 39.15 16.2 13.6 
2.0 17.55 13.45 2.55 2.15 
2.5 1.25 1.15 1.1 1.05 

 
Table 9: The Values of ARL1 for S and the robust MAD control 

charts from the logistic distribution  
                                     Sample size  
 ------------------------------------------------------------- 
                  5                 10 
 ---------------------------- --------------------------- 
Shift size λ Robust  Shewhart  Robust Shewhart 
1.0 370.30  375.38 370.92 373.72 
1.2 42.5 132.1 27.33 93.57 
1.5 3.85 13.75 2.1 5.13 
2.0 1.2 2.5 1.03 1.4 
2.5 1.1 1.6 1 1.13 
 
the values of λ = 1.0, 1.2, 1.5, 2.0 and 2.5. The number 
of samples required for the value of S estimator to 
exceed the control limits was recorded as a run length 
observation, RLi. For runs not signaling by the 25,000th 
sample, the run length was reported as 25,000. This 
process was repeated 1,000 times. The ARL1 was 

calculated as
1000

1 i
i 1

ARL RL 1000
=

=� . Random samples of 

size n = 5 and 10 are drawn from the four different 
distributions considering the different values of λ and 
the results of simulation for the ARL1 are given in 
Table 8-1. 
 From the results in Table 8-11 which show the 
values of ARL1 for the proposed robust MAD and 
Shewhart S control charts, we conclude that when the 
data is normal, the robust control chart is only slightly 
less efficient than the corresponding Shewhart S control 
chart to detect shifts for all considered values of λ. 
However, this loss in efficiency is small when the 
sample size gets large. In such cases, it is recommended 
to use the Shewhart S control chart in the presence of 
normality. When the data is selected from a heavy 
tailed distribution as in the case of the double 
exponential and logistic distributions, the ARL1 of the 
proposed robust control chart is generally smaller than 
that for the Shewhart S control chart. The proposed 
robust control chart has the ability to detect shifts more 
quickly than the S control chart for all values of λ and 
sample sizes considered. Finally, when the data is 
selected  from  extremely  heavy tailed distribution as in  

Table 10: The values of ARL1 for S and the robust MAD control 
charts from the DE distribution  

                                  Sample size  
 --------------------------------------------------------------- 
                  5                10 
 -------------------------------- --------------------------- 
Shift size λ Robust  Shewhart  Robust Shewhart 
1.0 370.51  377.31  370.80  376.43  
1.2 179.30 282.65 75.93 132.87 
1.5 33.1 72.85 2.07 7.5 
2.0 3.05 8.45 1.1 1.47 
2.5 1.3 3 1 1.07 
 
Table 11: The values of ARL1 for S and the robust MAD control 

charts from the Cauchy distribution  
                                 Sample size  
 ------------------------------------------------------------- 
                 5                10 
 ------------------------------- -------------------------- 
Shift size λ Robust  Shewhart  Robust Shewhart 
 1.0 370.26  369.58  370.34  364.66  
1.2 4.29 37.42 2.75 38.03 
1.5 4.03 34.45 2.47 36.74 
2.0 3.65 32.86 2.10 41.78 
2.5 1.08 1.86 1.17 1.72 
 
the case of the Cauchy distribution, the ARL1 of the 
proposed robust control chart is still in general smaller 
than that for the Shewhart S control chart for all 
considered cases. Therefore in the case of a heavy tailed 
distribution where a nonnormal distribution is present, 
it is recommended to use the proposed robust control 
chart as an alternative to the Shewhart S control chart. 
 

CONCLUSION 
 
 This article has presented a simple alternative 
robust univariate variable control chart for monitoring 
the process variability and the necessary table of factors 
for computing the control limits and the central line. 
The proposed robust control chart is based on the 
median absolute deviation from the sample median 
(MAD) which used for estimating the process standard 
deviation, σ, in the case of the Shewhart S control 
chart. The results of the numerical example show that 
the proposed robust method leads approximately to the 
same performance as the Shewhart method in the case 
of the normal data. The proposed method leads to wider 
control limits than the Shewhart method. True robust 
limits should be slightly larger in the case of the normal 
distribution[9]. The Simulation studies show that the 
proposed robust method has good properties for heavy 
tailed distributions and moderate sample sizes, where it 
leads to better performance than the Shewhart method, 
especially for the heavy tailed distributions, which 
seems to support the fact that these control charts are 
preferred in such situations. Finally, while we give an 
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alternative to the Shewhart S control chart based on 
MAD, other robust estimators alternatives to the MAD 
such as Sn and Qn estimators proposed by Rousseeuw 
and Croux[7] can be applied to monitor the process 
variability and compare its performance to the method 
proposed in this study and to the Shewhart S control 
chart. 
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