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Abstract: Problem Statement: The transfer matrix method is a very useful tool for the static and 
dynamic analysis of structures. There are a number of issues though that worsens the numerical 
stability and the accuracy of this method. Approach: This study proposed a simple technique that can 
be used to handle these numerical difficulties and overcome the problems they give. Its main idea was 
to apply the method twice starting from two far ends of the structure. Results: An example from the 
calculation of the sensitivity function between two points in a dynamic system is presented. The results 
presented the very big potential of the proposed method. The improvement of the stability was clear in 
the graphs of the results. An initial study on the limitations of the proposed technique was also briefly 
given, together with some initial thoughts on how to overcome them. Finally, an idea of a possible use 
of the method for the maintenance studies of a high-speed rotor is presented, showing the very big 
variety of applications this methodology can be applied into. Conclusions: The proposed technique 
was very simple and effective, and hence it should be applied whenever the transfer matrix method 
was used. 
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INTRODUCTION 

 
 The transfer matrix method is a very efficient 
method for the solution of the differential equations 
describing the dynamic behavior of engineering 
systems. According to [1], it can be used for the analysis 
of continuous beams, plates and shells, turbine-
generator shafts, crank shafts, and many other 
structures. It is a method widely accepted in practice 
and many books have been written that adapt it to 
different applications, as for example rotor dynamics[2], 
or panels and aircraft structures[3]. 
 Despite the fact that this method can be used in 
such a big variety of applications, it has a very big 
drawback that finally limits its use. When the frequency 
of the examined system is high, there appear a number 
of numerical instabilities, leading to inaccurate results 
or even complete inability of the method to reach a 
solution. This problem was pointed out since the initial 
steps of the method development[1] and the limitations 
imposed were highlighted by almost everyone who 
dealt with it thereafter. 
 The aim of this study is to propose a new idea for 
solving the inherent numerical problems of the transfer 
matrix method. A detailed theoretical analysis of the 

proposed idea is given by using a representative 
example, the analytical solution of which is known and 
can be used for the presentation of the very promising 
results and potential of the proposed method. 
 

MATERIALS AND METHODS 
 
The idea behind the transfer matrix method is the split 
of the modeled structure into a number of elements, 
each being described by a matrix quantity, which 
relates the state vector at one side of the element to the 
state vector at the other. The state vector describes the 
state of the internal forces and displacements at the 
points where the divisions of the system have been 
made. The matrices connecting the state vectors can be 
either so called point matrices that describe 
discontinuities along the structure (e.g. inertia forces, 
shape discontinuities, reactions), or field matrices that 
describe the elastic behavior of the structure. More 
information on the formulation and theory of the 
method are given in [1] and are also briefly presented in 
the following paragraphs. 
 Figure 1 presents schematically all the notation 
used in the transfer matrix method: Z is the state vector, 
V is the vertical load, M is the moment, � is the 
rotational frequency, 
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Fig. 1: Transfer matrix notation 
 
m is the mass, y is the deflection, � is the density of the 
shaft, E is the Young’s modulus, L (or l) is the length 
and I is the moment of inertia. Subscript i refers to the 
“station” where we define a state vector and 
superscripts L and R refer to the left and right of these 
“stations”. 
 If we consider the problem to be one dimensional, 
the state vector for this case will be: 
 

i

y

Z
M
V

−� �
� �θ� �=
� �
� �
� �

 (1) 

 
 The differential equation describing the dynamic 
behavior of the “elastic part” between two “stations” is 
given by: 
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Where: 
G = The shear modulus 
I =  The radius of inertia 
 

s
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k
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Where: 
� = The area of the cross section 
K = A factor dependant of the cross section shape that 

takes into account the effect of shear on the 
deflection. 

 
 Next we use the following notation: 
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 Hence, the differential equation can be written: 
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σ + τ β − στ+ − =  (7) 

 
 Solving this equation and writing the result in 
matrix form and using the following equations: 
 

dw
dz
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we get: 
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 Where, F is the field matrix, given by Eq. 12. In 
this equation it is: 
 

( ) ( )2 2
0 2 1 1 2c cosh cos� �= Λ λ λ + λ λ� � (13) 

 

( ) ( )
2 2
2 1

1 1 2
1 2

c sinh sin
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 (14) 

 
( ) ( )2 1 2c cosh cos= Λ � λ − λ �� �  (15) 
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( ) ( )3 1 2
1 2

1 1
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( ) ( )24
1,2

1 1
4 2

λ = β + σ − τ σ + τ�  (18) 

 
 The combination of hyperbolic and basic 
trigonometric functions in the above equations is one 
reason for the numerical instabilities of this method. 
 If at a point along the “elastic part” there is a 
discontinuity of any of the components of the state 
vector due to a concentrated mass, a gyroscopic load or 
a support of the structure, then a point matrix P is 
introduced to account for this discontinuity. For 
example, if we have a concentrated mass, it introduces 
a discontinuity in shear forces as follows: 
 

R L 2
i l c iV V M y= − ω  (19) 

 
Or in a matrix form: 
 

R L
i iZ PZ=  (20) 

 
where: 
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 (21) 

 
 In a similar way, the loading on a station can be 
added. Multiplying the above defined transfer matrices 
one after the other as we move along the structure and 
applying the boundary conditions, we can calculate the 
state vector at any position we want, thus calculating all 
the dynamic characteristics. A more detailed 
explanation of the whole procedure is out of the scope 
of this paper, but more details are given in [1,3]  
 In order to demonstrate the method and also 
describe the present idea for overcoming its numerical 
difficulties, we will consider the example of a flat panel 
in 2D that is under a forcing pressure profile of given 
spatial and temporal characteristics:  
 In Fig. 2 Zn(0) and Zn(N) are the state vectors 
describing the dynamic characteristics of the two ends 
of the panel along y. We have also assumed that the 
description of the panel’s deflection along x follows a 
predefined function (e.g., Fourier series expansion). 

  
F orcing pressure   

y 
Zn(0)   Zn(N)   

x   

Flat panel   

 
 
Fig. 2: Schematic representation of example structure 
 
 According to[3], the sensitivity function of the 
structure represents the sensitivity of it, as manifested at 
a point r to a harmonic excitation having a frequency � 
and a sinusoidal spacewise variation defined by a wave 
number vector k. The closed form equation giving this 
sensitivity function for the studied example will be: 
 

( )
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 In Eq. 22 H is the frequency response function, X 
and Y are the functions giving the deformed shape of 
the structure for given boundary conditions and Pmn is 
the shape of the forcing pressure. For simplicity, we 
consider the panel at the present example to be simply 
supported in all its four edges and hence we have: 
 

( ) m x
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( ) ( ) ( ) ( )
b a

mn x y
0 0

P sin k x sin k y X m,x Y n, y dxdy=��  (26) 

 
In the Eq. 25: 
� =  The density 
h =  The thickness 
a and b = The dimensions of the panel in x and y
 directions respectively 
D = The bending rigidity and c is the damping
  coefficient. 
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 Let’s also consider the forcing pressure to have a 
sinusoidal spatial variation with wavenumbers: 
 

x

1
k

2 a
π=      (27) 

 

y

1
k

2 b
π=      (28) 

 
 This will result in the three-dimensional spatial 
distribution of forcing pressure shown in Fig. 3. 
 If we were to use the transfer matrices method to 
calculate the sensitivity function, we would have to use 
just a field matrix to describe the problem, since there 
are no discontinuities in loading or shape in this case. 
Using also as loading in this case a surface grid of 
weighted point loads, where the weighting shape 
function is a sinusoidal function with the known kx and 
ky, the result of the transfer matrix method will be the 
sensitivity function. 
 In the literature (e.g.[1]), various numerical 
difficulties of the application of the transfer matrix 
method are pointed out. Among them, there is the 
application of it at high frequencies, the use of 
intermediate stiff supports in the structure, or the 
inclusion of structures of big length. Pestel, E.C.[1] 
proposed a method called “Delta-matrix method” that 
could deal with some of the problems and improve the 
accuracy of calculations of critical frequencies, but it 
could not be used for mode shape or other calculations 
that involve displacement characteristics. 
  

  

 
 
Fig. 3: Three-dimensional spatial distribution of 

forcing pressure 

 In the proposed method, the transfer matrix method 
is applied twice, starting from both the two ends of the 
structure, Zn(0) and Zn(N), and progressing towards the 
right and left respectively. The results of each case are 
used up to the middle of the structure, leading to the 
usage of smaller lengths in transfer matrix calculations. 
That way, the numerical instabilities that are present at 
points far from the initial state vector are diminished. A 
more detailed description of the procedure and its 
results are given next. 

 
RESULTS 

  
 Using the unmodified transfer matrix methodology 
and the closed form solution equation, we calculated 
the sensitivity function at 1500Hz for a panel of a = 
0.768m, b = 0.328m and thickness of 1.6mm. The 
material of the panel is assumed to be aluminum with a 
density of 2700 Kg m−3, Young’s modulus 70GPa and 
Poisson’s ratio 0.33. The results are shown in the Fig. 4. 
More specifically, Fig. 4 shows the comparison of the 
analytic results (solid line) with the results of the 
transfer matrix method without the use of the 
methodology of this paper (doted line). 
 It is obvious that starting from y=0 there is a very 
good agreement between the two results, but as we 
move to bigger y, the numerical stability problems of 
the transfer matrix method become clear. Based on the 
form and the terms of the field matrix, we come to the 
conclusion that as y is getting bigger, so do the 
elements of the field matrix and hence we end up in a 
situation where the successive multiplications of 
matrices or determinant calculations lead to classical 
round off problems, like for example additions of 
numbers some orders of magnitude different, or 
subtraction of almost equal numbers. 
 The present idea in order to overcome this problem 
was to split the solution of the problem to two different 

problems. One deals with the calculations up to b
y

2
=  

and the other starts the calculations at y=b and solving 

the reversed problem goes up to b
y

2
= . That way, the 

values of y used in the calculations stay smaller than in 
the original solution approach. 
 Applying this methodology, we derive the result 
shown in Fig. 5. The Fig. 5 includes the results of Fig. 4 
and also adds in the comparison the results of the 
modified transfer matrix method proposed here 
(hatched line). 
 It is clear from the Fig. 5 that using this approach, 
the numerical stability improves considerably.  
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Fig. 4: Numerical stability problem of transfer matrix 

method 
 

 
 
Fig. 5: Result derived by the modified transfer matrix 

method 
 
 Nevertheless, we should point out that in case the 
size of the structure is very big, it is expected to have 
some instabilities or discontinuities in the middle of it, 
where the results of the two solutions merge. This effect 
can be somehow alleviated by averaging the two 
results, but anyway results should be interpreted 
carefully in such cases. 
 

DISCUSSION 
 
 The transfer matrices method is a very efficient 
way of solving dynamic analysis problems of several 
structures. Its inherent numerical accuracy problems 
have lead to its limited application in high frequency 
analyses and analysis of big structures. The method 
proposed in this paper alleviates these numerical 
difficulties and extend the application range of transfer 

matrices. It can also be the basis for further research on 
the subject, probably targeted to specific applications. 
 In order to demonstrate the range of different 
applications the proposed method can be applied, it was 
used by the author in the development of a computer 
program for the calculation of the frequency response 
function of rotors. The aim of this was to be able to 
calculate the attenuation of the signal measured by a 
vibration transducer at one point of the rotor due to a 
fault present at another point. This result is very useful 
during the assessment of the operational integrity of 
rotating systems, given that it is possible to derive 
conclusions regarding measurements of faulty 
components that are not close to the measuring point. 
Since some of the faults appear at high frequencies or 
have high characteristic frequencies themselves, it 
would not be possible to use transfer matrices in this 
problem without the application of the method 
proposed in this study. 
 

CONCLUSION 
 

 This study proposes a very simple but effective 
method for increasing the numerical stability and 
accuracy of the transfer matrix method. It is based on 
the simultaneous solution of the problem in two 
directions and a combination of the two results. The 
effectiveness of the method is presented using as an 
example the calculation of the sensitivity function of a 
flat panel loaded by a given pressure profile, the 
analytical solution of which is also calculated.  
 The proposed method can be used in all transfer 
matrices applications, as for example in the calculation 
of the dynamic characteristics of rotors (critical speeds, 
mode shapes, response to unbalance), or for the 
calculation of frequency response function of such 
systems. 
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