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Abstract. Problem statement: Cutting and packing (C and P) problems are opttion problems
that are concerned in finding a good arrangemennuaitiple small items into one or more larger
objects. Bin packing problem is a type of C AND ®lgems. Bin packing problem is an important
industrial problem where the general objectivecigdduce the production costs by maximizing the
utilization of the larger objects and minimizingethmaterial usedApproach: In this study, we
considered both oriented and non-oriented cas@svofDimensional Bin Packing Problem (2DBPP)
where a given set of small rectangles (items), packed without overlaps into a minimum number of
identical large rectangles (bins). We proposedibgciplacement routines called the Improved Lowest
Gap Fill, LGFi and LGFir for solving non-oriented and oriented cases of PBBrespectively.
Extensive computational experiments using benchndatik sets collected from the literature were
conducted to assess the effectiveness of the pedpamitines.Results: The computational results
were compared with some well known heuristic plagetmoutines. The results showed that the LGFi
and LGFpr are competitive when compared with other heurjgacement routine€onclusion: Both
LGFi and LGFg¢ produced better packing quality compared to dileeristic placement routines.
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INTRODUCTION In this study, we consider oriented and non-oeiént
cases of two-dimensional rectangular single bia Bin
Generally, Cutting and Packing (C and P)packing problems which known as 2DRSBSBPP in
Problems can be summarized as follo%s Wascheret al.*%. According to Lodiet al.®®!, the problem
can be defined as follows:
“Given two sets of elements, namely, a set of

large objects (input, supply) and a set of small “Given a set of n rectangular itemsJj = {1,

items (output, demand) which are defined in 2,..., n}, each item j is defined by a height h

one, two, or an even larger number of geometric and a width wand an unlimited number of
dimensions. Then some or all the small items rectangular bins, each having a height H and

will be grouped into one or more subsets and width W. The objective is to allocate without
assign each of them into one of the larger overlaps, all the rectangles into the minimum
objects with the conditions all small items of the number of bins”

subset lie entirely within the large object and

the small items are not overlapping” For the oriented case, the rectangles have fixed

orientation while the rectangles can be rotate@0atin

The C and P problems contribute to many areas afion-oriented case of 2DBPP. This problem is claeskif
application in business and industry such as inamet as a class of NP-hard probleni®hy
wood, glass and textile industries, newspaper gagin The non-oriented case of 2DBPP can be found in
and cargo loading. The objective of the allocationmetal industry, where the pieces of the metal adiths
process is to maximize the utilization of the large (larger objects) while the different dimension ayduts
objects or maximizing the number of items to bethat needed to be cut out from the pieces of netal
packed in the larger objects. the items. The aim of this problem is to find a doo
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arrangement of the layout which give the highesthe routine is started by sorting the items acecaydo

utilization of the metal. The oriented case of 2[PBP

can contributes in newspaper paging process where t
pieces of pages in newspaper are the bins andethie n

or advertisements (with fixed orientation) are iteens.

non-increasing heights and L (lower bound) bins are
initialized by packing on their bottoms a subsetlod
rectangles, following best-fit decreasing policyheT
remaining rectangles are packed into the bands

The purpose is to arrange the maximum numbers cdiccording to the current direction associated il

news into minimum number of pages.

bin. The LGF routine consists of two stages:

Most of the classical placement routines for 2DBPPPreprocessing and packing stage. In the preprocgssi

work on levels heuristics where the packing is ioleth
by placing the rectangles in row from left to rigtthich
form levels. The first level is at the bottom edgethe

stage, the rectangles are initially arranged folhgwa
horizontal orientation and sorted in non-increasing
order of their width (breaking ties by non-increasi

bin while the subsequence levels in the bin are therder of height). LGFi uses a pointer (x, y) toigade

horizontal line denoted by the top edge of theesall
rectangle packed on the level below. Coffnearal !

the position of the lowest available gap in the bin
during packing stage. Best-fit strategy is used to

suggested three classical strategies for levelipgck oyamine the rectangles list and dynamically setect

which are summarized in Table 1 (note |
rectangle).

In this study, we consider Bottom-Left Fill
(BLF)®!, Lowest Gap FiIIéLGFfi], Touching Perimeter
(TPY®, Floor Ceiling (FCJ' and Alternate Direction
(AD)E! which are some well known heuristic
placement routines for solving the problem.

The BLF routine places the rectangles by searchin
through a list of location points in bottom leftdering
sequence that indicates potential positions whbes t
rectangle may be placed. Meanwhile, TP will first
initialize L bins (where L is the lower bound) befo
packing the rectangle at the bin and position wigjicie
the highest score (percentage of the rectanglenpési

currentyest fitting rectangle to place at the lowest ad gap

in the bin.

The objective of this study is to develop an
improved version of the Lowest Gap Fill (LGF) rogi
proposed by Lé8 for 2DBPP. Then, the developed
heuristic routine will be modified to design a new
Qeuristic placement routine for solving the orienhte

MATERIALSAND METHODS

Heuristic placement routine for non-oriented case:
The heuristic placement routine, LGFi is a modified

which touches the bin and the others rectangles th¥€rsion of LGF. Unlike LGF, LGFi chooses the shsite

have been packed). The FC is a two-phase placemefi

routine. In the first phase, the current rectanglé be
packed on a floor, according to Best-Fit strateggra
ceiling if the rectangle cannot be packed on toerfl
below. If neither floor nor ceiling at that levehr fit
the rectangle, a new level is initialized. In trezend
phase, the levels are packed into finite bins eithe
through the Best-Fit Decreasing (BFD) algorithmbgr
using an exact algorithm for the one-dimensional bi
packing problem. BFD algorithm is referred to the
rectangles that are initially sorted in decreasinidth,
height or area following by the BF routine. Foe #D,

Table 1: Classical strategies for levels packing

Packing strategy  Description

Next-Fit (NF) Rectangle j is packed left justified a level if it
fits. Otherwise, the level is closed and a nevellev
is created to pack the rectangle left justified.
Rectangle j is packed left justified the first

level where it fits. If there are no level canlp@c

a new level is initialized as in NF.

Rectangle j is packed left justifie that level,
among those where it fits, for which the resulting
packing has the minimum remaining horizontal
space. If no level can accommodate j, a new level
is initialized as in NF.

First-Fit (FF)

Best-Fit (BF)
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fge between the remaining gap height and gap width
as the current gap. This allows the routine to titken
the shortest available gap so that it is easiextmine

the rectangles list in term of finding a rectangiéh its
width or height that can fit the current gap conglie

If there is no rectangles can fit the current gap
completely, the first rectangle in the list thahda the

gap without overlaps is selected.

The preordering process is an important procedure
in giving the advantage in time for searching thetkit
rectangle. The appropriate sorting of the rectamgli
allow the rectangle with a larger dimension to be
packed first to reduce the wastage in the bin. Wtk
in mind, the LGFi will apply the preordering proced
in the preprocessing stage.

Similar to LGF, LGFi uses the pointer (x, y) to
indicate the lowest and leftmost point in the cotrgin
where a rectangle can be packed without overlags wi
other rectangles that have been packed in the rdurre
bin. LGFi consists of two stages: preprocessingesta
and packing stage.

Preprocessing stage: The rectangles are first rotated so
that the width of the rectangle is always greatantits
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height. For example, by denoting each rectangle@ by |[Gaw [iz[374]5]s st [TemNe. [1]2[2[4[5]6
(width, height) pair, the rectangles list of set P: widh,wi | 347|321 6] ———> | widthwy |75 95|63
height. by 891 6|4][3]|3] Preprocessing | height.hy |6]5]4]4[3]2
{(5, 8), (4, 9); (7, 6), (5, 4), (2, 3), (6, 3)} Bin dimension e % Wastage
(W, )= (10, 10)
will become:
3 4
{(8,5),(9.4),(7,6),(5.4), (3, 2), 6, 3)} ck
5 2
after rotating. |Initial investigation of different ! 6
preordering sequences of the rectangles as in Table - -

and the computational results in Table 3 and 4 show
that initially sorted the rectangles in decreasinder of ) ) )
height (breaking ties by decreasing order of width)Fig- 1: Improved Lowest Gap Fill (LGFi) for non-
which denoted as DH(DW) gives better packing oriented case

quality. Hence, the rectangles in set P: ) ) ) ) )
If there is no any rectangle either its width eigt

{(8, 5), (9, 4), (7, 6), (5, 4), (3, 2), (6, 3)} can fill the gap completely, then the first rectanig the
list with its area is less than or equal to therentr gap
area and can fill the gap without overlapping vather
rectangles that have been packed is selected eldwed
{7.6).(85.0.4.6.49. 63,6 2) rectangle is placed at the current point by itsrisist
after sorting in DH(DW) preordering sequence. Thisedge packed at the current gap. The selected gbetan
preprocessing stage required O(nlogn) time. removed from the rectangles list and the curreimtpo
and gap are updated. When the current bin is fulhe
Packing stage: The smallest dimension of height among pointer has been raised to the top of the curremtthe
the available rectangles in the list, min,  {w;h}  bin is closed. A new empty bin is initialized a th
(where j = number of the remaining rectangles i th cyrrent bin and the process is continues untiltfzd
rectangles list) is stored. The value of ffi} will be  rectangles in the rectangles list are packed. Fhiking
updated if the rectangle with the smallest dimemsib stage required Ofhtime.
height is packed. S The time consuming overlapping test is not needed
At first, an empty bin is initialized as the cutte jn LGFi since the selected rectangle will always be
bin, the current point is at the bottom-left corfer 0,  packed at the updated current point and current gap
y = 0) and the current gap is the shortest edgee®et  Since the current gap will give us both the dimensiof
the height H and the width W of the bin. The first the available gap, the selected rectangle willawatrlap
rectangle in the rectangles list is removed andequiaat  wijth other rectangles that already packed in theeat
the bottom left of the current bin. The Currentmmnd bin. Hence’ this will reduce the processing t|mgu@ 1
the current gap are updated as follow. The cupentt  shows the LGFi by packing the set P using two bins.
is the lowest and leftmost point in the current. Bihe
current gap is the shortest edge between the rémain Heurigic placement routine for oriented case: We
gap height and gap width at the current point. §ap  propose a new heuristic called, LGFiwhich is a
width is the difference between the x-coordinaté #/e  modified version of LGFi to solve the oriented case
right edge of the bin or the left edge of a tattaegle  2pBPP. Unlike the non-oriented case, the small
while the gap height is the difference between ythe rectangles have fixed orientation. LGFalso consists
coordinate and the height of the bin. The curreptarea  of two stages: preprocessing stage and packing.stag
which is the area with the dimension of the gapthwid
and gap height at the current point is determined. Preprocessing stage: The rectangles are sorted in non-
If the current gap is less than the current valtie increasing order of area (breaking ties by non-
mingth;}, then the relevant space is regarded as thelecreasing order of the differences between thehwid
wastage. Then, the pointer is raised to the nexesd and the height). For instance, set Q:
and leftmost point where the corresponding curgapt
is at least as big as the value of ffip. The rectangles {(7, 5), (8, 2), (6, 4), (3, 5), (4, 4), (10, 32,(4), (1, 2),
list is examined again. The rectangle with its tvidr (9, 1), (6, 5)}
height that can fill the gap completely is givere th
priority to be chosen to be packed at the currettp will become:
336
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{(7.5), (6,5), (10, 3), (6, 4), (4, 4), (8, 28,6), (9, 1),  [S2e_ ——
Item No. 1 2 3 4 5 6 7 8 el 10

(2, 4), (1, 2)} Width, w; Tl sle 3] a]wo]2]1]9]s
cight. by sl 2]alsa|3a]2]1]5

after sorting. The preprocessing stage required Bobd ‘

O(nlogn) time. Saprocesing

Packing stage: The smallest dimension among the |~ S B B e L

available rectangles in the list min ,, {w;,h} (where Heigh{,h': S s3[a (4251 ]a]2>

j = number of the remaining rectangles in the negies W= (0.10) Y wesicse

list) is stored. The value of m{w;,h} is updated after = v

the corresponding rectangle is packed. . "

At first, an empty bin is initialized as the curte 5

bin, the current point is at the bottom-left corer O, < ?

y = 0) and the current gap is the shortest edgedsst 1 7

the height of the bin, H and the width of the bil, :

The first rectangle in the rectangles list is reewand Bin 1 Bin 2

placed at the bottom left of the current bin. . .
The pointer and the gap are updated as follow!:'g' 2 cl)rr?(i)r:g;/degasléowest Gap Fill (LG&) for

The current point is the lowest and leftmost paift

the current bin. The gap width is the differenceThen, the LGFi is compared with some well known
between the x-coordinate and the right edge obthe heuristic placement routines, namely BLF, LGF, Fd a
or the left edge of a tall rectangle while the i¢igf TP using the lower bounds proposedbyhe LGFi is
gap is the difference between the y-coordinatetaed also compared with BLF and LGF where both routines
height of the bin. The current gap is the shorégile  required O(f) time using lower bound proposed by
between the remaining gap height and gap width. Th8oschetti and MingozZl. In the oriented case, LGiriis
area of the current gap is also determined. Néut, t compared with AD and FC. All placement routines are
rectangles list is examined again. If the curreap @6 coded in ANSI-C using Microsoft Visual C++ version
less than the current value of nfim;,h}, then the 6.0 as the compiler. In this study we consider ten
relevant space is regarded as the wastage. Theéepoindifferent classes of problems instances proposeithen

is raised to the next lowest and leftmost point sehe literature. The first six classes (I-VI) are proposy".

the corresponding current gap is at least as bip@s In each class all the items are generated in thee sa
value of min{w;,h}. If the current gap is the gap interval and are classified as follows:

width, then the rectangle with its width that cdhthe

gap completely is given priority to be chosen to beC!ass I wand huniformly random in [1, 10],
packed at the current point. If the current gaphis - W=H=10 .
gap height, then the rectangle with its height trea  Cass II: myfr;%rpumformly random in [1, 10], W =
fill the current gap completely is given the prigri B . .

If there is no any rectangle that can fill the gapC'ass Il wand huniformly randomin [1, 35], W =
completely, the first rectangle in the list whith area is H =40 . .
less than or equal to the area of the current gdpcan Class IV: vyand huniformly random in [1, 35], W =
fill the gap without overlapping with other rectéegthat H =100 . .
have been packed is selected to be placed at thentu Class Vi wand  uniformly random in [1, 100], W
point. When the current bin is full or the pointiers been =H =100 . .
raised to the top of the current bin, the bin msetl. A  C1ass VI: _vy:rldgrggnlformly random in [1, 100], W

new empty bin is initialized as the current bin ahd

process is .continues until all the rgctgngles ip th The other four classes (VII-X) are introduced by
rectangles list are packed. Only one bin is opeated  \artello and Vigs! where a more realistic situation is

time. This packing stage required §(time. Figure 2 ¢onsidered. The items are classified into four $ype
shows the LGRgjr by packing the set Q using two bins.

Computational experiments: The first set of Typel: w uniformly random in EW,W} h
experiment compares the different preordering
sequences of the rectangles in the preprocessagg st uniformly random in[l,l H]
of LGFi by using the lower bounds proposedt 2
337



J. Math. & Stat., 5 (4): 334-341, 2009

Type 2: w uniformly random in {1,%W] h RESULTSAND DISCUSSION

fp T Table 3 and 4 show the computational results of

uniformly random in| =H,H |. LGFi with different preordering sequences of the
3 rectangles in the preprocessing stage by usingpter

Type 3: w uniformly random in FW'W] h bounds_propo_s]ed by DeI_I’Amicet al.! and Bpschetti
2 and MingozZ? respectively. Table 5 gives the

) I 7 comparison of five different heuristic placement
uniformly random in SHH routines namely BLF, LGF, FC, TP and LGFi using the
- il 1 lower bound proposed by Dell’Amicet al.®! while
Type 4: w uniformly random in {1,5 W} , h Table 6 shows the comparison of LGFi with other two

) heuristic placement routines namely BLF and LGF
l}H}_ where both routines required GYrtime by using the
|72 lower bound proposed by Boschetti and MingBkzi
Table 7 gives the comparison between the three
The bin size is W = H = 100 for all classes, whiledifferent heuristic placement routines for orientae
the items are as follow: of 2DBPP namely FC, AD and LG§t For each type
of sorting in Table 3 and 4 as well as the différen
Class VII:  Type 1 with probability 70%, Type 2,48, placement routines in Table 5-7, the entries refiwt

uniformly random in

with probability 10% each. average ratio, computed over ten problem instances.
Class VIII: Type 2 with probability 70%, Type 1,8, The final line for each class gives the averageraive

with probability 10% each. values over that class. The final line in all tabtgves
Class IX:  Type 3 with probability 70%, Type 1, 2, 4 the overall average value over all classes. We @to n

with probability 10% each. give the execution time because it is negligiblevér
Class X:  Type 4 with probability 70%, Type 1, 2, 3 exceed 0.1 CPU sec).

with probability 10% each. From the overall average ratio of all classes in

Table 3 and 4, we found that LGFi with DH(DW)

For each class, we consider five values of n4pg, Preordering sequence gives the best solution gualit
60, 80 and 100, where n is the number of rectariglts ~ Therefore, in the preprocessing stage of LGFi, the
need to be packed into the bins. For each combimati rectangles are initially sorted in DH(DW). The
of class and value of n, ten problem instances ar€omputational results in Table 5 indicate thatltii
generated. To investigate the best sorting proeethat ~ Produced a slightly better packing quality compated
gave LGFi better packing quality, different preaidg ~ LGF- However, neither of the placgment routines for
sequences of the rectangles are tested in theGF, LGFi and TP can be classified as the clear
preprocessing stage which is listed in Table 2. winner in this experiment as they produced mixed

The performance of the different preorderingdegrees of success in each class. It is_worth
sequences of the rectangles and the various Heuristnentioning that TP has a time complexity of &(n

placement routines are compared on the basis of thihile both LGF and LGFi has a time complexity of
average Ratio defined by: only O(rf). This shows that the LGFi is a more

competitive heuristic placement routine.

Since the results in Table 5 gives the LGFi a more
(1)  competitive heuristic, so the purpose of the
computational experiment in Table 6 is only to

investigate the improvement in term of ratio foe th
where, UB and LB represent the heuristic solution and heuristic routines which required the same time
the lower bound of the problem instance i respebtiv.  complexity. Therefore, the comparisons are onlyedon
on BLF, LGF and LGFi. The computational results in

Average Ratio= 1 .m%
10< LB,

Table 2: Preordering sequences of the rectangles Table 6 show that BLF, LGF and LGFi give the
Type of preordering sequences of the rectangles atidat improvement in terms of the ratio by using lower
Decreasing area (breaking ties by decreasing Height DA (DH) bound proposed by Boscetti and Ming(ézml three

Decreasing area (breaking ties by decreasing width) DA (DW) L .
Decreasing width (breaking ties by decreasing ligh DW (DH) _heu”St'C plac_ement routines show a 1.2% of
Decreasing height (breaking ties by decreasinghyidt DH (DW) improvement if compared with the ratio using the

Without preordering Random  |ower bound proposed by Dell’Amicei al.”®!.
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Table 3: Comparison of different preordering seagasnof the  Table 4: Comparison of different preordering seqgasn of the

rectangles for LGFi using lower bound proposed by rectangles for LGFi using lower bound proposed by

DA(DH) DA(DW) DW(DH) DH(DW) RANDOM DA(DH) DA(DW) DW(DH) DH(DW) RANDOM
Class| Class|
20 1.030 1.030 1.050 1.040 1.080 20 1.000 1.000 1.020 1.010 1.050
40 1.050 1.050 1.060 1.050 1.080 40 1.030 1.030 1.040 1.030 1.060
60 1.060 1.060 1.060 1.060 1.110 60 1.020 1.020 1.020 1.020 1.070
80 1.060 1.060 1.060 1.060 1.120 80 1.010 1.010 1.010 1.010 1.060
100 1.030 1.030 1.030 1.030 1.070 100 1.020 1.020 1.020 1.020 1.060
Average 1.045 1.045 1.052 1.049 1.092 Average 1.014 1.014 1.021 1.018 1.060
Classl| Class||
20 1.000 1.000 1.000 1.000 1.000 20 1.000 1.000 1.000 1.000 1.000
40 1.100 1.100 1.100 1.000 1.100 40 1.100 1.100 1.100 1.000 1.100
60 1.100 1.100 1.050 1.050 1.150 60 1.100 1.100 1.050 1.050 1.150
80 1.000 1.000 1.000 1.000 1.070 80 1.000 1.000 1.000 1.000 1.070
100 1.000 1.000 1.000 1.030 1.060 100 1.000 1.000 1.000 1.030 1.060
Average 1.040 1.040 1.030 1.017 1.075 Average 1.040 1.040 1.030 1.017 1.070
ClassllI Classll|
20 1.110 1.110 1.180 1.130 1.200 20 1.090 1.090 1.170 1.110 1.190
40 1.120 1.120 1.150 1.120 1.220 40 1.080 1.080 1.110 1.080 1.180
60 1.100 1.100 1.110 1.110 1.230 60 1.050 1.050 1.060 1.060 1.170
80 1.090 1.090 1.120 1.100 1.220 80 1.050 1.050 1.070 1.060 1.170
100 1.070 1.080 1.090 1.090 1.190 100 1.050 1.060 1.070 1.070 1.160
Average 1.097 1.098 1.130 1.107 1.211 Average 1.064 1.065 1.095 1.073 1.174
Class 1V Class |V
20 1.000 1.000 1.000 1.000 1.100 20 1.000 1.000 1.000 1.000 1.100
40 1.000 1.000 1.100 1.000 1.100 40 1.000 1.000 1.100 1.000 1.100
60 1.100 1.100 1.100 1.100 1.250 60 1.100 1.100 1.100 1.100 1.250
80 1.070 1.070 1.100 1.030 1.100 80 1.070 1.070 1.100 1.030 1.100
100 1.030 1.030 1.030 1.030 1.100 100 1.030 1.030 1.030 1.030 1.100
Average 1.040 1.040 1.067 1.033 1.130 Average 1.040 1.040 1.067 1.033 1.130
ClassV ClassV
20 1.070 1.070 1.110 1.070 1.200 20 1.030 1.030 1.070 1.030 1.150
40 1.100 1.100 1.170 1.140 1.200 40 1.050 1.050 1.120 1.090 1.140
60 1.090 1.090 1.140 1.110 1.200 60 1.060 1.060 1.110 1.080 1.170
80 1.090 1.090 1.150 1.100 1.180 80 1.040 1.040 1.100 1.050 1.130
100 1.090 1.090 1.120 1.090 1.160 100 1.060 1.060 1.090 1.060 1.130
Average 1.087 1.087 1.136 1.100 1.186 Average 1.050 1.050 1.098 1.062 1.146
Class VI Class VI
20 1.000 1.000 1.000 1.000 1.000 20 1.000 1.000 1.000 1.000 1.000
40 1.400 1.400 1.400 1.300 1.400 40 1.400 1.400 1.400 1.300 1.400
60 1.050 1.050 1.050 1.000 1.150 60 1.050 1.050 1.050 1.000 1.150
80 1.000 1.000 1.000 1.000 1.000 80 1.000 1.000 1.000 1.000 1.000
100 1.070 1.070 1.100 1.100 1.170 100 1.070 1.070 1.100 1.100 1.170
Average 1.103 1.103 1.110 1.080 1.143 Average 1.103 1.103 1.110 1.080 1.143
ClassVII Class VII
20 1.170 1.150 1.190 1.170 1.220 20 1.170 1.150 1.190 1.170 1.220
40 1.150 1.150 1.160 1.140 1.230 40 1.150 1.150 1.160 1.140 1.230
60 1.120 1.120 1.120 1.130 1.160 60 1.120 1.120 1.120 1.130 1.160
80 1.120 1.110 1.150 1.130 1.160 80 1.110 1.110 1.150 1.130 1.160
100 1.120 1.120 1.110 1.120 1.150 100 1.110 1.110 1.110 1.110 1.140
Average 1.135 1.129 1.146 1.138 1.182 Average 1.133 1.127 1.145 1.136 1.180
ClassVIII Class VIII
20 1.150 1.150 1.190 1.170 1.270 20 1.150 1.150 1.190 1.170 1.270
40 1.180 1.180 1.160 1.170 1.240 40 1.180 1.180 1.160 1.170 1.240
60 1.110 1.110 1.120 1.120 1.140 60 1.110 1.110 1.120 1.120 1.140
80 1.120 1.120 1.140 1.130 1.160 80 1.110 1.110 1.130 1.120 1.150
100 1.100 1.100 1.110 1.100 1.150 100 1.100 1.100 1.100 1.100 1.150
Average 1.131 1.132 1.143 1.137 1.193 Average 1.128 1.129 1.140 1.134 1.190
Class|X Class X
20 1.010 1.010 1.020 1.000 1.010 20 1.010 1.010 1.020 1.000 1.010
40 1.020 1.020 1.020 1.010 1.020 40 1.000 1.000 1.010 1.000 1.010
60 1.010 1.010 1.010 1.010 1.010 60 1.000 1.000 1.000 1.000 1.000
80 1.010 1.010 1.010 1.010 1.010 80 1.000 1.000 1.000 1.000 1.000
100 1.010 1.010 1.010 1.010 1.010 100 1.000 1.000 1.000 1.000 1.000
Average 1.009 1.009 1.013 1.007 1.012 Average 1.002 1.002 1.007 1.000 1.005
Class X Class X
20 1.180 1.180 1.150 1.130 1.270 20 1.150 1.150 1.120 1.100 1.250
40 1.100 1.100 1.120 1.090 1.230 40 1.100 1.100 1.120 1.090 1.230
60 1.100 1.100 1.120 1.120 1.240 60 1.100 1.100 1.120 1.120 1.240
80 1.070 1.070 1.080 1.080 1.180 80 1.070 1.070 1.080 1.080 1.180
100 1.050 1.050 1.078 1.070 1.160 100 1.050 1.050 1.070 1.070 1.160

Average 1.099 1.099 1.105 1.098 1.216 Average 1.094 1.094 1.100 1.093 1.211

Average 1.079 1.078 1.093 1.077 1.144 Average 1.067 1.067 1.081 1.065 1.131
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Table 5: Comparison of BLF, LGF, FC, TP and LGEltmes using  Table 6: Comparison of BLF, LGF and LGFi routinesng lower

lower bound proposed by Dell Amicet al.™ bound proposed by Boschetti and Ming&%zi
BLF LGF FC TP LGFi LGFi LGF BLF LGFi LGF BLF
Class| Class| Class VI
20 1.090 1.030 1.060 1.050 1.040 20 1.010 1.000 1.060 20 1.000 1.000 1.000
40 1.120 1.040 1.080 1.060 1.050 40 1.030 1.020 1.090 40 1.300 1.400 1.400
60 1.130 1.050 1.090 1.050 1.060 60 1.020 1.010 1.090 60 1.000 1.050 1.100
?80 ﬁgg 1-838 i-ggg 1'838 1-838 80 1.010 1.010 1.090 80 1.000 1.000 1.000
: : : : : 100 1.020 1.030 1.110 100 1100 1.070 1.130
é‘lfaesr:ﬂe 1122 1.044 1.078 1.050 1.049 average 1.018 1.012 1.089 Average 1.080 1.103 1.127
Class|| Class VII
3,8 1-288 1-288 %-888 %-888 1-888 20 1000 1.000 1.000 20 1170 1190 1.220
60 1100 1050 1050 1000 1050 40 1.000 1.100 1.100 40 1.140 1.120 1.200
80 1070 1070 1030 1070 1000 60 1.050 1.050 1.100 60 1.130 1.100 1.200
100 1,060 1030 1030 1000 1030 &0 1.000 1.070 1.070 80 1.130 1.100 1.200
Average 1,065 1.050 1.042 1.034 1017 100 1.030 1.030 1.060 100 1110 1.080 1.190
Classll| Average 1.017 1.050 1.065 Average 1.136 1.117 1.200
20 1200  1.060 1180 1060  1.130 Classlill Classvill
20 1220 1130 1160 1110 1120 20 1110 1.040 1.190 20 1170  1.150 1.230
60 1.260 1.100 1.190 1.110 1.110 40 1.080 1.090 1.180 40 1.170 1.160 1.220
80 1.270 1.100 1.150 1.100 1.100 60 1.060 1.050 1210 60 1120 1.090 1.190
100 1.230 1.080 1.130 1.080 1.000 80 1.060 1.060 1.230 80 1120 1.090 1.180
Average 1.239 1.093 1.162 1.092 1.107 100 1.070 1.060 1.210 100 1.100 1.090 1.190
Class |V Average 1.073 1.059 1.202 Average 1.134 1.113 1.201
20 1.000 1.000 1.000 1.000 1.000 ClasslV Class|X
40 1.000 1.000 1.000 1.000 1.000 20 1.000 1.000 1.000 20 1.000 1.010 1.010
60 1.100 1.150 1.100 1.100 1.100 40 1.000 1.000 1.000 40 1.000 1.010 1.000
80 1.100 1.100 1.100 1.070 1.030 60 1100 1.150 1.100 60 1.000 1.000 1.000
100 1.130 1.070 1.070 1.030 1.030 80 1.030 1.100 1.100 80 1.000 1.000 1.000
Average 1.065 1.063 1.054 1.040 1.033 100 1.030 1.070 1.130 100 1.000 1.000 1.000
ClassV Average 1.033 1.063 1.065 Average 1.000 1.004 1.002
20 1.150 1.090 1.080 1.060 1.070 ClassV Class X
40 1.180 1.100 1.100 1.110 1.140 20 1.030 1.050 1.110 20 1100 1.180 1.130
60 1.160 1.090 1.110 1.080 1110 40 1.090 1.050 1.130 40 1.090 1.070 1.130
80 1170 1.090 1.110 1.080 1.100 g 1.080 1.070 1.130 60 1120 1.080 1.140
100 1.160 1.080 1.100 1.080 1.090 gg 1.050 1.050 1.120 80 1.080 1.060 1.140
Average 1.165 1.092 1.100 1.082 1.100 300 1.060 1.060 1.140 100 1.070  1.070 1.110
gc')aSSV' 1000 1000 1000 1000 Loop Average 1062 1055 1125 Average 1.003 1093 1130
40 1.400 1.400 1.400 1.400 1.300 Average 1.065 1.067 1.121
60 1.100 1.050 1.050 1.050 1.000 : o i
80 1.000 1.000 1.000 1.000 1.000 Table 7: Comparison of FC, AD and LDRFiroutines for oriented
100 1.130 1.070 1.070 1.070 1.100 case of 2DBPP
Average 1.127 1.103 1.104 1.104 1.080 FC AD  LDFior FC AD  LDFior
ClassVII Class| Class VI
20 1.220 1.190 1.190 1.130 1170 29 1120 1120 1.110 20 1.000 1.000 1.000
40 1.200 1.120 1170 1.100 1.140 49 1.080 1.090 1.060 40 1.400 1.400 1.400
60 1.200 1.100 1180  1.120 1.130 6o 1.070 1070 1.050 60 1100 1.050 1.100
80 1200 1100 1170 1110 1130 g 1.060 1.060 1.040 80 1.000 1.000 1.000
100 1190 1090 1170 1110 1120 ;49 1060 1050 1030 100 11  1.070 1.100
é‘l’aeg‘\%f” 1.202 1119 1176 1114 1138 Average 1078 1.078 1.059 Average 1.12  1.104 1.120
Class!l ClassVII
a0 1250 BP0 100 1160 LIT0 20 1100 1.000 1.000 20 108 1100 1.100
60 1150 1090 1180 1110 1120 40 1.100 1.100 1.100 40 1.09  1.100 1.070
80 1190 1100 1160 1110 1130 60 1.100 1.100 1.100 60 1.07  1.070 1.040
Average 1204 1116 1172 1132 1137 100 1.030 1.030 1.030 100 104 1040 1.030
Class X Average 1.080 1.060 1.053 Average 1.068 1.074 1.059
20 1.010 1.010 1.000 1.010 1.000 Classlli Classvill
40 1.020 1.020 1.010 1.020 1.010 20 1180 1.200 1.230 20 1.160 1.130 1.120
60 1.010 1.010 1.010 1.010 1.010 40 1.140 1.150 1.170 40 1.070 1.080 1.080
80 1.010 1.010 1.010 1.010 1.010 60 1.110 1.130 1.100 60 1.060 1.060 1.060
100 1.010 1.010 1.010 1.010 1.010 80 1.100 1.100 1.070 80 1.060 1.060 1.040
Average 1.011 1.011 1.008 1.012 1.007 100 1.090 1.090 1.090 100 1.060 1.060 1.050
Class X Average 1.124 1.134 1.131 Average 1.082 1.078 1.068
20 1.150 1.200 1.150 1.200 1.130 ClasslV ClassIX
40 1.130 1.070 1.090 1.080 1.090 20 1.000 1.000 1.000 20 1.010 1.010 1.010
60 1.140 1.080 1.090 1.090 1.120 40 1.000 1.000 1.000 40 1.020 1.020 1.010
80 1.140 1.060 1.060 1.060 1.080 60 1.100 1.150 1.100 60 1.020 1.020 1.010
100 1.110 1.070 1.070 1.060 1.070 80 1100 1.100 1.100 80 1.020 1.020 1.010
Average 1.135 1.098 1.092 1.098 1.098 100 1.100 1.030 1.070 100 1.010 1.010 1.010
Average 1.133 1.079 1.099 1.076 1.077 Average 1.060 1.056 1.053 Average 1.016 1.016 1.012

340



J. Math. & Stat., 5 (4): 334-341, 2009

Table 7: Continued 3.
ClassV Class X

20 1.140 1.140 1.110 20 1.140 1.100 1.130

40 1110 1.110 1.100 40 1.090 1.090 1.090

60 1100 1.100 1.090 60 1.080 1.110 1.110

80 1.090 1.090 1.080 80 1.110 1.100 1.090

100 1.090 1.090 1.090 100 1.090 1.100 1.080
Average 1.106 1.106 1.092 Average 1.102 1.100 1.100 4.

Average 1.084 1.081 1.075

In Table 7, the overall average ratio of all césss
indicates that LGRy: gives better packing quality if
compared to AD and FC. LG4 is also better than
AD and FC in terms of time complexity where both of 5.
AD and FC required Oftime while LGFig required
only O(rf) time.

CONCLUSION 6

In this study, we developed heuristics placement
routines called the Improved Lowest Gap Fill, LGFi
and LGFbg for solving both non-oriented and oriented
cases of two-dimensional bin packing problems?.
respectively. Both routines are capable of fillitige
available gaps in the partial layout by dynamically
selecting the best rectangle for placement during.
packing stage. The routines require only ¥(ime.
Computational results shown that our proposed
routines are capable of producing high quality
solution.
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