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Abstract. Problem statement: Cutting and packing (C and P) problems are optimization problems 
that are concerned in finding a good arrangement of multiple small items into one or more larger 
objects. Bin packing problem is a type of C AND P problems. Bin packing problem is an important 
industrial problem where the general objective is to reduce the production costs by maximizing the 
utilization of the larger objects and minimizing the material used. Approach: In this study, we 
considered both oriented and non-oriented cases of Two-Dimensional Bin Packing Problem (2DBPP) 
where a given set of small rectangles (items), was packed without overlaps into a minimum number of 
identical large rectangles (bins). We proposed heuristic placement routines called the Improved Lowest 
Gap Fill, LGFi and LGFiOF for solving non-oriented and oriented cases of 2DBPP respectively. 
Extensive computational experiments using benchmark data sets collected from the literature were 
conducted to assess the effectiveness of the proposed routines. Results: The computational results 
were compared with some well known heuristic placement routines. The results showed that the LGFi 
and LGFiOF are competitive when compared with other heuristic placement routines. Conclusion: Both 
LGFi and LGFiOF produced better packing quality compared to other heuristic placement routines. 
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INTRODUCTION 

 
 Generally, Cutting and Packing (C and P) 
Problems can be summarized as follows[10]: 
 
 “Given two sets of elements, namely, a set of 

large objects (input, supply) and a set of small 
items (output, demand) which are defined in 
one, two, or an even larger number of geometric 
dimensions. Then some or all the small items 
will be grouped into one or more subsets and 
assign each of them into one of the larger 
objects with the conditions all small items of the 
subset lie entirely within the large object and 
the small items are not overlapping” 

 
 The C and P problems contribute to many areas of 
application in business and industry such as in metal, 
wood, glass and textile industries, newspaper paging 
and cargo loading. The objective of the allocation 
process is to maximize the utilization of the larger 
objects or maximizing the number of items to be 
packed in the larger objects. 

 In this study, we consider oriented and non-oriented 
cases of two-dimensional rectangular single bin size bin 
packing problems which known as 2DRSBSBPP in 
Wäscher et al.[10]. According to Lodi et al.[8], the problem 
can be defined as follows: 
 

“Given a set of n rectangular items j∈J = {1, 
2,…, n}, each item j is defined by a height hj 
and a width wj and an unlimited number of 
rectangular bins, each having a height H and 
width W. The objective is to allocate without 
overlaps, all the rectangles into the minimum 
number of bins” 

 
 For the oriented case, the rectangles have fixed 
orientation while the rectangles can be rotated at 90° in 
non-oriented case of 2DBPP. This problem is classified 
as a class of NP-hard problem by[6]. 
 The non-oriented case of 2DBPP can be found in 
metal industry, where the pieces of the metal as the bins 
(larger objects) while the different dimension of layouts 
that needed to be cut out from the pieces of metal are 
the items. The aim of this problem is to find a good 
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arrangement of the layout which give the highest 
utilization of the metal. The oriented case of 2DBPP 
can contributes in newspaper paging process where the 
pieces of pages in newspaper are the bins and the news 
or advertisements (with fixed orientation) are the items. 
The purpose is to arrange the maximum numbers of 
news into minimum number of pages. 
 Most of the classical placement routines for 2DBPP 
work on levels heuristics where the packing is obtained 
by placing the rectangles in row from left to right which 
form levels. The first level is at the bottom edge of the 
bin while the subsequence levels in the bin are the 
horizontal line denoted by the top edge of the tallest 
rectangle packed on the level below. Coffman et al.[4] 

suggested three classical strategies for level packing 
which are summarized in Table 1 (note j = current 
rectangle). 
 In this study, we consider Bottom-Left Fill 
(BLF)[3], Lowest Gap Fill (LGF)[7], Touching Perimeter 
(TP)[8], Floor Ceiling (FC)[8] and Alternate Direction 
(AD) [8], which are some well known heuristic 
placement routines for solving the problem. 
 The BLF routine places the rectangles by searching 
through a list of location points in bottom left ordering 
sequence that indicates potential positions where the 
rectangle may be placed. Meanwhile, TP will first 
initialize L bins (where L is the lower bound) before 
packing the rectangle at the bin and position which give 
the highest score (percentage of the rectangle perimeter 
which touches the bin and the others rectangles that 
have been packed). The FC is a two-phase placement 
routine. In the first phase, the current rectangle will be 
packed on a floor, according to Best-Fit strategy or on a 
ceiling if the rectangle cannot be packed on the floor 
below. If neither floor nor ceiling at that level can fit 
the rectangle, a new level is initialized. In the second 
phase, the levels are packed into finite bins either 
through the Best-Fit Decreasing (BFD) algorithm or by 
using an exact algorithm for the one-dimensional bin 
packing problem. BFD algorithm is referred to the 
rectangles that are initially sorted in decreasing width, 
height  or area following by the BF routine. For the AD, 
 
Table 1: Classical strategies for levels packing 
Packing strategy Description 
Next-Fit (NF) Rectangle j is packed left justified on a level if it 
 fits. Otherwise, the level is closed and a new level 
 is created to pack the rectangle left justified. 
First-Fit (FF) Rectangle j is packed left justified on the first  
 level where it fits. If there are no level can pack j, 
 a new level is initialized as in NF. 
Best-Fit (BF) Rectangle j is packed left justified on that level, 
 among those where it fits, for which the resulting 
 packing has the minimum remaining horizontal 
 space. If no level can accommodate j, a new level 
 is initialized as in NF. 

the routine is started by sorting the items according to 
non-increasing heights and L (lower bound) bins are 
initialized by packing on their bottoms a subset of the 
rectangles, following best-fit decreasing policy. The 
remaining rectangles are packed into the bands 
according to the current direction associated with the 
bin. The LGF routine consists of two stages: 
Preprocessing and packing stage. In the preprocessing 
stage, the rectangles are initially arranged following a 
horizontal orientation and sorted in non-increasing 
order of their width (breaking ties by non-increasing 
order of height). LGFi uses a pointer (x, y) to indicate 
the position of the lowest available gap in the bin 
during packing stage. Best-fit strategy is used to 
examine the rectangles list and dynamically select a 
best fitting rectangle to place at the lowest available gap 
in the bin.  
 The objective of this study is to develop an 
improved version of the Lowest Gap Fill (LGF) routine 
proposed by Lee[7] for 2DBPP. Then, the developed 
heuristic routine will be modified to design a new 
heuristic placement routine for solving the oriented 
case.  
  

MATERIALS AND METHODS 
 
Heuristic placement routine for non-oriented case: 
The heuristic placement routine, LGFi is a modified 
version of LGF. Unlike LGF, LGFi chooses the shortest 
edge between the remaining gap height and gap width 
as the current gap. This allows the routine to identity 
the shortest available gap so that it is easier to examine 
the rectangles list in term of finding a rectangle with its 
width or height that can fit the current gap completely. 
If there is no rectangles can fit the current gap 
completely, the first rectangle in the list that can fit the 
gap without overlaps is selected. 
 The preordering process is an important procedure 
in giving the advantage in time for searching the best-fit 
rectangle. The appropriate sorting of the rectangles will 
allow the rectangle with a larger dimension to be 
packed first to reduce the wastage in the bin. With this 
in mind, the LGFi will apply the preordering procedure 
in the preprocessing stage.  
 Similar to LGF, LGFi uses the pointer (x, y) to 
indicate the lowest and leftmost point in the current bin 
where a rectangle can be packed without overlaps with 
other rectangles that have been packed in the current 
bin. LGFi consists of two stages: preprocessing stage 
and packing stage.  

 
Preprocessing stage: The rectangles are first rotated so 
that the width of the rectangle is always greater than its 
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height. For example, by denoting each rectangle by a 
(width, height) pair, the rectangles list of set P:  
 

{(5, 8), (4, 9), (7, 6), (5, 4), (2, 3), (6, 3)} 
 
will become: 
 

{(8, 5), (9, 4), (7, 6), (5, 4), (3, 2), (6, 3)} 
 
after rotating. Initial investigation of different 
preordering sequences of the rectangles as in Table 2 
and the computational results in Table 3 and 4 show 
that initially sorted the rectangles in decreasing order of 
height (breaking ties by decreasing order of width) 
which denoted as DH(DW) gives better packing 
quality. Hence, the rectangles in set P: 
 

{(8, 5), (9, 4), (7, 6), (5, 4), (3, 2), (6, 3)} 
 
will become 
 

{(7, 6), (8, 5), (9, 4), (5, 4), (6, 3), (3, 2)} 
 
after sorting in DH(DW) preordering sequence. This 
preprocessing stage required O(nlogn) time. 
 
Packing stage: The smallest dimension of height among 
the available rectangles in the list, mini = 1,2,…,j{w j,hj} 
(where j = number of the remaining rectangles in the 
rectangles list) is stored. The value of minj{h j} will be 
updated if the rectangle with the smallest dimension of 
height is packed. 
 At first, an empty bin is initialized as the current 
bin, the current point is at the bottom-left corner (x = 0, 
y = 0) and the current gap is the shortest edge between 
the height H and the width W of the bin. The first 
rectangle in the rectangles list is removed and placed at 
the bottom left of the current bin. The current point and 
the current gap are updated as follow. The current point 
is the lowest and leftmost point in the current bin. The 
current gap is the shortest edge between the remaining 
gap height and gap width at the current point. The gap 
width is the difference between the x-coordinate and the 
right edge of the bin or the left edge of a tall rectangle 
while the gap height is the difference between the y-
coordinate and the height of the bin. The current gap area 
which is the area with the dimension of the gap width 
and gap height at the current point is determined. 
 If the current gap is less than the current value of 
minj{h j}, then the relevant space is regarded as the 
wastage. Then, the pointer is raised to the next lowest 
and leftmost point where the corresponding current gap 
is at least as big as the value of minj{h j}. The rectangles 
list is examined again. The rectangle with its width or 
height that can fill the gap completely is given the 
priority to be chosen to be packed at the current point. 

 
 
Fig. 1: Improved Lowest Gap Fill (LGFi) for non-

oriented case 
 
 If there is no any rectangle either its width or height 
can fill the gap completely, then the first rectangle in the 
list with its area is less than or equal to the current gap 
area and can fill the gap without overlapping with other 
rectangles that have been packed is selected. The selected 
rectangle is placed at the current point by its shortest 
edge packed at the current gap. The selected rectangle is 
removed from the rectangles list and the current point 
and gap are updated. When the current bin is full or the 
pointer has been raised to the top of the current bin, the 
bin is closed. A new empty bin is initialized as the 
current bin and the process is continues until all the 
rectangles in the rectangles list are packed. This packing 
stage required O(n2) time. 
 The time consuming overlapping test is not needed 
in LGFi since the selected rectangle will always be 
packed at the updated current point and current gap. 
Since the current gap will give us both the dimensions of 
the available gap, the selected rectangle will not overlap 
with other rectangles that already packed in the current 
bin. Hence, this will reduce the processing time. Figure 1 
shows the LGFi by packing the set P using two bins. 
 
Heuristic placement routine for oriented case: We 
propose a new heuristic called, LGFiOF which is a 
modified version of LGFi to solve the oriented case of 
2DBPP. Unlike the non-oriented case, the small 
rectangles have fixed orientation. LGFiOF also consists 
of two stages: preprocessing stage and packing stage. 
 
Preprocessing stage: The rectangles are sorted in non-
increasing order of area (breaking ties by non-
decreasing order of the differences between the width 
and the height). For instance, set Q: 
 
{(7, 5), (8, 2), (6, 4), (3, 5), (4, 4), (10, 3), (2, 4), (1, 2), 
(9, 1), (6, 5)} 
 
will become: 
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{(7, 5), (6, 5), (10, 3), (6, 4), (4, 4), (8, 2), (3, 5), (9, 1), 
(2, 4), (1, 2)} 
 
after sorting. The preprocessing stage required 
O(nlogn) time. 
 
Packing stage: The smallest dimension among the 
available rectangles in the list mini = 1,2,…j{w j,hj} (where 
j = number of the remaining rectangles in the rectangles 
list) is stored. The value of minj{w j,hj} is updated after 
the corresponding rectangle is packed. 
 At first, an empty bin is initialized as the current 
bin, the current point is at the bottom-left corner (x = 0, 
y = 0) and the current gap is the shortest edge between 
the height of the bin, H and the width of the bin, W. 
The first rectangle in the rectangles list is removed and 
placed at the bottom left of the current bin.  
 The pointer and the gap are updated as follow. 
The current point is the lowest and leftmost point of 
the current bin. The gap width is the difference 
between the x-coordinate and the right edge of the bin 
or the left edge of a tall rectangle while the height of 
gap is the difference between the y-coordinate and the 
height of the bin. The current gap is the shortest edge 
between the remaining gap height and gap width. The 
area of the current gap is also determined. Next, the 
rectangles list is examined again. If the current gap is 
less than the current value of minj{w j,hj}, then the 
relevant space is regarded as the wastage. The pointer 
is raised to the next lowest and leftmost point where 
the corresponding current gap is at least as big as the 
value of minj{w j,hj}. If the current gap is the gap 
width, then the rectangle with its width that can fill the 
gap completely is given priority to be chosen to be 
packed at the current point. If the current gap is the 
gap height, then the rectangle with its height that can 
fill the current gap completely is given the priority. 
 If there is no any rectangle that can fill the gap 
completely, the first rectangle in the list which its area is 
less than or equal to the area of the current gap and can 
fill the gap without overlapping with other rectangles that 
have been packed is selected to be placed at the current 
point. When the current bin is full or the pointer has been 
raised to the top of the current bin, the bin is closed. A 
new empty bin is initialized as the current bin and the 
process is continues until all the rectangles in the 
rectangles list are packed. Only one bin is opened at a 
time. This packing stage required O(n2) time. Figure 2 
shows the LGFiOF by packing the set Q using two bins. 
 
Computational experiments: The first set of 
experiment compares the different preordering 
sequences of the rectangles in the preprocessing stage 
of LGFi  by  using  the  lower  bounds  proposed  by[2,5]. 

 
 
Fig. 2: Improved Lowest Gap Fill (LGFiOF) for 

oriented case 
 
Then, the LGFi is compared with some well known 
heuristic placement routines, namely BLF, LGF, FC and 
TP using the lower bounds proposed by[5]. The LGFi is 
also compared with BLF and LGF where both routines 
required O(n2) time using lower bound proposed by 
Boschetti and Mingozzi[2]. In the oriented case, LGFiOF is 
compared with AD and FC. All placement routines are 
coded in ANSI-C using Microsoft Visual C++ version 
6.0 as the compiler. In this study we consider ten 
different classes of problems instances proposed in the 
literature. The first six classes (I-VI) are proposed by[1]. 
In each class all the items are generated in the same 
interval and are classified as follows:  
 
Class I: wj and hj uniformly random in [1, 10],  
 W = H = 10 
Class II: wj and hj uniformly random in [1, 10], W = 

H = 30 
Class III: wj and hj uniformly random in [1, 35], W = 

H = 40 
Class IV: wj and hj uniformly random in [1, 35], W = 

H = 100 
Class V: wj and hj uniformly random in [1, 100], W 

= H = 100 
Class VI: wj and hj uniformly random in [1, 100], W 

= H = 300 
 
 The other four classes (VII-X) are introduced by 
Martello and Vigo[9] where a more realistic situation is 
considered. The items are classified into four types: 
 

Type 1: wj uniformly random in 
2

W,W
3
 
 
 

, hj 

uniformly random in 
1

1, H
2

 
 
 

. 
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Type 2: wj uniformly random in 
1

1, W
2

 
 
 

, hj 

uniformly random in 
2

H,H
3
 
 
 

. 

Type 3: wj uniformly random in 
1

W,W
2
 
 
 

, hj 

uniformly random in 
1

H,H
2
 
 
 

. 

Type 4: wj uniformly random in 
1

1, W
2

 
 
 

, hj 

uniformly random in 
1

1, H
2

 
 
 

. 

 
 The bin size is W = H = 100 for all classes, while 
the items are as follow: 
 
Class VII: Type 1 with probability 70%, Type 2, 3, 4 

with probability 10% each. 
Class VIII: Type 2 with probability 70%, Type 1, 3, 4 

with probability 10% each. 
Class IX: Type 3 with probability 70%, Type 1, 2, 4 

with probability 10% each. 
Class X: Type 4 with probability 70%, Type 1, 2, 3 

with probability 10% each. 
 
 For each class, we consider five values of n: 20, 40, 
60, 80 and 100, where n is the number of rectangles that 
need to be packed into the bins. For each combination 
of class and value of n, ten problem instances are 
generated. To investigate the best sorting procedure that 
gave LGFi better packing quality, different preordering 
sequences of the rectangles are tested in the 
preprocessing stage which is listed in Table 2.  
 The performance of the different preordering 
sequences of the rectangles and the various heuristic 
placement routines are compared on the basis of the 
average Ratio defined by: 
 

10 i
i

i

1 UB
Average Ratio  

10 LB
= ∑  (1) 

 
where, UBi and LBi represent the heuristic solution and 
the lower bound of the problem instance i respectively. 
 
Table 2: Preordering sequences of the rectangles 
Type of preordering sequences of the rectangles Notation 
Decreasing area (breaking ties by decreasing height) DA (DH) 
Decreasing area (breaking ties by decreasing width) DA (DW) 
Decreasing width (breaking ties by decreasing height) DW (DH) 
Decreasing height (breaking ties by decreasing width) DH (DW) 
Without preordering Random 

RESULTS AND DISCUSSION 
 
 Table 3 and 4 show the computational results of 
LGFi with different preordering sequences of the 
rectangles in the preprocessing stage by using the lower 
bounds proposed by Dell’Amico et al.[5] and Boschetti 
and Mingozzi[2] respectively. Table 5 gives the 
comparison of five different heuristic placement 
routines namely BLF, LGF, FC, TP and LGFi using the 
lower bound proposed by Dell’Amico et al.[5] while 
Table 6 shows the comparison of LGFi with other two 
heuristic placement routines namely BLF and LGF 
where both routines required O(n2) time by using the 
lower bound proposed by Boschetti and Mingozzi[2]. 
Table 7 gives the comparison between the three 
different heuristic placement routines for oriented case 
of 2DBPP namely FC, AD and LGFiOF. For each type 
of sorting in Table 3 and 4 as well as the different 
placement routines in Table 5-7, the entries report the 
average ratio, computed over ten problem instances. 
The final line for each class gives the average overall 
values over that class. The final line in all tables gives 
the overall average value over all classes. We do not 
give the execution time because it is negligible (never 
exceed 0.1 CPU sec). 
 From the overall average ratio of all classes in 
Table 3 and 4, we found that LGFi with DH(DW) 
preordering sequence gives the best solution quality. 
Therefore, in the preprocessing stage of LGFi, the 
rectangles are initially sorted in DH(DW). The 
computational results in Table 5 indicate that the LGFi 
produced a slightly better packing quality compared to 
LGF. However, neither of the placement routines for 
LGF, LGFi and TP can be classified as the clear 
winner in this experiment as they produced mixed 
degrees of success in each class. It is worth 
mentioning that TP has a time complexity of O(n3), 
while both LGF and LGFi has a time complexity of 
only O(n2). This shows that the LGFi is a more 
competitive heuristic placement routine.  
 Since the results in Table 5 gives the LGFi a more 
competitive heuristic, so the purpose of the 
computational experiment in Table 6 is only to 
investigate the improvement in term of ratio for the 
heuristic routines which required the same time 
complexity. Therefore, the comparisons are only done 
on BLF, LGF and LGFi. The computational results in 
Table 6 show that BLF, LGF and LGFi give the 
improvement in terms of the ratio by using lower 
bound proposed by Boscetti and Mingozzi[2]. All three 
heuristic placement routines show a 1.2% of 
improvement if compared with the ratio using the 
lower bound proposed by Dell’Amico et al.[5].  
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Table 3: Comparison of different preordering sequences of the 
rectangles for LGFi using lower bound proposed by[5] 

 DA(DH) DA(DW) DW(DH) DH(DW) RANDOM 

Class I 
20 1.030 1.030 1.050 1.040 1.080 
40 1.050 1.050 1.060 1.050 1.080 
60 1.060 1.060 1.060 1.060 1.110 
80 1.060 1.060 1.060 1.060 1.120 
100 1.030 1.030 1.030 1.030 1.070 
Average 1.045 1.045 1.052 1.049 1.092 
Class II 
20 1.000 1.000 1.000 1.000 1.000 
40 1.100 1.100 1.100 1.000 1.100 
60 1.100 1.100 1.050 1.050 1.150 
80 1.000 1.000 1.000 1.000 1.070 
100 1.000 1.000 1.000 1.030 1.060 
Average 1.040 1.040 1.030 1.017 1.075 
Class III 
20 1.110 1.110 1.180 1.130 1.200 
40 1.120 1.120 1.150 1.120 1.220 
60 1.100 1.100 1.110 1.110 1.230 
80 1.090 1.090 1.120 1.100 1.220 
100 1.070 1.080 1.090 1.090 1.190 
Average 1.097 1.098 1.130 1.107 1.211 
Class IV 
20 1.000 1.000 1.000 1.000 1.100 
40 1.000 1.000 1.100 1.000 1.100 
60 1.100 1.100 1.100 1.100 1.250 
80 1.070 1.070 1.100 1.030 1.100 
100 1.030 1.030 1.030 1.030 1.100 
Average 1.040 1.040 1.067 1.033 1.130 
Class V 
20 1.070 1.070 1.110 1.070 1.200 
40 1.100 1.100 1.170 1.140 1.200 
60 1.090 1.090 1.140 1.110 1.200 
80 1.090 1.090 1.150 1.100 1.180 
100 1.090 1.090 1.120 1.090 1.160 
Average 1.087 1.087 1.136 1.100 1.186 
Class VI 
20 1.000 1.000 1.000 1.000 1.000 
40 1.400 1.400 1.400 1.300 1.400 
60 1.050 1.050 1.050 1.000 1.150 
80 1.000 1.000 1.000 1.000 1.000 
100 1.070 1.070 1.100 1.100 1.170 
Average 1.103 1.103 1.110 1.080 1.143 
Class VII 
20 1.170 1.150 1.190 1.170 1.220 
40 1.150 1.150 1.160 1.140 1.230 
60 1.120 1.120 1.120 1.130 1.160 
80 1.120 1.110 1.150 1.130 1.160 
100 1.120 1.120 1.110 1.120 1.150 
Average 1.135 1.129 1.146 1.138 1.182 
Class VIII 
20 1.150 1.150 1.190 1.170 1.270 
40 1.180 1.180 1.160 1.170 1.240 
60 1.110 1.110 1.120 1.120 1.140 
80 1.120 1.120 1.140 1.130 1.160 
100 1.100 1.100 1.110 1.100 1.150 
Average 1.131 1.132 1.143 1.137 1.193 
Class IX 
20 1.010 1.010 1.020 1.000 1.010 
40 1.020 1.020 1.020 1.010 1.020 
60 1.010 1.010 1.010 1.010 1.010 
80 1.010 1.010 1.010 1.010 1.010 
100 1.010 1.010 1.010 1.010 1.010 
Average 1.009 1.009 1.013 1.007 1.012 
Class X 
20 1.180 1.180 1.150 1.130 1.270 
40 1.100 1.100 1.120 1.090 1.230 
60 1.100 1.100 1.120 1.120 1.240 
80 1.070 1.070 1.080 1.080 1.180 
100 1.050 1.050 1.078 1.070 1.160 
Average 1.099 1.099 1.105 1.098 1.216 
Average 1.079 1.078 1.093 1.077 1.144 

Table 4: Comparison of different preordering sequences of the 
rectangles for LGFi using lower bound proposed by[2] 

 DA(DH) DA(DW) DW(DH) DH(DW) RANDOM 

Class I 
20 1.000 1.000 1.020 1.010 1.050 
40 1.030 1.030 1.040 1.030 1.060 
60 1.020 1.020 1.020 1.020 1.070 
80 1.010 1.010 1.010 1.010 1.060 
100 1.020 1.020 1.020 1.020 1.060 
Average 1.014 1.014 1.021 1.018 1.060 
Class II 
20 1.000 1.000 1.000 1.000 1.000 
40 1.100 1.100 1.100 1.000 1.100 
60 1.100 1.100 1.050 1.050 1.150 
80 1.000 1.000 1.000 1.000 1.070 
100 1.000 1.000 1.000 1.030 1.060 
Average 1.040 1.040 1.030 1.017 1.070 
Class III 
20 1.090 1.090 1.170 1.110 1.190 
40 1.080 1.080 1.110 1.080 1.180 
60 1.050 1.050 1.060 1.060 1.170 
80 1.050 1.050 1.070 1.060 1.170 
100 1.050 1.060 1.070 1.070 1.160 
Average 1.064 1.065 1.095 1.073 1.174 
Class IV 
20 1.000 1.000 1.000 1.000 1.100 
40 1.000 1.000 1.100 1.000 1.100 
60 1.100 1.100 1.100 1.100 1.250 
80 1.070 1.070 1.100 1.030 1.100 
100 1.030 1.030 1.030 1.030 1.100 
Average 1.040 1.040 1.067 1.033 1.130 
Class V 
20 1.030 1.030 1.070 1.030 1.150 
40 1.050 1.050 1.120 1.090 1.140 
60 1.060 1.060 1.110 1.080 1.170 
80 1.040 1.040 1.100 1.050 1.130 
100 1.060 1.060 1.090 1.060 1.130 
Average 1.050 1.050 1.098 1.062 1.146 
Class VI 
20 1.000 1.000 1.000 1.000 1.000 
40 1.400 1.400 1.400 1.300 1.400 
60 1.050 1.050 1.050 1.000 1.150 
80 1.000 1.000 1.000 1.000 1.000 
100 1.070 1.070 1.100 1.100 1.170 
Average 1.103 1.103 1.110 1.080 1.143 
Class VII 
20 1.170 1.150 1.190 1.170 1.220 
40 1.150 1.150 1.160 1.140 1.230 
60 1.120 1.120 1.120 1.130 1.160 
80 1.110 1.110 1.150 1.130 1.160 
100 1.110 1.110 1.110 1.110 1.140 
Average 1.133 1.127 1.145 1.136 1.180 
Class VIII 
20 1.150 1.150 1.190 1.170 1.270 
40 1.180 1.180 1.160 1.170 1.240 
60 1.110 1.110 1.120 1.120 1.140 
80 1.110 1.110 1.130 1.120 1.150 
100 1.100 1.100 1.100 1.100 1.150 
Average 1.128 1.129 1.140 1.134 1.190 
Class IX 
20 1.010 1.010 1.020 1.000 1.010 
40 1.000 1.000 1.010 1.000 1.010 
60 1.000 1.000 1.000 1.000 1.000 
80 1.000 1.000 1.000 1.000 1.000 
100 1.000 1.000 1.000 1.000 1.000 
Average 1.002 1.002 1.007 1.000 1.005 
Class X 
20 1.150 1.150 1.120 1.100 1.250 
40 1.100 1.100 1.120 1.090 1.230 
60 1.100 1.100 1.120 1.120 1.240 
80 1.070 1.070 1.080 1.080 1.180 
100 1.050 1.050 1.070 1.070 1.160 
Average 1.094 1.094 1.100 1.093 1.211 
Average 1.067 1.067 1.081 1.065 1.131 
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Table 5: Comparison of BLF, LGF, FC, TP and LGFi routines using 
lower bound proposed by Dell’Amico et al.[5] 

 BLF LGF FC TP LGFi 
Class I 
20 1.090 1.030 1.060 1.050 1.040 
40 1.120 1.040 1.080 1.060 1.050 
60 1.130 1.050 1.090 1.050 1.060 
80 1.150 1.060 1.090 1.060 1.060 
100 1.120 1.040 1.070 1.030 1.030 
Average 1.122 1.044 1.078 1.050 1.049 
Class II 
20 1.000 1.000 1.000 1.000 1.000 
40 1.100 1.100 1.100 1.100 1.000 
60 1.100 1.050 1.050 1.000 1.050 
80 1.070 1.070 1.030 1.070 1.000 
100 1.060 1.030 1.030 1.000 1.030 
Average 1.065 1.050 1.042 1.034 1.017 
Class III 
20 1.200 1.060 1.180 1.060 1.130 
40 1.220 1.130 1.160 1.110 1.120 
60 1.260 1.100 1.190 1.110 1.110 
80 1.270 1.100 1.150 1.100 1.100 
100 1.230 1.080 1.130 1.080 1.090 
Average 1.239 1.093 1.162 1.092 1.107 
Class IV 
20 1.000 1.000 1.000 1.000 1.000 
40 1.000 1.000 1.000 1.000 1.000 
60 1.100 1.150 1.100 1.100 1.100 
80 1.100 1.100 1.100 1.070 1.030 
100 1.130 1.070 1.070 1.030 1.030 
Average 1.065 1.063 1.054 1.040 1.033 
Class V 
20 1.150 1.090 1.080 1.060 1.070 
40 1.180 1.100 1.100 1.110 1.140 
60 1.160 1.090 1.110 1.080 1.110 
80 1.170 1.090 1.110 1.080 1.100 
100 1.160 1.080 1.100 1.080 1.090 
Average 1.165 1.092 1.100 1.082 1.100 
Class VI 
20 1.000 1.000 1.000 1.000 1.000 
40 1.400 1.400 1.400 1.400 1.300 
60 1.100 1.050 1.050 1.050 1.000 
80 1.000 1.000 1.000 1.000 1.000 
100 1.130 1.070 1.070 1.070 1.100 
Average 1.127 1.103 1.104 1.104 1.080 
Class VII 
20 1.220 1.190 1.190 1.130 1.170 
40 1.200 1.120 1.170 1.100 1.140 
60 1.200 1.100 1.180 1.120 1.130 
80 1.200 1.100 1.170 1.110 1.130 
100 1.190 1.090 1.170 1.110 1.120 
Average 1.202 1.119 1.176 1.114 1.138 
Class VIII 
20 1.230 1.150 1.160 1.160 1.170 
40 1.220 1.160 1.190 1.160 1.170 
60 1.190 1.090 1.180 1.110 1.120 
80 1.190 1.100 1.160 1.110 1.130 
100 1.190 1.090 1.170 1.120 1.100 
Average 1.204 1.116 1.172 1.132 1.137 
Class IX 
20 1.010 1.010 1.000 1.010 1.000 
40 1.020 1.020 1.010 1.020 1.010 
60 1.010 1.010 1.010 1.010 1.010 
80 1.010 1.010 1.010 1.010 1.010 
100 1.010 1.010 1.010 1.010 1.010 
Average 1.011 1.011 1.008 1.012 1.007 
Class X 
20 1.150 1.200 1.150 1.200 1.130 
40 1.130 1.070 1.090 1.080 1.090 
60 1.140 1.080 1.090 1.090 1.120 
80 1.140 1.060 1.060 1.060 1.080 
100 1.110 1.070 1.070 1.060 1.070 
Average 1.135 1.098 1.092 1.098 1.098 
Average 1.133 1.079 1.099 1.076 1.077 

Table 6: Comparison of BLF, LGF and LGFi routines using lower 
bound proposed by Boschetti and Mingozzi[2] 

 LGFi LGF BLF  LGFi LGF BLF 
Class I    Class VI 
20 1.010 1.000 1.060 20 1.000 1.000 1.000 
40 1.030 1.020 1.090 40 1.300 1.400 1.400 
60 1.020 1.010 1.090 60 1.000 1.050 1.100 
80 1.010 1.010 1.090 80 1.000 1.000 1.000 
100 1.020 1.030 1.110 100 1.100 1.070 1.130 
Average 1.018 1.012 1.089 Average 1.080 1.103 1.127 
Class II    Class VII 
20 1.000 1.000 1.000 20 1.170 1.190 1.220 
40 1.000 1.100 1.100 40 1.140 1.120 1.200 
60 1.050 1.050 1.100 60 1.130 1.100 1.200 
80 1.000 1.070 1.070 80 1.130 1.100 1.200 
100 1.030 1.030 1.060 100 1.110 1.080 1.190 
Average 1.017 1.050 1.065 Average 1.136 1.117 1.200 
Class III    Class VIII 
20 1.110 1.040 1.190 20 1.170 1.150 1.230 
40 1.080 1.090 1.180 40 1.170 1.160 1.220 
60 1.060 1.050 1.210 60 1.120 1.090 1.190 
80 1.060 1.060 1.230 80 1.120 1.090 1.180 
100 1.070 1.060 1.210 100 1.100 1.090 1.190 
Average 1.073 1.059 1.202 Average 1.134 1.113 1.201 
Class IV    Class IX 
20 1.000 1.000 1.000 20 1.000 1.010 1.010 
40 1.000 1.000 1.000 40 1.000 1.010 1.000 
60 1.100 1.150 1.100 60 1.000 1.000 1.000 
80 1.030 1.100 1.100 80 1.000 1.000 1.000 
100 1.030 1.070 1.130 100 1.000 1.000 1.000 
Average 1.033 1.063 1.065 Average 1.000 1.004 1.002 
Class V    Class X 
20 1.030 1.050 1.110 20 1.100 1.180 1.130 
40 1.090 1.050 1.130 40 1.090 1.070 1.130 
60 1.080 1.070 1.130 60 1.120 1.080 1.140 
80 1.050 1.050 1.120 80 1.080 1.060 1.140 
100 1.060 1.060 1.140 100 1.070 1.070 1.110 
Average 1.062 1.055 1.125 Average 1.093 1.093 1.130 
    Average 1.065 1.067 1.121 
 
Table 7: Comparison of FC, AD and LDFiOF routines for oriented 

case of 2DBPP 
 FC AD LDFiOF  FC AD LDFiOF 
Class I    Class VI 
20 1.120 1.120 1.110 20 1.000 1.000 1.000 
40 1.080 1.090 1.060 40 1.400 1.400 1.400 
60 1.070 1.070 1.050 60 1.100 1.050 1.100 
80 1.060 1.060 1.040 80 1.000 1.000 1.000 
100 1.060 1.050 1.030 100 1.1 1.070 1.100 
Average 1.078 1.078 1.059 Average 1.12 1.104 1.120 
Class II    Class VII 
20 1.100 1.000 1.000 20 1.08 1.100 1.100 
40 1.100 1.100 1.100 40 1.09 1.100 1.070 
60 1.100 1.100 1.100 60 1.07 1.070 1.040 
80 1.070 1.070 1.030 80 1.06 1.060 1.060 
100 1.030 1.030 1.030 100 1.04 1.040 1.030 
Average 1.080 1.060 1.053 Average 1.068 1.074 1.059 
Class III    Class VIII 
20 1.180 1.200 1.230 20 1.160 1.130 1.120 
40 1.140 1.150 1.170 40 1.070 1.080 1.080 
60 1.110 1.130 1.100 60 1.060 1.060 1.060 
80 1.100 1.100 1.070 80 1.060 1.060 1.040 
100 1.090 1.090 1.090 100 1.060 1.060 1.050 
Average 1.124 1.134 1.131 Average 1.082 1.078 1.068 
Class IV    Class IX 
 20 1.000 1.000 1.000 20 1.010 1.010 1.010 
40 1.000 1.000 1.000 40 1.020 1.020 1.010 
60 1.100 1.150 1.100 60 1.020 1.020 1.010 
80 1.100 1.100 1.100 80 1.020 1.020 1.010 
100 1.100 1.030 1.070 100 1.010 1.010 1.010 
Average 1.060 1.056 1.053 Average 1.016 1.016 1.012 
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Table 7: Continued 
Class V    Class X 
20 1.140 1.140 1.110 20 1.140 1.100 1.130 
40 1.110 1.110 1.100 40 1.090 1.090 1.090 
60 1.100 1.100 1.090 60 1.080 1.110 1.110 
80 1.090 1.090 1.080 80 1.110 1.100 1.090 
100 1.090 1.090 1.090 100 1.090 1.100 1.080 
Average 1.106 1.106 1.092 Average 1.102 1.100 1.100 
      Average 1.084 1.081 1.075 

 
 In Table 7, the overall average ratio of all classes 
indicates that LGFiOF gives better packing quality if 
compared to AD and FC. LGFiOF is also better than 
AD and FC in terms of time complexity where both of 
AD and FC required O(n3) time while LGFiOF required 
only O(n2) time. 
 

CONCLUSION 
 
 In this study, we developed heuristics placement 
routines called the Improved Lowest Gap Fill, LGFi 
and LGFiOF for solving both non-oriented and oriented 
cases of two-dimensional bin packing problems 
respectively. Both routines are capable of filling the 
available gaps in the partial layout by dynamically 
selecting the best rectangle for placement during 
packing stage. The routines require only O(n2) time. 
Computational results shown that our proposed 
routines are capable of producing high quality 
solution. 
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