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Abstract: Problem statement: All simultaneous equation estimation methods have some desirable 
asymptotic properties and these properties become effective in large samples. This study is relevant 
since samples available to researchers are mostly small in practice and are often plagued with the 
problem of mutual correlation between pairs of random deviates which is a violation of the assumption 
of mutual independence between pairs of such random deviates. The objective of this research was to 
study the small sample properties of these estimators when the errors are correlated to determine if the 
properties will still hold when available samples are relatively small and the errors were correlated. 
Approach: Most of the evidence on the small sample properties of the simultaneous equation 
estimators was studied from sampling (or Monte Carlo) experiments. It is important to rank estimators 
on the merit they have when applied to small samples. This study examined the performances of five 
simultaneous estimation techniques using some of the basic characteristics of the sampling 
distributions rather than their full description. The characteristics considered here are the mean, the 
total absolute bias and the root mean square error. Results: The result revealed that the ranking of the 
five estimators in respect of the Average Total Absolute Bias (ATAB) is invariant to the choice of the 
upper (P1) or lower (P2) triangular matrix. The result of the FIML using RMSE of estimates was 
outstandingly best in the open-ended intervals and outstandingly poor in the closed interval (-
0.05<r<0.05) when P1 and P2 was re-combined. Conclusion: (i) The ranking of the various 
simultaneous estimation methods considered based on their small sample properties differs according 
to the correlation status of the error term, the identifiability status of the equation and the assumed 
triangular matrix. (ii) The nature of the relationship under study also determined which of the criteria for 
judging the performances of the estimators could be said to perform best when compared with others. 
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INTRODUCTION 
 
 The simultaneous equations model is most 
important to econometricians both from a theoretical as 
well as applied perspective. It is unfortunate that the 
estimators employed have exact, finite-sample 
distribution that are difficult to derive. Thus, their 
properties are usually discussed only on the basis of 
large sample theory. Small sample properties have been 
studied using Monte Carlo techniques by many authors 
including Johnston[2,3,5,11]. However, these studies 
cannot sort out the possibly complex dependence of the 
distributions on unknown parameters, nor do they 
reveal the possibility that moments of the exact 
distribution do not exist, making comparisons of 

empirical mean square errors, biases and sampling 
variances meaningless.  
 The theoretical ranking of the various simultaneous 
estimation techniques on the basis of the asymptotic 
properties is important if the sample size is 
sufficiently large. However, given that in practice the 
researcher works usually with small samples, the 
asymptotic properties of the estimates are of little 
assistance in his choice of technique[8]. What is 
important is the ranking of the estimators on the merit 
they have when applied to small samples. 
Conventionally, the ranking has been based on some 
‘small-sample properties’ which are considered as 
‘desirable’ or ‘optimal’ for the estimate to possess. The 
properties considered in this study are: 
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• Average of estimates 
• Absolute bias of estimates and  
• Root mean square error  
 
 The question that is often asked is which of the 
criteria is the most important? Should we prefer an 
estimate with the smallest bias or minimum variance or 
if it has the smallest mean square error? There is no law 
that says that bias or efficiency should be ranked in 
some unique order. Much depends on the nature of the 
relationship being studied and the purpose it is going 
to serve. In some cases, the minimum variance may be 
more desirable than small bias, while in some cases 
the least bias may be the most desirable property to be 
possessed by an estimator Koutsoyiannis[8]. 
Obviously, the importance of each criterion is to a 
certain extent a matter of subjective decision of the 
econometrician. Cragg[2] noted that the standard errors 
of the consistent methods would lead to reliable 
inferences, but this was not always the case as the 
standard errors of the OLS are not useful for making 
inference about the true values of the parameters. 
Summers[10] reached a very similar conclusion that the 
OLS method is inferior to the consistent methods of 
estimation. The presence of autocorrelation in the 
structural disturbances leaves unchanged the ranking of 
the system estimators established under textbook 
assumptions and appears to have little effect on their 
bias Cragg[2]. The “typical” specification of serial 
independence of the errors in simultaneous equations 
models has been recently extended to include the 
possibility of auto correlated errors. The degree and 
type of auto correlation among the errors are reported 
by[6] as very vital. 
 
Model specification: Consider the following model: 

 

1t1t 12 2t 11 1tY Y X U= β + γ +  

 

2t 2t 1t 22 2t 23 3t 2tY Y X X U= β + γ + γ +  

 
Where: 
Y’s = The endogenous variables 
X’s = The predetermined variables  
u’s = The random disturbance terms 
β’s and γ’s = The parameters 

 
 Three levels of assumed correlation between pairs 
of random deviates are considered as follows: 

• Negatively correlated interval ( )
1 2,r 0.05ε ε < −  

• Feebly negatively or positively correlated interval 

( )
1 2,0.05 r 0.05ε ε− < < +  

• Positively correlated interval ( )
1 2,r 0.05ε ε > +  

 

 The pairs of random sequences ( ){ }1t 2t, ; t 1,...,Nε ε =  

are generated such that the disturbance terms are 
distributed N(0, Σ). 

 
Data generation: In econometrics, while asymptotic 
properties of estimators obtained by various 
econometric techniques are deduced from postulates or 
self-evident assumptions, the small sample properties of 
the various econometric techniques have been studied 
from simulated data in what are known as Monte Carlo 
studies and not with direct application of the techniques 
to actual observations. This approach is due to the fact 
that actual observations on economic variables are often 
plagued with problems such as multi collinearity, 
autocorrelation, errors of measurements, non spherical 
disturbances and other economic “diseases” 
simultaneously. All the estimators whose small sample 
properties are studied here are based on the assumption 
that all these problems are absent, thus such studies 
cannot be successfully studied using a real life data. 
The Monte Carlo approach allows the experimenter to 
set up an artificial system where values are generated 
for the random disturbances for some specified sample 
size and using these values, values are calculated for 
the endogenous variables based on the assumptions of 
this artificial problem at each sample point[4]. 
Pretending that the parameters are unknown and using 
only the values of the endogenous and predetermined 
variables at each sample point, several estimating 
techniques are applied in turn to obtain associated 
estimates of the parameters. The process of generating 
values for the disturbances, obtaining values for the 
endogenous variables and calculating estimates of the 
parameters is repeated, or replicated, a large number 
of times. The set of estimates of each parameter by 
each estimator are then used to infer properties of the 
estimators for the given sample size and for the 
chosen values of the parameters[4]. This study uses this 
method with sample size, N, chosen to be N = 40 and 
replicated 100 times. The following values are 
arbitrarily   assigned    to   the   structural    parameters; 
β12 = 1.5, β21 = 1.8, γ11 = 1.2, γ22 = 0.5, γ23 = 2.0[1] and 
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values are arbitrarily assigned to the covariance matrix 
of the disturbance terms as follows: 

 
5.0 2.5

2.5 3.0

 
Ω =  

 
 

 
 Fixed values are generated for the exogenous 
variables X1t, X2t and X3t from the uniform (1, 0) 
distribution[7]. Furthermore, the pairs of random 
sequences ( ){ }1t 2t,ε ε generated are then used to obtain 

values for the random disturbances U1t and U2t such that 
they are consistent with the covariance matrix Ω given 
above. A method presented by Nagar[9] for the 
transformation of W independent series of standard 
random deviates of length N into W series of random 
variables with zero means and a specified covariance 
matrix is used. 
 Σ is therefore decomposed by a non- singular upper 
triangular matrix P such that: 

 
PP′Ω =  

 
 So that: 

 

11 12
1

22

D D
P  

0 D

 
=  
 

 

 
Then: 

 

11 12 11 11 12

22 21 22 12 22

D D D 0
 

0 D D D

σ σ    
=    σ σ    

 

 

22 22D  = + σ  
 

12
12

22
D D

σ=  

 
2

11 11 12D  D= + σ −  

 
 The random disturbance series are obtained as 
follows: 
 

1t11 12
t 1

2t22

D D
U  P

0 D

ε  
=    ε  

 

 
2 12

11 121t 1t
22

2t 2t
22

DU D
U

0

σ + σ − ε    =     ε    + σ 

 

 Using the values of the covariance matrix, we 
have: 
 
U1t = 1.707825128ε1t+1.443375673ε2t  
 
U2t = 1.732050808ε2t  
 
 The above procedure is repeated for the lower 
triangular matrix, P2, such that: 
 

11
2

21 22

D 0
P  

D D

 
=  
 

 

 
MATERIALS AND METHODS 

 
 The main task in the present context is the 
generation of stochastic dependent (endogenous) 
variables, Yit (i = 1,2, t = 1,…,T) which are 
subsequently used in estimating the parameters of the 
model. 
 To achieve this, the following have to be assumed: 

 
• Values of the predetermined variables X1t, X2t and 

X3t (t = 1,…, T) 
• Values of the parameters12 21 11 22 23, , , andβ β γ γ γ  

• Values of the elements ofΩ , the variance-
covariance matrix of U, i.e., σ11, σ12 and σ22 

 
 Essentially, attention is focused on computing 
numerical values for Yit (i =1, 2, t = 1,…,T) using the 
reduced form of equations: 
 

1t 11 1t 12 2t 13 3t 1ty X X C V= Π + Π + Π +  
 

2t 21 1t 22 2t 23 3t 2ty X X C V= Π + Π + Π +   

 
Where:  

( )
( )
( )

* * *
11 21 22 21 23

* * *
12 11 22 23

*
1t 1t 21 2t

*
2t 12 1t 2t

1*
12 21

V u u

V u u

1
−

 γ β β γ β β γ β
Π =  β γ β γ β γ β 

= + β β

= β + β

β = − β β

 

 
 The most complex step in generating stochastic 
dependent variables is the simulation of the error terms 
Uit (i = 1, 2; t = 1,…, T) where selection of only pairs of 
εit which fall into one of these three categories above is 
made. 
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RESULTS 
 
 One of the objectives of this study is to identify 
which of the three levels of correlation coefficient 
between the error terms accommodates best estimates 
of the parameters produced by each of the five 
estimators. It is also of interest to compare the 
distribution of ‘best’ estimates for the two equations 
and for P1 and P2. To achieve this objective ‘best’ 
estimates are identified and presented by summarizing 
the ranking of the various techniques when there is 
mutual correlation between the disturbance terms in the 
model for cases of upper and lower triangular matrices 
(P1 and P2). Table 1-11 are generated from the results of 
the Monte Carlo studies carried out as outlined above in 
section 3.0. The following criteria are considered for 
judging the performances of the estimators; average of 
estimates, absolute bias of estimates and root mean 
squared error of parameter estimates. 
 On the criterion of Average, here ‘best’ estimate 
implies that estimate that is closest to the true parameter 
value. 
 In Table 1, the best method is the 3SLS closely 
followed by OLS at the negatively correlated interval 
while 2SLS performed poorly. Whereas OLS 
maintained its position at the positively correlated 
region, the 3SLS is the poorest. At the feebly correlated 
region, 2SLS method ranks highest while FIML appears 
at the bottom of the list. The FIML appears to be the 
best method when the errors are positively correlated. 
 From Table 2, it was observed that for the lower 
triangular matrix, FIML retained its position as the best 
method when dealing with positively correlated errors. 
OLS however, moved to the top position while 3SLS 
appears to be the least important at the negatively 
correlated interval. At closed interval, 3SLS is best 
while OLS is the poorest.  
 Collapsing the Table 1 and 2 and looking at the 
general performance of these methods when the 
triangular  matrices  are  unimportant, we have the 
Table 3. 
 
Table 1: Rank of estimators using Average (P1) 
r<-0.05 -0.05<r<0.05 r>0.05 
3SLS 2SLS FIML 
OLS 3SLS OLS 
FIML LIML LIML 
LIML OLS 2SLS 
2SLS FIML 3SLS 
 
Table 2: Rank of estimators using average (P2) 
r<-0.05 -0.05<r<0.05 r>0.05 
OLS 3SLS FIML 
LIML LIML 2SLS 
FIML 2SLS OLS 
2SLS FIML 3SLS 
3SLS OLS LIML 

 In Table 3, the ranking also shows that while OLS 
ranks high as best estimator of error terms with large 
negative or positive correlation, 3SLS is best with 
feebly correlated error terms. The ranking of estimators 
in which P1 and P2 are combined is dominated by the 
ranking obtained under P2. In that Table 3, OLS ranks 
high in the two open intervals while 3SLS ranks high in 
the closed interval where the error terms are feebly 
correlated. 
 The next Table 4 and 5 contain summaries of the 
performance of estimators using total absolute bias of 
estimates. The criterion is to consider an estimator as 
‘best’ if it produces the smallest total absolute bias out 
of the three levels of correlation coefficient. 
 Here in Table 4, OLS is the poorest method on the 
criterion of bias at the negatively correlated area. Note 
that we make use of the ‘estimated bias’ as our 
criterion, which is the difference between the mean of 
the estimates and the true value of the parameters i.e. 

Absolute Bias( ) ˆθ = θ − θ . OLS ranked best in the other 

two intervals while it changed positions with the 3SLS 
at the open-ended intervals. The performances of all the 
estimators are not different in the middle interval where 
the ranks are the same.  
 In Table 5, When the errors are not strongly 
correlated 3SLS puts up the best performance and 
FIML seems to be inferior in this group. Nonetheless, 
in the other open-ended intervals FIML is outstandingly 
best. 
 In order to know which of the three intervals of the 
correlation coefficient house the ‘best’ estimates of 
each parameter produced by each estimator, the 
following method is adopted; the interval that produces 
the minimum estimate of RMSE (smallest root mean 
square error) is counted as the one that accommodates 
the ‘best’ estimate, this is shown in Table 6. 
 
Table 3: Rank of estimators using average (P1 and P2 combined) 
r<-0.05 -0.05<r<0.05 r>0.05 
OLS  3SLS FIML 
FIML  2SLS  OLS  
LIML  LIML 2SLS  
3SLS  OLS  LIML  
2SLS  FIML 3SLS  

 
Table 4: Relative importance of estimators using absolute bias (P1) 
r<-0.05 -0.05<r<0.05 r>0.05 
3SLS OLS OLS 
2SLS/LIML 2SLS/LIML/3SLS/FIML FIML 
FIML  LIML/2SLS 
OLS  3SLS 
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Table 5: Relative importance of estimators using bias (P2) 

r<-0.05 -0.05<r<0.05 r>0.05 

FIML  3SLS FIML/OLS 
LIML/3SLS OLS/2SLS 2SLS/LIML 
2SLS LIML 3SLS 
OLS FIML 

 
Table 6: Ranking of estimators using RMSE (P1) 

r<-0.05 -0.05<r<0.05 r>0.05 

FIML  3SLS FIML 
OLS  2SLS OLS/2SLS 
3SLS  LIML LIML 
2SLS  OLS 3SLS 
LIML  FIML  
 
Table 7: Ranking of estimators using RMSE (P2) 

r<-0.05 -0.05<r<0.05 r>0.05 

OLS  OLS 3SLS 
LIML/FIML  LIML 2SLS 
2SLS  2SLS FIML 
3SLS  3SLS/ FIML LIML 
  OLS 

 
Table 8: Ranking of estimators using RMSE (P1 and P2 combined) 

r<-0.05 -0.05<r<0.05 r>0.05 

FIML OLS/2SLS/3SLS FIML 
 OLS LIML
 2SLS/3SLS 
LIML FIML LIML 
2SLS/3SLS  OLS 

 
 The performance of FIML on the criterion of 
RMSE is similar to its performance on the criterion of 
bias when upper triangular matrix (P2) is assumed as 
shown in Table 6. In Table 6, FIML put up the best 
performance when the error terms are either negatively 
or positively correlated, closely followed by OLS in 
both regions. They both performed poorly in the middle 
interval. 3SLS ranks first in the middle interval and 
ranks least at the positively correlated area. LIML ranks 
last in the interval when the errors are negatively 
correlated. 
 As shown in Table 7, when the upper triangular 
matrix is assumed and the error terms are either 
negatively or feebly correlated, OLS has an outstanding 
performance. It however, performs badly at the 
positively correlated region. In the regions where OLS 
ranks best, 3SLS ranks last while it performs best where 
OLS seems to be least. Again, FIML is non existent in 
the closed interval which implies that its performance at 
this interval is regardless of the triangular matrix 
assumed. 

Table 9: Summary of the ranking of estimators of average and 
RMSE P1 

r<-0.05  -0.05<r<0.05   r>0.05 
------------------------ ------------------------- ------------------------------ 
AVERAGE RMSE AVERAGE RMSE AVERAGE RMSE 

3SLS FIML 2SLS 3SLS FIML FIML 
OLS OLS 3SLS 2SLS OLS OLS/2SLS 
FIML 3SLS LIML LIML LIML LIML 
LIML 2SLS OLS OLS 2SLS 3SLS 
2SLS LIML FIML FIML 3SLS  

 
Table 10: Summary of the ranking of estimators of average and 

RMSE P2 

r<-0.05  -0.05<r<0.05 r>0.05 

-------------------------------- -------------------------------- ---------------------------- 

AVERAGE RMSE AVERAGE RMSE AVERAGE RMSE 

OLS OLS 3SLS OLS FIML 3SLS 

LIML  LIML/FIML LIML LIML 2SLS 2SLS 

FIML 2SLS 2SLS 2SLS OLS FIML 

2SLS 3SLS FIML 3SLS/FIML 3SLS LIML 

3SLS  OLS  LIML OLS 

 
Table 11: Ranking of estimators under P1 and P2 on ATAB and CV 

ATAB  CV 
------------------------------------ ------------------------------------ 
P1 P2  P1  P2 

3SLS 3SLS OLS 2SLS 
LIML LIML 2SLS LIML 
2SLS 2SLS LIML OLS 
OLS OLS 3SLS 3SLS 
FIML FIML FIML FIML 

 
 A comparison of the results for combined P1 and P2 

in Table 8 shows that: 

 
• FIML is outstandingly best in the open-ended 

intervals and outstandingly poor in the closed 
interval 

• OLS is reasonably good at all intervals except the 
third interval (r>0.05) 

• 3SLS is the most ubiquitous of the five estimators 
in term of its position in the three intervals under 
P1 and P2 

• Entries in this table show that P2 dominates results 
of combined P1 and P2 

 
Comparable results of the ranking of estimators: It 
is of interest to study the extent to which the ranking of 
estimator performance on several criteria are in 
agreement or otherwise. 
 Comparisons of the entries in the following Table 9 
and 10 reveal some agreement in the ranking of these 
estimators  in  the middle  (closed)  and  third  interval 
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(-0.05<r<0.05 and r>0.05) for P1 and in the first interval 
(r<-0.05) for P2. 
 Using the Average Total Absolute Bias (ATAB) 
and its Coefficient of Variation (CV) the five estimators 
are ranked as follows in increasing order of bias and 
coefficient of variation under P1 and P2 as these can be 
seen in Table 11.  
 It is noteworthy in Table 11 that in respect of 
average absolute bias that the five estimators rank 
uniformly under P1 and P2. This finding clearly shows 
that the ranking of the estimators in terms of the 
magnitude of the average total absolute bias is invariant 
to the choice of the upper (P1) or lower (P2) triangular 
matrix. 
 It is also remarkable that whereas the average 
absolute biases of the other four estimators take the first 
four positions, those of FIML maintain a very distant 
fifth position. The poor ranking of FIML in this 
situation of correlated disturbances and over-identified 
equation may be attributed to the fact that it uses more 
information as an estimator than any of the other four 
estimators as this is clearly shown in Table 11.  

 
 DISCUSSION 

 
 Evidently, the results presented from Table 1-11 
show that the only remarkable uniformity in the ranking 
of estimators on the dispersion of the total absolute bias 
is the fact that the 3SLS and FIML are in the fourth and 
fifth positions respectively under P1 and P2 as presented 
in Table 11.  
 Finally, a decision on the best estimator for this 
model cannot be taken on the basis of our findings on 
total absolute bias alone. This is because the yardstick 
is the total absolute bias of two equations, which 
differ in their identifiability status. In estimating 
multi-equation models, the choice of estimator is 
equation specific. Hence, the findings here will have 
to be reconciled with findings elsewhere before a 
prescription of best estimator of each equation can be 
suggested. 

 
CONCLUSION 

 
 None of the criteria considered here for judging 
the performances of the five estimation techniques can 
be proved to rank better than the others. For example, 

no law says that bias or efficiency should be ranked in 
some unique order. Much depends on the nature of the 
relationship being studied and the purpose it is going 
to serve. While a minimum variance may be more 
desirable in some cases than small bias, the least bias 
may be a more desirable property to be possessed by 
our estimators in some other cases. It is important to 
note that the importance of each criterion is to a 
certain extent a matter of subjective decision of the 
researcher.  
 The ranking of the various simultaneous estimation 
techniques considered on the basis of their small sample 
properties differs according to the correlation status of 
the error term (whether the errors are positively 
correlated, negatively correlated or feebly correlated), 
the identifiability status of the equation and the 
assumed triangular matrix (P1 or P2).  
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