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Abstract: Problem statement: Southern Waste Management environment (SWM environment) is a 
company responsible for the collection and disposal of solid waste for the city of Johor Bahru, a city 
with over one million populations. The company is implementing an integrated solid waste 
management system where it involved in the optimization of resources to ensure the effectiveness of 
its services. Formulating this real life problem into vehicle routing problem with stochastic demand 
model and using some designed algorithms to minimize operation cost of solid waste management. 
Approach: The implementation of Ant Colony Optimization (ACO) for solving solid waste collection 
problem as a VRPSD model was described. A set of data modified from the well known 50 customers 
problems were used to find the route such that the expected traveling cost was minimized. The total 
cost was minimized by adopting a preventive restocking policy which was trading off the extra cost of 
returning to depot after a stock-out with the cost of returning depot for restocking before a stock-out 
actually occurs. For comparison purposes, Simulated Annealing (SA) was used to generate the 
solution under the same condition. Results: For the problem size with 12 customers with vehicle 
capacity 10 units, both algorithms obtained the same best cost which is 69.4358 units. But the 
percentage deviations of averages from the associated best cost are 0.1322 and 0.7064 for ACS and 
SA. The results indicated that for all demand ranges, proposed ACO algorithm showed better 
performance than SA algorithm. Conclusion: SA was able to obtain good solutions for small ranges 
especially small size of problem. For ACS, it is always provide good results for all tested ranges and 
problems sizes of the tested problem. 
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INTRODUCTION 

 
 Southern Waste Management Sdn. Bhd. (SWM) 
was established in line with Malaysian Government's 
decision on the National Privatization of Solid Waste 
Management. It was subsequently awarded the task of 
managing the storage, collection, transfer, haul, 
intermediate processing and disposal of solid waste in 
the Southern Region of Peninsular Malaysia by 
Economic Planning Unit of the Prime Minister's 
Department on Dec 21st, 1995. SWM is structured to 
provide the Southern Region with an integrated waste 
management system that is comprehensive, well 
planned, efficient and cost effective. Applying the most 
environmentally sound technology available, SWM will 
strive to enhance the quality of solid waste management 
and cleaning services in the country. 
 In April 1996, SWM was directed by the 
Government of Malaysia to take over the solid waste 
Management and public cleaning services from all 

Local Authorities within the SWM concession area on 
an Interim basis. It is a transition towards the 
implementation of the full privatization. The concession 
area covers the states of Negeri Sembilan, Melaka and 
Johor. The concession will cover a period of 20 year 
and serve a population of 4 million people. 
 To improve their services, a strong KPI (Key 
Performance Indicator) will be instituted against the 
two consortiums to ensure they deliver high quality 
performance to the public. The objective is to provide a 
more efficient management of solid wastes and public 
cleaning to the public's satisfaction. 
 In this study, integrated solid waste management 
system is emphasized. SWM is involved in the 
integrated solid waste management system and public 
cleaning services. They will implement a strategic and 
well-rounded integrated system to ensure the 
effectiveness of its services. They strive to provide 
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optional solution for integrated waste management by 
drawing on the experience and expertise of their staff at 
various officers. They specialize in: 
 
• Handling household waste, commercial and non-

toxic industrial waste: 
• Waste containment to collection  
• Transfer station to landfills 
• Recycling and waste to energy 
 

Problem: The solid waste collection problem is 
formulated into VRPSD model where a street or some 
nearby streets which had been group together as one 
unit is represented by the nodes (customers’ locations). 
The customers’ locations are in form of Cartesian 
coordinate where each point appears uniquely in a plane 
through two numbers, called x-coordinate and y-
coordinate while demands of customers which are 
stochastic are recorded in a range form. 
 This study shows the way of a real life problem 
being formulated into Vehicle Routing Problem with 
Stochastic Demand Model and solved by the designed 
algorithm. Since there is no open source data for 
VRPSD problem, thus this case study adopted a set of 
data modified from the well known 50-customer 
problem in Eilon et al.[7] as in Table 1. 
 The customers’ locations are shown on a plane by 
designed program as in Fig. 1 to show the positions of 
all customers graphically.  
 The problem described above can be modeled as a 
Vehicle Routing Problem with Stochastic Demand 
(VRPSD) as the amount of solid waste is stochastic and 
may be presented in a complete graph[7] and 
Secomandi,[9,10].  Let  the  set  of  nodes be {0, 1,…,n}. 
 

 
 

Fig. 1: Positions of customers’ locations 

Node 0 denoting the depot node and V = {1,…,n} is a 
set of customer locations. Distances between nodes are 
assumed to be symmetric and it satisfies the triangle 
inequality. Customers’ demands are stochastic 
variables, ξi = 1, 2,...,n independently distributed with 
known distribution. It follows a discrete probability 
distribution with v possible values, ξ1, ξ2,…,ξv denoted 
by pi,k = Prob (ξI = ξk ). Actual demand is only known 
when the vehicle arrives at the customer location. 
 
Table 1: Data of case study 
 Customers’ locations 
 -------------------------------------  
I x-coor. y-coor. ξi 
0 5.00 4.00 - 
1 1.89 0.77 4-7 
2 9.27 1.49 2-9 
3 9.46 9.36 3-5 
4 9.20 8.69 0-4 
5 7.43 1.61 5-7 
6 6.08 1.34 0-8 
7 5.57 4.60 3-5 
8 6.10 2.77 3-6 
9 8.99 2.45 1-7 
10 8.93 7.00 6-7 
11 8.60 0.53 5-7 
12 4.01 0.31 1-6 
13 3.34 4.01 3-7 
14 6.75 5.57 4-7 
15 7.36 4.03 1-2 
16 1.24 6.69 1-3 
17 7.13 1.92 1-7 
18 7.86 8.74 4-6 
19 4.18 3.74 5-9 
20 2.22 4.35 5-6 
21 0.88 7.02 5-8 
22 8.53 7.04 1-5 
23 6.49 6.22 1-8 
24 4.53 7.87 1-3 
25 4.46 7.91 0-4 
26 2.83 9.88 3-5 
27 3.39 5.65 1-6 
28 0.75 4.98 0-5 
29 7.55 5.79 1-4 
30 8.45 0.69 1-6 
31 3.33 5.78 3-7 
32 6.27 3.66 3-8 
33 7.31 1.61 0-6 
34 6.37 7.02 1-6 
35 7.23 7.05 0-7 
36 1.68 6.45 1-4 
37 3.54 7.06 2-8 
38 7.67 4.17 0-6 
39 2.20 1.12 3-7 
40 3.57 1.99 2-8 
41 7.34 1.38 0-4 
42 6.58 4.49 1-6 
43 5.00 9.00 1-4 
44 6.63 5.23 3-4 
45 5.89 8.06 1-8 
46 1.13 5.25 2-6 
47 1.90 8.35 3-7 
48 1.74 1.37 2-9 
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 After the vehicle completed service at customer w, 
suppose the vehicle has remaining load q and let fw(q) 
denotes the expected cost from node w onward until the 
n customer and the way back to depot. With this 
notation, the expected cost of the a priori tour is f0(Q). 
The dynamic programming recursion is shown as 
follows[11]: 
 

p r
w w wf (q) min{f (q),f (q)}=  (1) 

 
Where: 
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with the boundary condition: 
 

n n,0 nf (q) c , q S= ∈  (4) 
 
 Equation 2 and 3 represents the cost of proceeding 
directly to the next customer and the cost of the 
restocking action respectively. 
 Assume that one single vehicle with fixed capacity 
Q departs from the depot node to delivery goods at 
different customer locations according to their demands 
and at the same time, it has to minimize the total 
expected distance traveled. After all the demands have 
been served, the vehicle returns to the depot. 
 The vehicle visits the customers according to the 
sequence in the given a priori tour. It has to choose 
depending on the customer’s demand either proceed 
directly to the next customer or return to depot for 
restocking. Thus, the goal of this study is find a vehicle 
route and a routing policy (threshold) at each node in 
order to minimize the total expected cost[1]. 
 

MATERIALS AND METHODS 
 
The ant colony system algorithm for solving 
VRPSD: Ant System was efficient in discovering good 
or optimal solutions for small problems with nodes up 
to 30. But for larger problems, it requires unreasonable 
time to find such a good result. Thus, Dorigo and 
Gambardella[3,4] and Bianchi et al.[1] devised three main 
changes in Ant System to improve its performance 
which led to the existence of ant colony system.  

 
 
Fig. 2: Ant colony system’s algorithm 
 
 Ant Colony System is different from Ant System in 
three main aspects. Firstly, state transition rule gives a 
direct way to balance between exploration of new edges 
and exploitation of a priori and accumulated information 
about the problem. Secondly, global updating rule is 
applied only to those edges which belong to the best ant 
tour and lastly, while ants construct the tour, a local 
pheromone updating rule is applied. 
 Basically, Ant Colony System (ACS) works as 
follows: m ants are initially positioned on n nodes 
chosen according to some initialization rule such as 
choosing by randomly, with at most one ant in each 
customer point. Each ant builds a tour incrementally by 
applying a state transition rule. While constructing the 
solution, ants also updating the pheromone on the 
visited edges by local updating rule. Once the ants 
complete their tour, the pheromone on edges will be 
updated again by applying global updating rule[2].  
 During construction of tours, ants are guided by 
both heuristic information and pheromone information. 
Heuristic information refers to the distances of the 
edges where ants prefer short edges. An edge with 
higher amount of pheromone is a desirable choice for 
ants. The pheromone updating rule is designed so that 
ants tend to leave more pheromone on the edges which 
should be visited by ants. 
 The Ant Colony System algorithm is given as in 
Fig. 2[3,4]. 
 There are 3 main components which led to the 
definition of Ant colony System; they are state 
transition rule, global updating rule and local updating 
rule. Each of these components will be shown in detail 
as follow: 
 In the ant ACS, an artificial ant k after serves 
customer r chooses the customer s to move to from set 
of Jk(r) that remain to be served by ant k by applying 
the following state transition rule which is also known 
as pseudo-random-proportional-rule: 
 

[ ]
[ ]k

0βu J (r)

τ(r,u) .
arg max if a a (exploitation)

s η(r,u)

S otherwise (biased exploration)

∈

    ≤ =    


 (5) 
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Where: 
β = The control parameter of the relative 

importance of the visibility 
τ(r,u) = The pheromone trail on edge (r, u)  
η(r,u) = A heuristic function which was chosen 

to be the inverse distance between 
customers r and u 

A = A random number uniformly distributed 
in [0,1] 

0 0a (0 a 1)≤ ≤  = A parameter 
S = A random variable selected according to 

the probability distribution which favors 
edges which is shorter and higher 
amount of pheromone 

 
 It is same as in Ant system and also known as 
random-proportional-rule given as follow: 
 

k

k

k u J (r)

[ (r,s)].[ (r,s)] if s J (r)
[ (r,u)].[ (r,u)]p (r,s)

0 otherwise

β

β

∈

 τ η
∈ τ η= 




∑   (6) 

 
where, pk(r,s) is the probability of ant k after serves 
customer r chooses customer s to move to. 
 The parameter of a0 determines the relative 
importance of exploitation versus exploration. When an 
ant after serves customer r has to choose the customer s 
to move to, a random number a (0≤ a ≤1) is generated, 
if a ≤ a0, the best edge according to Eq. 5 is chosen, 
otherwise an edge is chosen according to Eq. 6[3]. While 
building a tour, ants visits edges and change their 
pheromone level by applying local updating rule as 
follow: 
 

(r,s) (1 ). (r,s) . (r,s), 0 1τ = − ρ τ + ρ ∆τ < ρ <   (7) 
 
where: 
 
ρ  = A pheromone decay parameter 
∆τ(r,s) = τ0 (initial pheromone level) 
 
 Local updating makes the desirability of edges 
change dramatically since every time an ant uses an 
edge will makes its pheromone diminish and makes the 
edge becomes less desirable due to the loss of some of 
the pheromone. In other word, local updating drives the 
ants search not only in a neighborhood of the best 
previous tour. 
 Global updating is performed after all the ants have 
completed their tours. Among the tours, only the best 
ant which produced the best tour is allowed to deposit 

pheromone. This choice is intended to make the search 
more directed. The pheromone level is updated by 
global updating rule as follow: 
 

(r,s) (1 ). (r,s) . (r,s), 0 1τ = − α τ + α ∆τ < α <   (8) 
 
Where: 

gb1 / L if (r,s) global best tour
(r,s)

0 otherwise

∈ − −∆τ = 


 

 
 Lgb is the length of the global best tour from the 
beginning of the trial. (global-best) and a is pheromone 
decay parameter. Global updating is intended to provide 
greater amount of pheromone to shorter tours. Eq. 8 
dictates that only those edges belong to globally best 
tour will receive reinforcement.  
 From the experiments done by previous 
researchers, the numerical parameters are set as 
following values:  
 

1
0 0 nn2, a 0.9, 0.1, (n.L )−β = = α = ρ = τ =  

Where: 
 
Lnn = The tour length produced by the nearest neighbor 

heuristic 
n = The number of customers 
 
 The number of ants used is m = 10. These values 
were obtained by a preliminary optimization phase in 
which it is found that the experimental optimal values 
of the parameters were largely independent of the 
problem except for τ0

[4]. 
 
Case Study: A case study has been carried out and it 
shows the way of a real life problem being formulated 
into Vehicle Routing Problem with Stochastic Demand 
Model and solved by the designed algorithm. Since 
there is no open source data for VRPSD problem, thus 
this case study adopted a set of data modified from the 
well known 50-customer problem in Eilon et al.[6] as in 
Table 1. 
 For this case study, the stopping criterion for ACS 
algorithm is in dynamic form where either number of 
consecutive non-improving solutions reaching 50 or 
number of iteration reaches the maximum level. For SA 
algorithm, the stopping criterion used is in static form 
where the iteration stops after a predetermined number 
of maximum iteration is reached. The move that is used 
in SA algorithm to obtain the neighboring solution is 
the swapping of position of any two randomly chosen 
customers’ positions. Parameter settings of ACS and 
SA algorithm for this case study are shown in Table 2 
and 3 respectively. 
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Table 2: Parameter setting of ACS algorithm 
Number of ants 10 
Capacity of vehicle 10-50 
α 0.9 
α, ρ 0.1 
β 2 
τ0 (n.Lnn)−1 
Maximum iterations 100 
No. of consecutive non-improving solutions allowed 50 
 
Table 3: Parameter setting of SA algorithm 
Initial temperature 1000.00 
Number o f repetition 20.00 
Cooling rate 0.98 
Maximum iteration 1500.00 
 
 For this study, the proposed ACS with local search 
algorithm and Simulated Annealing (SA) algorithm 
are  tested  for  problems  ranging  in   size  from 12-
48 customers. Further detail on SA may be found in 
Kirkpatrick et al.[8]. The program is run for 10 trials for 
each algorithm under different vehicle capacity values 
from ten to forty. Best cost refers to the best cost found 
from the 10 trials for comparison purpose.  
 

RESULTS 
 
 Table 4 shows the computational results for 
algorithm ACS and SA under different problem sizes.  
 The results indicate that proposed ACS with local 
search algorithm produces better solutions compared to 
SA algorithm. For smaller size of problem, deviation 
between the best cost results from both ACS and SA 
algorithm is relatively small. For the problem size with 
12 customers with vehicle capacity 10 units, both 
algorithms  obtained  the same best cost which is 
69.4358 units. But the percentage deviations of averages 
from the associated best cost are 0.1322 and 0.7064 for 
ACS and SA. This indicates that ACS gives the results in 
a more consistent manner compared to SA.  
 The deviation for SA’s solution compared to 
solutions obtained by ACS is increasing with the 
problem sizes. For problem size with 12 customers, the 
best solutions of SA deviated from best solutions of 
ACS for not more than 0.5%. When it comes to the 
problem sizes with 48 customers, the best solutions of 
SA deviated from best solutions of ACS for more than 
5%. This indicates that ACS performs much better than 
SA algorithm in bigger size of problem. However, ACS 
requires more computational effort or time over SA 
algorithm. 
 For each of the problem size, the larger of vehicle 
capacity gives the lower total expected cost. The reason 
behind is, the larger capacity of vehicle is able to satisfy 
more customers’ demands in which it reduces the 
occurring times for preventive restocking and route failure. 

Table 4: Comparison of algorithm ACS and SA for different problem 
sizes 

  Total expected cost of a priori   
  ------------------------------------------------ Difference 
  ACS  SA  (Best  
Problem Capacity, ------------------------ ---------------------- ACS- 
sizes, n Q Best Average Best Average Best SA) 
12 (Model 1) 10 69.4358 69.5276 69.4358 69.9263 0.0000 
 20 42.7758 42.7825 42.8547 43.2857 -0.0789 
 30 37.2618 37.3537 37.3588 37.6974 -0.0970 
 40 33.8966 33.9691 34.0416 34.7209 -0.1450 
24 (Model 2) 10 114.7422 114.8451 116.6947 117.9591 -1.9525 
 20 70.1857 70.5992 70.7853 72.9933 -0.5996 
 30 55.0705 55.5264 55.4437 58.4765 -0.3732 
 40 50.4478 50.9085 51.0495 53.1760 -0.6017 
36 (Model 3) 10 154.1018 154.8055 156.9437 159.3486 -2.8419 
 20 94.1029 94.9249 97.4506 99.4608 -3.3477 
 30 73.5592 74.2729 77.1142 79.7676 -3.5550 
 40 62.6947 63.2958 68.7049 71.6983 -6.0102 
48 (Model 4) 10 199.2149 200.2451 209.8118 212.2541 -10.5969 
 20 118.7979 119.5347 126.0159 127.6119 -7.2180 
 30 91.1003 91.6274 96.3949 100.2883 -5.2946 
 40 76.9768 78.0332 84.0350 87.9365 -7.0582 

 
Table 5: Comparison of algorithm ACS and SA for different demand 

ranges 
  Total expected cost of a priori 
 Demand ------------------------------------------------- Difference 
 ranges ACS  SA  (Best 
Problem (max- --------------------- ---------------------- ACS- 
sizes, n min) Best Average Best Average best SA) 
12 (Model 1) 5 37.8309 37.8309 37.8309 37.8946 0.0000 
 10 46.5176 46.5233 46.5176 46.6858 0.0000 
 15 55.9193 55.9193 55.9193 56.4056 0.0000 
 20 66.3211 66.3906 66.4080 66.7586 -0.0869 
24 (Model 2) 5 60.6567 60.8200 62.1815 63.3988 -1.5248 
 10 79.9053 80.0058 81.5747 80.6062 -1.6694 
 15 97.5548 97.6098 99.4316 101.3428 -1.8768 
 20 116.1023 116.1148 117.3202 119.0287 -1.2179 
36 (Model 3) 5 80.1849 80.8623 84.1031 85.5617 -3.9182 
 10 106.9875 107.3627 110.6752 112.5322 -3.6877 
 15 133.3562 133.5786 137.9571 141.2781 -4.6009 
 20 160.7067 161.0139 161.1994 166.7799 -0.4927 
48 (Model 4) 5 97.9829 98.7263 103.2490 105.2380 -5.2661 
 10 133.5311 134.0055 140.2354 143.1984 -6.7043 
 15 168.1742 168.8197 175.8930 179.7441 -7.7188 
 20 205.0472 205.5534 214.8841 218.3807 -9.8369 

 
In short, ACS showed better performance than SA 
under all of the problem sizes with various vehicle 
capacities tested. Next, both algorithms will be tested 
over demand ranges. 
 To access the robustness of ACS algorithm, both 
ACS and SA algorithms are further compared for 
different demand ranges. The customers’ demands are 
generated ranged from 5-20. Again, the program is run 
for 10 trials for each algorithm under different demand 
ranges and problem sizes. The capacity of vehicle is set 
to  be  30  units for every trial for this comparison. 
Table 5 shows the computational results for 
comparison.   
 The results indicate that for all demand ranges, 
proposed ACS algorithm showed better performance 
than SA algorithm. From Table 5, it can be noted that 
ACS gives the more consistent solutions compared to 
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SA algorithm. The average total expected cost given by 
ACS does not deviate too far from its best cost.  
 With a fixed capacity, the deviation of best costs 
for SA algorithm from the best cost of ACS is 
increasing as the demand ranges increases. Further 
more, for problem size with 12 customers; the best 
solutions for SA deviated from best solutions of ACS 
for not more than 0.2%. However, for problem size 
with 48 customers, the best solutions of SA deviated 
from best solutions of ACS for more than 4.5%. This 
shows that ACS algorithm can reach a good solution for 
larger problem size compare to SA algorithm.  
 Apparently, SA is able to obtain good solutions for 
small ranges especially small size of problem. For ACS, 
it is always provide good results for all tested ranges 
and problems sizes of the tested problem.  
 

DISCUSSION 
 
 Generally, Genetic Algorithm gives a pool of 
solutions rather than just one. The process of finding 
superior solutions mimics the evolution process, with 
solutions being combined or mutated to find out the 
pool of solutions. Simulated Annealing is a global 
optimization technique which traverses the search space 
by generating neighboring solutions of the current 
solution. A superior neighbor is always accepted and an 
inferior neighbor is accepted with some probability.  
 Tabu Search is similar to Simulated Annealing, in 
that both traverse the solution space by testing 
mutations of an individual solution. However, 
simulated annealing generates only one mutated 
solution but Tabu search generates many mutated 
solutions and moves to the solution with the lowest 
fitness of those generated. 
 Ant Colony System is the extension from Ant 
System. Both algorithms are categorized as Ant Colony 
Optimization (ACO) algorithms. In particular, it can be 
observed that ACS is the most aggressive of the ACO 
algorithms and it returns the best solution quality for 
very short computation times[5,7]. ACS has an advantage 
over Simulated Annealing and Genetic Algorithm 
approaches when the graph may change dynamically 
where the Ant Colony algorithm can be run 
continuously and adapt to changes in real time.  
 From the results of case study above, it can be 
known that the ACS algorithm always finds very good 
solutions for all tested problems in the aspects of 
various problem sizes and demand ranges. The 
algorithm finds the good solutions efficiently and 
consistently compare with other heuristic methods such 
as Simulated Annealing and it does not exhibit 
stagnation behavior where the ants continue to search 

for new possibly better tours. Stagnation behavior is the 
situation in which all ants make the same tour.  
 

CONCLUSION 
 
 The proposed ACS with local search algorithm and 
Simulated Annealing algorithm are tested for problems 
ranging in size from 12-48 customers. The results 
indicate that proposed ACS with local search algorithm 
produces better solutions compare to SA algorithm. 
Deviation of SA algorithm’s best cost from the best 
cost results of ACS algorithm is increasing as the 
problem size increases. 
 In the second part of comparison, both ACS and SA 
algorithms are further compared for different demand 
ranges from 5-20 units. Again, the results indicate that 
proposed ACS algorithm showed better performance 
than SA algorithm. With a fixed capacity, the deviation 
of best costs for SA algorithm from the best cost of ACS 
is increasing as the demand ranges increases.  
 In this study, an efficient heuristic method is 
presented to solve the VRPSD problem. The ACS 
exploits the nature phenomenon of ants to solve such 
stochastic optimization problem. A local search 
algorithm (descent method) is proposed to be added in 
the ACS algorithm. The concept of this method is to 
find the a priori tour that gives the minimum total 
expected cost. The ACS has been shown the ability in 
obtaining good solution for VRPSD problem.  
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