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Abstract: Problem Statement: Let K is the splitting field of a polynomial f(x) over a field F and αn 
be the roots of f in K. Let G be embedded as a subgroup of the symmetric group �. We determined the 
Galois group G, and the subgroup. Approach: computed some auxiliary polynomials that had roots in 
K, where the permutation of a set was considered distinct. The Galois Theory was deduced using the 
primitive element and Splitting theorems. Results:  The Galois extension K/L to identity L and its 
Galois group is a subgroup of G. which was referred to as the main theorem which we proved. 
Conclusion: Hence the findings suggest the need for computing more auxiliary polynomials that have 
roots.  
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INTRODUCTION 

 
 Let p1(u1, u2,…,un) be a polynomial with 
coefficients in F. The symmetric group � operates on 
the polynomial ring F [u1, u2,…un]; Let its orbit under 
the action of � be {p1, p2, …, pr}. 
 
Lemma 1[1]: Let {p1, p2,…pr} be the orbit of a 
polynomial pi(u1, u2,…un) for the operation of 
permuting the variables. Let ( )1 2 nf y , y ,.......y be a 
symmetric polynomial in some variables y1, y2, …yr. 
Then f(p1, p2, …pr) is a symmetric polynomial in u1, u2, 
…un. 
 
Proof: A permutation of u1, u2,…un permutes the orbit 
{p1, p2,…pr}. The corresponding permutation of y1, 
y2,…yr fixes the symmetric polynomial f.  
 For example, if p1 = u1u2, the orbit of p1 consists of 
the products uiuj with i ≠  j. Therefore, we expand the 
polynomial. �(x) = (x-p1)(x-p2)…(x-pr). Its coefficients 
are elementary symmetric functions in p1, p2, …pr, so 
they are also symmetric functions of u and can be 
written in terms of the elementary symmetric functions 
si(u), say sj(p1, p2,…,pr) = qj(s1,s2,…sn), where si = si(u). 
We make the substitution ui = �i. Let �j = pj(�1, �2,…�n) 
and let g(x) = (x-�1)…(x-�r) = xr-b1x

r-1+b2x
r - 2+…±br. 

 The coefficients of g are obtained by the same 
substitution into qj(s1,s2,…sn), so bj = qj(a1, a2, …,an).  
Therefore, g(x) has coefficients in F. 
 Lloyd R. Jaisingh et al.[2] show these permutation 
which are of good example in this result. Consider the 

square below with vertices denoted by (1,2,3,4) locate 
its centre 0, the bisectors AOB and COD of its parallel 
sides and the diagonals 103 and 204. We shall be 
concerned with all rigid motions (rotations in the plane 
about 0 and in space about the bisectors and diagonals) 
such that the square will look the same after the motion 
as before. 
 

 
 
 Denote by � the counterclockwise rotation of the 
square about 0 through 90o. Its effect is to have (12), 
(23), (34), (41), thus � = (1234). Now �2 = �.� = (13) 
(24) is a rotation about O of 180°. �3 = (1432) is a 
rotation of 270° and �4 = (1) =V is a rotation about O of 
360o or 0°. The rotations through 180° about the 
bisectors AOB and COD give rise respectively to �2 = 
(14) (23) and �2 = (12) (34) while the rotations through 
180o about the diagonals 103 and 204 give rise to � = 
(24) and b = (13).  
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 By the operation of the roots, G embeds as a 
subgroup of the symmetric group Sn = �, which 
permutations of the roots come from F-automorphisms 
of K, where K is a splitting field of the polynomial. 
 

MATERIALS AND METHODS 
 
Computation of auxiliary polynomials: The need for 
computing the auxiliary polynomials and show that 
they have roots in F. A permutation z of the set {u1, 
u2,…un} defines some more permutations: 
 
• Since the �i are distinct, z can equally well be 

thought of as a permutation of the set {�1, �2, …�n} 
• Z induces a permutation Z  of the set {p1, p2,…Pr}. 
• Provided that the �j are distinct, Z  can be used to 

permute {�1, �2,…	r} 
 
 Therefore, clearly we can see that Z sends u i →  
Zui. Then Z (pj(u1, u2, …un )=pj(zu1, zu2, …zun), which 
is another one of the polynomials {p1, p2,…pk}, 
Assuming that �j are distinct, we substitute u1=�i: Z ( 
�j)= Z (pj(�1, �2, …�n) = pj(z�1, z�2, …z�n) = �i. 
 
Lemma 2: Assume that the �j are distinct. Let � be an 
F - automorphism of K and let Z be the permutation of 
the roots {�1, �2, …�n} it defines. Then the permutation 
Z of {�1, �2,…�r} determine by z is the one defined by 
� too. 
 
Proof: Z (�j) = pj(z�1, z�2, …z�n)  
  = pj(��1, ��2, …��n) 
  = �(pj(�1, �2, …�n)) 
  = �(�j)   
    
 Let H j be the stabilizer of the polynomial �j for the 
operation of G. Then if G is not the whole symmetric 
group �, then there is no reason to suppose that the set 
{�1, �2,…�r} forms a single G - orbit in K and if not, 
then g(x) will be reducible. From the general property 
of group operations, H j are conjugate subgroups of G, 
because the polynomials pj form one orbit. 
 
Theorem 1:[5] With the notation above in lemma 1, 
suppose that �1, �2,…�r are distinct elements of K. Then 
�j 
 F if and only if G is a subgroup of Hj. 
 
Proof: The theorem follows from the fact that F is the 
fixed KG. Let � be an F- automorphism of K, let z 
denote the permutation of {u1, u2,…un} which 
corresponds to the permutation induced by � on {�1, 
�2,…�n} and let Z  be the permutation of {pj} induced 
by z. We apply the lemma, because �j are distinct, � 

fixes �j if and only if Z fixes uj and this happens if and 
only if z 
 H j. Then �j 
 F if and only if �j is fixed by 
all � 
 G, which is true if and only if G ⊂ Hj.  
 
Theorem of symmetric functions: 
 
Lemma 3: Let p (u1, u2,…un) be a symmetric 
polynomial with coefficients in F. Then with �1, �2, 
….,�n as above, that is �i 
 F, p(�1, �2,…,�n) 
 F. 
 
Proof: Theorem 1 tells us that p is a polynomial in  the  
elementary symmetric functions with coefficients in F, 
say p(u) = q(s1, s2, …sn). Then because ai 
 F, p(�) = 
q(s1(�), s2(�),…sn(�)) = q(�1, �2, …,�n ) also in F. 
 Now let p(u1, u2,…,un) be an arbitrary polynomial 
and let its orbit under the action of the symmetric group 
Sn be {p1,p2,….pr}, where p = pi,  
 
Lemma 4: Let {p1,p2,…pr} be the orbit of a polynomial 
in F[u1,u2,…un] and let h(w1,w2,…wr) be a symmetric 
function in some variables w1,w2,…wr. Then h 
(p1,p2,…pr) is a symmetric function in u1,u2,…un.  
 
Proof: see J. P. Tignol[6]  
 
Lemma 5: Let {p1,p2,…pr} be the orbit of a polynomial 
pi(u1,u2,…un). For j = 1,2,…r. Let �j = Pj(�1, �2, …,�n).  
The polynomial h(x) = (x - �1)(x - �2)…(x - �r) = xr - 
b1x

r-1 + b2x
r-2 - … ± br, has coefficients in F.  

 
Proof: We consider the polynomial H(x) = (x - w1)…(x 
- wr) = xr - B1x

r-1 + B2x
r-2-… ± Br 

 Its coefficients Bj are the elementary symmetric 
functions in w1, w2,…wr. Our polynomial h(x) is 
obtained by substituting wj = �j into H(x). This 
substitution sends Bj→ bj and it can be made in two 
steps wj → pj(u)  → pj(�) = �j. Since the coefficients Bj 
are symmetric polynomials in w1,w2,...wr. Lemma 3 and 
4 tell us that their images bj are in F.   
 With these ideas, we have the following theorem 
called splitting theorem and it allows us to call to a 
splitting field K a finite field extension such that any 
irreducible polynomial over F with one root in K splits 
completely. 
 
 Theorem 2 (Splitting theorem): Let K be a 
splitting field of a polynomial f(x) 
 F[x]. If an 
irreducible polynomial g(x) 
 F[x] has one root in K, 
then it splits completely in K. 
 
Proof: Let � be a root of the irreducible polynomial 
g(x) in the splitting field K. We write � as a polynomial 
in �i, say � = p(�1, �2,….,�n), with p(u1,u2,…..un) 
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F[u1,u2,...un]. Let {p1,p2,…pr} be the orbit of p = pi and 
let �j = pj(�1, �2, ….,�n), so that � = �i.  
 Lemma 4 tells us that h(x) = (x - �1) (x - �2)…(x - 
�r) has coefficients in F. Therefore � is a common root 
of the two polynomials g and h in F[x]. Since g is 
irreducible, it divides any polynomial in F[x] which has 
� as a root. Therefore, g divides h. Since h splits 
completely in K, so does g.   
 
Main theorem of galois theory: 
  
Proposition 1: Let � : K → Kl’ be an F - isomorphism 
between extensions fields of F, let f be a polynomial in 
F[x] which has � root, � 
 K. Then �� is a root of f in’ 
Kl.   
 
Proposition 2: Let f be an irreducible polynomial F[x] 
and let K and Kl be field extension of F in which f has 
roots, say � 
 K and al 
 Kl. Suppose that K = F[�] and 
Kl = [al]. There is a unique F - isomorphism � : K → Kl 

such that �� = al.   
 
Remark: From above, any finite field extensions 
turned out to be generated by one element. Such an 
element, if it exists, is called a primitive element. Hence 
to see that under mild restrictions primitive element 
exists. 
 
Theorem 3[3]: (Primitive Element Theorem) Let K/F be 
a finite extension. An element � 
 K for which K = 
F[�] exists if and only if there exist only finitely many 
intermediate fields G: K ⊃ G ⊃ F. If K is separable over 
F then such an element exist. 
 
Proof: If F is finite then K is also finite and therefore 
the multiplicative group of K is generated by one 
element which is then primitive. So let us assume that F 
is infinite. 
 Suppose that there exist only finitely many fields 
intermediate between K and F. Let �, � 
 K. For c 
 K 
there exist only finitely many fields of the form F(� + 
c�). Therefore there are c1, c2, 
 F, c1 � c2 and such that 
F (� + c1�) = F (� + c2�). 
 Note that �+c1� and �+c2� belong to the same 
field, hence (c1-c2) � also belongs to this field and 
therefore � does so as well. Thus, � also belongs to the 
same field and it follows that  
F (�, �) is generated by one element (e.g. � + c1�). An 
obvious induction shows that any intermediate field 
generated by finitely many elements (in particular, K 
itself is generated by one element). 
 Conversely, suppose that K = F [�] for some �. Let 
m(x) be the minimal polynomial of � over F. For any 

intermediate field G consider mG (x), the minimal 
polynomial of � over G. Clearly, mG divides m. Since 
there are only finitely many (monic) divisors of m we 
obtain a map  
 G� mG from the set of intermediate fields into a 
finite set of polynomials. Let G0 be the subfield in G 
generated by the coefficients of the polynomial mG. 
Then mG in G0 and it is irreducible over G0 since it is 
even irreducible over G. Therefore the degree of � over 
G is the same as the degree of � over G0. It follows that 
G0 = G. We conclude that G is determined uniquely by 
mG and therefore the above map is injective. This 
finishes the proof of the first statement of the theorem. 
 Now suppose that K is separable over F. Using 
induction, the general case is reduced to the one when 
K = F (�, �) where �, � are separable over F. let �1, 
�2,…�r different embeddings of F into the normal 
closure of K. (Using the condition that K ⊃ F is 
separable) 
 
Set P(x) = i i j j

i j
( ( ) x ( ) ( ) x ( )).

≠
σ α + σ β − σ α − σ β∏  

 
 Clearly, P(x) is a nonzero polynomial and therefore 
there exists an element c 
 F for which P(c) � 0. Then 
the elements �i(� + c�) are all different and therefore 
F(� + c�) has degree over F no less that n. However n = 
[F (�, �): F] and therefore F (�, �) = F(c).  
   
Theorem 4: [7] Let K/F be a finite extension and let G 
be the group of F - automorphisms of K. Then lGl ≤  
[K:F] and lGl=[K:F] if only if K is a splitting field over 
F. 
 
Proof: Let n = lGl and N = [K:F]. By the primitive 
Element Theorem, K = F[�] for some �. Let f(x) be the 
irreducible polynomial for � over F. Then deg f = deg � 
= N. let �1, �2, …,�r be the roots of f in K, with �1 = �. 
We don’t know how many roots there are except that r 
≤  N. Let K=F[�i] for any i, because [F[�i]: F] = N too. 
Proposition 1 tells us that an element of G sends �1→ �i 
for some i and proposition 2 tells us that there is a 
unique F - isomorphism �i: K → K sending �1 → �i. 
The elements of G are {�1, �2,…�r}. This shows that u 
= r ≤  N. If K is a splitting field, then f splits completely 
in K and n = r = N. 
 
Theorem 5: Let G be a finite group of automorphisms 
of a field K and let F = KG be its fixed field. Let � 
 K 
have G - orbit {�1, �2,…,�r}, with �i = �. Then (i) f(x) = 
(x - �1) (x - �2)…(x - �r) is the irreducible polynomial 
for � over F. (ii) � is algebraic and of degree r over F,  

and r G≤  
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Proof: Let g(x) be the irreducible polynomial for �1 
over F. Then �i is a root of g for all i. This follows from 
proposition 1. So the degree of g is at least r. 
 The coefficients of f(x) are the elementary 
symmetric functions in �1, �2,…,�r. An element � 
 G 
permutes this orbit, so it fixes the coefficients of f, 
which shows that f 
 F[x]. Because g is irreducible and 
g, f have a common root, g divides f. Therefore the 
degree of g is at most r. It follows that the degree of g is 
equal to r and that g = f. Then the degree of � over F is  
also r.     
 
Theorem 6:[4] let F be the fixed field of a finite group 
G of automorphisms of a field K. Then K is a Galois 
extension of F and its Galois group is G. 
 
Proof: Let n= GIΙ  and N=[K:F]. Because the elements 
of G act as the identity on F, they are F- 
automorphisms. So G ⊂  G(K/F). From theorem 4, it 
clears that n ≤  N. let F’ be an intermediate field, F ⊂  
F’ ⊂  K, which is obtained from F by adjoining some 
finite set of elements of K. Since every element of K is 
algebraic over F, F’ is a finite extension of F and by the 
Primitive Element Theorem (Theorem 3), F’= F[�] for 
some � 
 K. By theorem 5, the degree of � is at most n. 
Hence [F’: F] n≤  
 However, we form a chain of intermediate fields F 
< F1 < F2<…as follows: If F < K, we choose an element 
�1 
 K which is not in F and we set F1 = F[�1]. If F1 < 
K, choose an element �2 
 K which is not in F1 and we 
set F2 = F1[�2], etc…If Fi = K at some stage, we stop. 
Let di= [Fi: F]. Then d1<d2<…, because Fi is generated 
over F by finitely many elements. Theorem 4 tells us 
that di n≤  Therefore the chain must be finite and it 
ends with some Fi = K. Hence N = di n≤  and so n = N. 

 
Theorem 7: let K/F be a Galois extension, with Galois 
group G. Then F is the fixed field KG. 
 
Proof: Let n = GIΙ . By definition of Galois extension,  
n = [K: F] and by theorem 6,  
n = [K: KG]. By definition of F - automorphism,  
F ⊂  KG. Examining degrees in the tower  
F ⊂  KG ⊂  K, its clear that [KG: F] = 1,  
hence that F = KG.   
 

RESULTS  
 
Lemma 5: Let K/F be a Galois extension with Galois 
group G. (i) Let L be an intermediate field: F ⊂  L ⊂  
K. Then K/L is a Galois extension and its Galois group 
is a subgroup of G. (ii) conversely, the fixed field of a 

subgroup H of G is an intermediate field: F ⊂  KH ⊂  
K. 
 
Proof: (i) Being a Galois extension, K is the splitting 
field of some polynomial f(x) over F. So f splits in K[x] 
and that the roots of f generate K over F. Then it is 
obvious that K is also the splitting field of the same 
polynomial f over the larger field L. Therefore K/L is a 
Galois extension. By definition, its Galois group G 
(K/L) is the set of automorphisms of K which restrict to 
the identity of L. Any such automorphisms is also the 
identity on the smaller Field F and therefore is an 
element of G. So G(K/L) is a subgroup of G. (ii) Being 
in G, an element � 
 H is the identity on F.  
So F ⊂  KH and of course KH ⊂  K.    The above generalizations are used in the next 
theorem referred to as Main Theorem of Galois Theory. 
 
Theorem 8: Let K/F be a Galois extension, with Galois 
group G. The rules u: H→KH and v : L→ G(K/L) are 
inverse maps which define a bijective correspondence. 
 H ⊂  G  F ⊂  L ⊂  K  
{Subgroup} ↔ {intermediate fields} 
 
Proof: From the assertion of Lemma 5, it shows that u, 
v, are maps with domains and ranges as indicated. We 
need to show that the composition of  u and v in either 
order is the identity. Let H be a subgroup of G and let L 
= KH. By theorem 6, K/L is a Galois extension and its 
Galois group is G (K/L) = H. This shows that vuH = H. 
Let L be an intermediate field and let H = G (K/L). By  
Theorem 7, L = KH, therefore uvL = L.  
 

DISCUSSION 
 
 A Galois extension is one such that GIΙ = [K:F]. 
With the Theorem we asserts that K/F is Galois 
extension if and only if K is a splitting field over F. The 
Galois group of a Galois extension K is the group of its 
F - automorphisms. 
 If G be a group of automorphisms over a field K. 
Then the fixed field KG is by definition the set of 
elements � 
 K which are fixed by all � 
 G, hence is a 
subfield of K. 
 

CONCLUSION 
 
 We therefore conclude that G is embed as a 
subgroup of the symmetric group, hence the Galois 
correspondence is deduce using the Splitting theorem 
and Primitive Element. 
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