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Abstract: Problem statement: The study evaluated the effectiveness of the various quantile 
estimators of the LQ-moments method for estimating parameters of the Extreme Value Type 1 (EV1) 
distribution. Approach: The performances of the LQ-moments were analyzed and compared against a 
widely used method of L-moments by using simulated samples of both EV1 and generalized Lambda 
distribution, focusing on small and moderate sample sizes. Results: The analysis results showed that 
LQMOM method wais more efficient in many cases especially for the upper tails of the distribution 
and for various sample sizes. Conclusion: This study demonstrated that conventional LMOM was not 
optimal for the estimation of the EV1 distribution. 
 
Key words: The Weighted kernel quantile, upper tail, LQ-moments, L-moments, quick estimator 

 
INTRODUCTION 

 
 The Extreme Value Type I (EV1) distribution is 
widely used in various fields including hydrology for 
modeling extreme events[5,10,14]. Despite its extensive 
use, however, there is generally no accepted method of 
estimating its parameters. Its successful application 
depends, doubtless, upon the accuracy with which its 
parameters can be estimated. Thus, the problem is one 
of selecting an appropriate method for estimating the 
EV1 distribution parameters.  
 The methods of PWM, ordinary product Moment 
(MOM) and Maximum Likelihood (ML) estimation are 
commonly used to estimate the parameter of the EV1 
distribution. The method of ML is known to be 
asymptotically unbiased and optimal for the EV1 
distribution[13]. However, there is no guarantee that the 
ML-method is the best in small samples. Gumbel[5] 
argued that the method of Maximum Likelihood 
Estimation (MLE) was very complicated and required 
numerical work and favored the Method Of Moments 
(MOM). Landwehr[10] used the method of Probability 
Weighted Moments (PWM) and the related L-Moments 
(LMOM). They found that the method, in general, 
compared with the MLE and MOM methods. Raynal 
and Salas[14] analyzed six different methods of 
parameter estimation and preferred PWM for large 
samples. Phien[12] compared the MOM, ML, ME 

(maximum entropy) and PWM estimators for the EV1 
distribution. PWM estimators were found to be best in 
terms of mean square error.  
 Mudolkar and Hutson[11] extended L-moments to 
new moment like entitles called LQ-moments to 
estimate the GEV distribution parameters. The LQ-
moments are constructed by using functional defining 
the quick estimators, where the parameters of quick 
estimator take  the values  p = 0, α = 1 for the median, 
p = 1/4, α = 1/4 for the trimean and p = 0.3, α = 1/3 for 
the Gastwirth, in places of expectations in L-moments. 
Ani and Jemain[1-3] proposed the LQMOM based on the 
Weighted Kernel Quantile (WKQ) estimator in which 
the quick estimators parameters α and p are not 
restricted, such as the median, trimean or Gastwirth on 
the value of p and α such as the median, trimean or the 
Gastwirth but we explore an extended class of 
LQMOM with consideration combinations of p and α 
values in the range 0 and 0.5.  
 The objective of this study is to analyze and 
compare statistically various quantile estimators of LQ-
moments to estimate the parameters of the EV1 
distributions. We considered five different quantile 
estimators namely the LIQ estimator, the L-quantile 
estimators, two of the weighted L-quantile estimators 
and the HDL estimator for estimating the sample LQ-
moments. The performances of the LQMOM based on 
these quantile estimators were compared with the 
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method of the LMOM for various sample sizes using 
simulated samples of both EV1 and generalized 
Lambda distribution, focusing on small and moderate 
sample sizes.  
 

MATERIALS AND METHODS 
 
Definition and properties of LQ-moments 
estimators: Let X1, X2,…,Xn be a random sample from 
a continuous distribution function F(.) with quantile 
function Q(u) = F−1(u) and let X1:n≤X2:n≤…≤Xn:n denote 
the corresponding order statistics. Then the rth LQ-
moments ξr is given by[2]: 
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 Is the quick estimator of location and 1r k:rB ( )−

− α  is 

the quantile of a beta random variable with parameter r-
k and k+1 and Q(.) denotes the quantile estimator. The 
first four LQ-moments of the random variable X are 
defined as: 
 

1 p, 1:1(X )αξ = τ  (3) 

 
1

2 p, 2:2 p, 1:22 [ (X ) (X )]α αξ = τ − τ  (4) 

 
1

3 p, 3:3 p, 2:3 p, 1:33 [ (X ) 2 (X ) (X )]α α αξ = τ − τ + τ  (5) 

 
1

4 p, 4:4 p, 3:4 p, 2:4 p, 1:44 [ (X ) 3 (X ) 3 (X ) (X )]α α α αξ = τ − τ + τ − τ  (6) 

 
Quantile estimators: The sample quantiles estimators 
of the values of the population quantile Q(.), are used 
widely in a variety of applications such as a Q-Q plots 
and a box plot in the exploratory data analysis, non-
parametric estimators involving statistics such as the 
quartiles and their ranges, to theoretical topics such as 
density function estimation. 
 Let 1:n 2:n n:nX X ... X≤ ≤ ≤  be the corresponding order 

statistics. The population quantiles estimator of a 
distribution is defined as: 

{ }1Q(q) F (q) inf x : F(x) q , 0 q 1−= = ≥ < <  (7) 

 
where, F(x) is the distribution function[3]. The qth 
population  quantile of  F  denoted  by  ξq and defined 
ξq = Q(q). 
 Sample quantiles have been studied in statistical 
literature[4]. The qth sample quantile is defined by: 
 

q [nq] 1SQ X +=  (8) 

 
where, [nq] denotes the integral part of nq. The sample 
quantiles experience a substantial lack of efficiency, 
caused by the variability of individual order statistics. 
Mudholkar and Hutson[11] used the other quantile 
function estimator namely the Linear Interpolation 
Quantiles (LIQ) for constructed LQ-moments. The LIQ 
quantile is used commonly in statistical packages such 
as MINITAB, SAS, IMSL and S-PLUS[11].  
  A popular class of L-quantile estimator for 
improving the efficiency of sample quantiles uses equal 
weight to average over the order statistics and has been 
widely applied to reduce this variability[15]. In recent 
years, researchers have studied weighted L-quantile 
estimator which use unequal weights for data points, to 
obtain better performance of estimators[7,8]. 
 Huang and Brill[7] applied the level crossing 
empirical distribution function to propose a class of 
level crossing kernel quantile estimators. The 
theoretical and simulation results show that those 
estimators improve the efficiencies relative to the 
corresponding regular kernel quantile estimators. But 
selection of kernel or bandwidth of the kernel 
estimators has always been a sensitive problem[8].  
 Harrell and Davis[6] proposed an L-quantile 
estimator of ξq namely, HD quantile estimator which 
not only gives better efficiencies but also avoids the 
problems of selection of kernel or bandwith. Sheather 
and Marron[15] showed the HD performs as well as 
other L-quantile estimators in large sample. Huang[8] 
use a level crossing empirical distribution function to 
propose a new estimator HDL which is a weighted 
version of HD. The theoretical and computational 
results show that the new estimator HDL is more 
efficient than the HD quantile in many cases, especially 
for the tails of the distributions and small sample sizes.  
 In this study, five different quantile estimators 
namely the LIQ estimator, the L-quantile estimators, 
two of the weighted L-quantile estimators and the HDL 
estimator were considered for estimating the sample 
LQ-moments. In the following, we discuss each of 
these estimators. 
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Linear interpolation quantiles: The Linear 
Interpolation Quantiles (LIQ)[9] is given by: 
 

q [n 'q]:n [n 'q] 1:nLIQ (1 )X X += − ε + ε   (9) 

 
where, n 'q [n 'q]ε = − , n ' n 1= + and [nq] denotes the 
integral part of nq. 
 
L-quantile estimators: A popular class of L-quantile 
estimators is called Kernel Quantile (KQ) estimators of 
Sheather and Marron[15] is given by: 
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where, K is a density function symmetric about 0 and:  
 

hK ( ) (1/ h)K( / h)• = •  

 
  The approximation forms of pKQ  estimator is 

Sheather and Marron[15]: 
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where, 1/2 2K(t) (2 ) exp( t / 2)−= π −  is the Gaussian 

Kernel, 1/2h [q(1 q) / n]= −  is an optimal bandwidth given 
in Corollary 1 of Sheather and Marron[15]. 
 
Weighted L estimators: Huang and Brill[7] introduced 
the weighted L estimator called Weighted Kernel 
Quantile (WKQ). The weighted L estimators is given 
by: 
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New level crossing HDL quantile estimators: The 
new level crossing qth HD quantile estimators called 
HDL quantiles is given by: 
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and j,nw is given in (13). 

 
EV1 distribution: The extreme value distribution type 
1 (EV1) was introduced by Gumbel[5] and is commonly 
known as Gumbel’s distribution. It one of the most 
widely used probability distribution functions for 
extreme value in hydrologic and meteorological studies 
for prediction of flood peaks, maximum rainfalls, 
maximum wind speed. The Cumulative Distribution 
Function (CDF) of EV1 distribution is: 
 
F(x) exp{ exp[ (x ) / ]} x= − − − µ σ − ∞ < < ∞  (17) 

 
where, µ and σ are location and scale parameters, 
respectively. Quantiles function of EV1 distribution is 
given by 
 
Q(q) log( log(q))= µ − σ − , 0 q 1< <  (18) 
 
Method of LQ-moments: The LQ-moments estimators 
for the EV1 distribution behave similarly to the 
LMOM. From Eq. 6, 7 and 16, the first two LQ-
moment of the EV1 distribution can be written as 
 

1 p, 1:1[ (X )]αξ = µ + σ τ  (19) 
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1
2 p, 2:2 p, 1:22 [ (X ) (X )]α αξ = σ τ − τ  (20) 

 
 The LQMOM estimators µ and σ of the parameters 
are the solution of (19) and (20).  

 σ̂  and µ̂ can be estimated successively from Eq. 
20 and 19 as: 
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Method of L-moments (LMOM): The LMOM 
estimators for the EV1 distributions are given by: 
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Monte Carlo simulations: Monte Carlo simulations 
have been carried out to investigate the effect of LQ 
moments methods based on five different quantile 
estimators compared with L-moments method. In each 
simulation a total of 1000 samples of size 10, 25 and 50 
are used to generate random samples to obtain the 
quantile estimators of Q(q), q = 0.01, 0.05, 0.1, 0.025, 
0.5, 0.75, 0.90, 0.95 and 0.99.  
 Statistical analysis of extremes is often interested 
to analysis the upper tails of the distributions. Hence in 
this study, the quantile Q(q) for upper tails, q = 0.90, 
0.95 and 0.99 are considered. 
 

RESULTS AND DISCUSSION 
 
Simulation study for parent distribution function 
known: Although the true underlying distribution 
function is never known in practice, it is still useful to 
look at how estimation is affected by various methods 
when the distribution function is known. For this 

purpose, 1000 random samples of different n are 
generated from the EV1 distribution with the location 
and scale parameters (µ,σ) were set 0 and 1 
respectively.  
 Initially, parameters of EV1 were estimated by the 
LQMOM method using combinations of the quick 
estimators parameters (α and p) values in the ranges 0-
0.5. In the computer simulations the values of α are 
0.01(0.02)0.41 and p are 0.05(0.05)0.45 were chosen 
and all possible combination of α and p were examined 
in order to find the best combination in term of RMSE. 
The presentation of our results will focus on the 
properties of quantile estimators because they are more 
direct practical interest. 
 The smallest RMSE of the LQMOM based on five 
quantile estimators obtained by simulation were 
compared with RMSE obtained using the LMOM 
method for  sample  sizes  of  n = 10,  25  and  50 with 
p = 0.01, 0.05, 0.1, 0.025, 0.5, 0.75, 0.90, 0.95 and 
0.99. Results are presented in Table 1 in terms of 
estimation efficiency (EFF) of the LQMOM method 
relative to LMOM method defined as: 
 

RMSE(LQMOM)
EFF

RMSE(LMOM)
=  (25) 

 
 Values EFF >1 indicated that the LMOM method 
is superior to the LQMOM methods. 
 The simulation results of the Table 1 show that 
when the data are generated form the EV1 distribution, 
only the LQMOM based on WKQ1 is more efficient 
relative to the LMOM method in 16 out of 27 (equal to 
59.26%). The LQMOM based on the KQ, HDL, WKQ2 
and LIQ estimators are significantly less efficient than 
the LMOM.  
 In the upper tails (q = 0.90, 0.95, 0.99), the 
LQMOM based on the WKQ1 estimator has higher 
efficiency than LMOM equal to 100% cases. The 
LQMOM method based on the KQ, WKQ2 and HDL 
are in many cases significantly more efficient than the 
LMOM in 6 out of 9 (equal to 66.67%), in 7 out of 9 
(equal to 77.78%) and in 6 out of 9 (equal to 66.67%) 
cases, respectively. The LIQ quantile estimator is 
significantly less efficient than the LMOM method. 
 
Parent distribution function unknown: In practice, 
the true distribution function is never known. Thus it 
will be even more useful to look how estimation is 
affected by various methods when the assumed 
distribution function differs from the parent distribution 
function. In this study generalized Lambda distribution 
was considered to generate the random samples data.  



J. Math. & Stat., 5 (4): 298-304, 2009 
 

302 

Table 1: Estimation efficiency of the LQMOM method relative to LMOM method. Data are generated form the EV1 distribution 
  Sample size n = 10, 25, 50 
  ---------------------------------------------------------------------------------------------------------------------------------------------------- 
Estimator\p  0.01 0.05 0.1 0.25 0.5 0.75 0.90 0.95 0.99 
LIQ (10) 0.9613 0.9616 0.9706 0.9776 1.0333 1.0580 0.9943 0.9990 0.9989 
  (25) 0.8545 0.8258 0.8273 0.8858 0.9581 0.9670 0.9824 0.9885 0.9912 
  (50) 0.8060 0.8058 0.8135 0.8601 0.9440 0.9690 0.9563 0.9462 0.9311 
KQ (10) 0.9826 0.9524 0.9280 0.9762 2.0749 1.0570 1.0591 1.0615 1.0596 
 (25) 0.9901 0.9752 0.9631 0.9449 1.1979 1.0157 1.0181 1.0171 1.0129 
 (50) 0.9431 0.9440 0.9438 0.9406 0.9781 0.9766 0.9797 0.9788 0.9791 
WKQ1 (10) 1.0786 1.0929 1.1025 1.1251 1.1176 1.0438 1.0278 1.0231 1.0259 
 (25) 1.0322 1.0369 1.0399 1.0478 1.0338 1.0238 1.0232 1.0231 1.0225 
 (50) 1.0084 1.0005 0.9982 1.0000 1.0035 1.0382 1.0509 1.0534 1.0544 
WKQ2 (10) 0.9992 0.9764 0.9573 1.0114 1.9813 1.0642 1.0627 1.0635 1.0600 
 (25) 0.9908 0.9858 0.9787 0.9641 1.1145 1.0131 1.0169 1.0148 1.0141 
 (50) 0.9438 0.9440 0.9449 0.9496 0.9540 0.9728 0.9730 0.9689 0.9648 
HDL  (10) 1.0024 0.9821 0.9660 0.9405 0.9893 1.0373 1.0514 1.0553 1.0592 
  (25) 0.9774 0.9730 0.9700 0.9686 0.9821 0.9989 1.0004 0.9997 0.9986 
  (50) 0.9450 0.9411 0.9401 0.9472 0.9703 0.9996 1.0055 1.0051 1.0024 

 
Table 2: Estimation efficiency of the LQMOM method relative to LMOM method. Data are generated form the standard normal distribution 
  Sample size n = 10, 25, 50 
  ------------------------------------------------------------------------------------------------------------------------------------------------- 
Estimator\p  0.01 0.05 0.1 0.25 0.5 0.75 0.90 0.95 0.99 
LIQ (10) 1.1606 1.0568 0.9894 1.0878 1.4081 1.3666 0.9669 1.1378 1.7151 
 (25) 1.2638 1.1547 1.0103 0.9827 1.3034 1.1867 0.9778 1.2468 2.1768 
 (50) 1.3791 1.2529 1.0783 1.0023 1.5530 1.1957 0.8646 1.3102 2.2389 
KQ  (10) 1.0593 0.9533 0.9254 1.0388 2.3060 1.0103 1.0537 1.2721 1.9959 
 (25) 1.1141 1.0453 0.9776 1.0519 1.8459 1.0828 1.0890 1.4827 2.6818 
 (50) 1.1251 1.1122 1.0382 1.0675 1.7016 1.2189 1.0531 1.5736 3.0147 
WKQ1 (10) 0.9038 0.9071 0.9562 1.1849 1.4518 1.1376 0.9834 1.1905 1.8116 
 (25) 0.9390 0.9206 0.9325 1.1299 1.4826 1.0276 1.0545 1.4312 2.4279 
 (50) 1.0009 1.0105 1.0076 1.0925 1.4112 1.1986 1.0722 1.5864 2.7071 
WKQ2 (10) 1.0160 0.9433 0.9301 1.0574 2.3496 1.0205 1.0597 1.2862 1.9968 
 (25) 1.0430 0.9932 0.9552 1.0607 1.7502 1.0885 1.0859 1.4860 2.6939 
 (50) 1.0783 1.0725 1.0236 1.0728 1.4375 1.2256 1.0546 1.5877 2.8742 
HDL (10) 0.9210 0.9195 0.9429 1.0510 1.1200 1.0321 1.0565 1.2568 1.9282 
 (25) 0.9858 0.9719 0.9659 1.0441 1.2370 1.0899 1.0605 1.3646 2.3194 
 (50) 1.0933 1.1187 1.0641 1.0655 1.4495 1.2197 1.0287 1.4220 2.4894 

 
 Huang and Brill[7] used the Generalized Lambda 
Distribution (GLD) to compare the performance of the 
new quantile estimation method (WKQ) with the usual 
Kernel Quantile (KQ) estimation method. The GLD has 
four parameters and a wide variety of curve shapes. 
Hence it is useful for the representation of data when 
the underlying distribution is unknown. The quantile 
function of the GLD is given by: 
 

b cQ(q) a [q (1 q) ] / d= + − − , 0 q 1< < , b 0≠  (26) 
 
Where: 
a  = A location parameter 
b = A scale parameter  
c and d = Shape parameters. 
 
 By varying parameter values, Huang and Brill[7] 
constructed three generalized Lambda distributions, 
identified  as   the   standard  normal-like  distribution 
(a = 0, b = 0.1974, c = 0.1349, d = 0.1349), the peaked 

symmetric distribution (a = 0, b = -0.3203, c = -0.1359, 
d = -0.1359) and the medium positive skewed 
distribution    (a = 0.6390,    b = 0.0979,     c = 0.0251, 
d = 0.0953). The three GLDs then used as parent 
distributions in simulations to assess the performance of 
various quantile estimation of the LQMOM method 
compared to the LMOM method for estimating the 
parameters of the EV1 distribution. 
 The simulation result for the Q(q), q = 0.01, 0.05, 
0.1, 0.025, 0.5, 0.75, 0.90, 0.95 and 0.99 for sample 
sizes of n = 10, 25 and 50 of the EV1 distribution are 
listed in terms of Estimation Efficiency (EFF) are 
shown in Table 3 and 4. The simulation results show 
that the LQMOM methods have better efficiencies in 56 
out of 81 (equal to 69.14%) cases for WKQ1, in 62 out 
of 81 (equal to 76.54%) cases for KQ, in 50 out of 81 
(equal to 61.73% cases for the HDL and for the LIQ 
estimator and in 60 out of 81 (equal to 74.07%) cases 
for the WKQ1 estimator. 
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Table 3: Estimation efficiency of the LQMOM method relative to LMOM method. Data are generated form the peaked symmetric distribution 
  Sample size n = 10, 25, 50 
  --------------------------------------------------------------------------------------------------------------------------------------------------- 
Estimator\p  0.01 0.05 0.1 0.25 0.5 0.75 0.90 0.95 0.99 
LIQ (10) 1.1389 1.0753 1.0879 1.2994 1.3056 1.0384 1.1300 1.1960 1.1978 
  (25) 1.3006 1.0463 1.0260 1.4021 1.4630 0.9871 1.1197 1.2001 1.1424 
  (50) 1.5171 1.0880 0.9680 1.6745 1.8289 1.0294 1.1323 1.2380 1.1495 
KQ  (10) 1.0653 1.0489 1.0645 1.4094 2.3916 1.1126 1.2869 1.3552 1.2833 
  (25) 1.0287 1.0205 1.0654 1.4087 1.6015 1.0810 1.3043 1.4046 1.2810 
  (50) 1.2235 1.1391 1.0347 1.6873 1.8061 1.0485 1.2679 1.3764 1.2849 
WKQ1 (10) 0.9048 0.9555 1.1049 1.4796 1.3723 1.1385 1.2689 1.3254 1.2779 
 (25) 0.9705 0.9453 1.0387 1.4350 1.4458 1.1486 1.2853 1.3523 1.3200 
 (50) 1.2055 1.0850 1.0113 1.7233 1.8227 1.1569 1.2231 1.3252 1.3045 
WKQ2 (10) 1.0139 1.0332 1.0889 1.4456 2.3788 1.1374 1.2890 1.3574 1.2866 
 (25) 1.0152 0.9952 1.0592 1.4167 1.4458 1.0784 1.3216 1.4208 1.2860 
 (50) 1.2403 1.1273 1.0303 1.7063 1.8243 1.0418 1.2981 1.4160 1.2737 
HDL  (10) 0.9544 0.9734 1.0765 1.2877 1.2600 1.0814 1.2143 1.3021 1.2645 
 (25) 1.1408 0.9950 1.0342 1.4454 1.4739 1.0489 1.1760 1.2667 1.2256 
 (50) 1.4308 1.1085 1.0061 1.7184 1.8412 1.0809 1.0816 1.1585 1.2323 

 
Table 4: Estimation efficiency of the LQMOM method relative to LMOM method. Data are generated form the medium positive skewed 

distribution 
  Sample size n = 10, 25, 50 
  ---------------------------------------------------------------------------------------------------------------------------------------------------- 
Estimator\p 0.01 0.05 0.1 0.25 0.5 0.75 0.90 0.95 0.99 
LIQ (10) 0.8732 0.9186 0.9253 0.9485 1.0143 1.1898 0.9556 0.9599 1.0135 
 (25) 0.8680 0.8269 0.8360 0.8771 0.9327 0.9604 0.9285 0.9342 0.9789 
 (50) 0.8993 0.8245 0.8341 0.8902 0.9473 0.9489 0.9092 0.8697 0.9079 
KQ (10) 0.9651 0.9662 0.9534 0.9355 1.5563 1.0385 1.0275 1.0421 1.1213 
 (25) 0.9921 0.9758 0.9738 0.9545 1.1665 0.9942 0.9979 1.0091 1.0877 
  (50) 1.0354 0.9710 0.9703 0.9631 1.0347 0.9776 0.9726 0.9776 1.0582 
WKQ1 (10) 0.9196 1.0028 1.0347 1.0688 1.1118 1.0281 0.9566 0.9692 1.0500 
 (25) 0.9428 0.9934 1.0107 1.0219 1.0380 0.9818 0.9779 0.9955 1.0934 
 (50) 0.9283 0.9802 0.9985 1.0017 1.0008 0.9842 0.9757 0.9884 1.0937 
WKQ2 (10) 0.9613 0.9770 0.9701 0.9392 1.6483 1.0474 1.0327 1.0445 1.1202 
 (25) 0.9847 0.9794 0.9814 0.9649 1.1877 0.9939 0.9950 1.0039 1.0833 
 (50) 1.0275 0.9729 0.9746 0.9727 1.0015 0.9771 0.9733 0.9721 1.0489 
HDL  (10) 0.9599 0.9791 0.9747 0.9485 0.9937 1.0139 1.0262 1.0407 1.1125 
 (25) 0.9716 0.9790 0.9804 0.9705 0.9667 0.9822 0.9841 0.9823 1.0266 
 (50) 0.9655 0.9638 0.9689 0.9695 0.9733 0.9853 0.9771 0.9605 0.9612 

 
 In the upper tails (q = 0.90, 0.95, 0.99), the 
LQMOM based on all quantile estimators also always 
perform better than the LMOM. The KQ and WKQ2 
have higher efficiency relative to the LMOM in 24 out of 
27 (88.89%) respectively, followed by the HDL has 22 
out 27 (81.48%), the WKQ1 has 20 out of 27 (74.07%) 
and the LIQ has 16 out of 27 (59.26%) cases overall.  
 Overall results presented in Table 2-4 show that the 
LQMOM based on the WKQ1 has 72 out of 108 (equal 
to 66.67%) cases, the KQ has 67 out of 108 (62.04%), 
the HDL has 54 out of 108 (50%), the WKQ2 has 65 
out of 108 (60.19%) and the LIQ has 50 out of 108 
(46.30%) cases with better efficiencies. 
 

CONCLUSION 
 
 An accurate estimation of parameters of the 
Extreme Value Type 1 (EV1) distribution in statistical 
analysis of extremes is of considerable importance. In 

this study, we develop improved the LQMOM that does 
not impose restrictions on the value of the quick 
estimators parameters p and a but we explore an 
extended class of LQ-moments with consideration 
combinations of p and a values in the range 0 and 0.5. 
The method of the LQMOM based on five different 
quantile estimators were examined and compared their 
performances against a widely acceptable method of L-
moments using simulated samples of both EV1 and 
generalized Lambda distribution.  
 Considering all factors of comparison, the 
LQMOM based on WKQ1 in many cases significantly 
more efficient than LMOM, when the data are 
generated from the EV1 distribution and other 
distributions. The LQMOM based on WKQ2, KQ and 
HDL have higher efficiency relative to the LMOM 
when only the data are simulated from the generalized 
Lambda distribution. 
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 When the upper quantiles, q≥0.90 are considered, 
the LQMOM based on all quantile estimators except 
LIQ always perform better than LMOM for moderate 
and small sample sizes. 
 This study has demonstrated that the conventional 
LMOM is not optimal for the estimation of the EV1 
distribution. The new method of estimation, denoted the 
LQMOM in many cases represents higher efficiency in 
the quantile estimation compared the other quantile 
estimators. The simplicity and generally good 
performance of this method make it an attractive option 
for estimating quantiles in the EV1 distribution.  
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