
Journal of Mathematics and Statistics 5 (4): 334-341, 2009
ISSN 1549-3644
© 2009 Science Publications

Corresponding Author: Lai Soon Lee, Department of Mathematics, Faculty of Science, University Putra Malaysia,
 43400 UPM Serdang, Selangor, Malaysia Tel: +603 8946 8454 Fax: +603-8943 7958

334

Heuristic Placement Routines for Two-Dimensional Bin Packing Problem

1L. Wong and 2L.S. Lee

1,2Department of Mathematics, Faculty of Science,
University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Laboratory of Applied and Computational Statistics, Institute for Mathematical Research,
University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Abstract. Problem statement: Cutting and packing (C and P) problems are optimization problems
that are concerned in finding a good arrangement of multiple small items into one or more larger
objects. Bin packing problem is a type of C AND P problems. Bin packing problem is an important
industrial problem where the general objective is to reduce the production costs by maximizing the
utilization of the larger objects and minimizing the material used. Approach: In this study, we
considered both oriented and non-oriented cases of Two-Dimensional Bin Packing Problem (2DBPP)
where a given set of small rectangles (items), was packed without overlaps into a minimum number of
identical large rectangles (bins). We proposed heuristic placement routines called the Improved Lowest
Gap Fill, LGFi and LGFiOF for solving non-oriented and oriented cases of 2DBPP respectively.
Extensive computational experiments using benchmark data sets collected from the literature were
conducted to assess the effectiveness of the proposed routines. Results: The computational results
were compared with some well known heuristic placement routines. The results showed that the LGFi
and LGFiOF are competitive when compared with other heuristic placement routines. Conclusion: Both
LGFi and LGFiOF produced better packing quality compared to other heuristic placement routines.

Key words: Bin packing problem, heuristic placement, cutting and packing

INTRODUCTION

 Generally, Cutting and Packing (C and P)
Problems can be summarized as follows[10]:

 “Given two sets of elements, namely, a set of

large objects (input, supply) and a set of small
items (output, demand) which are defined in
one, two, or an even larger number of geometric
dimensions. Then some or all the small items
will be grouped into one or more subsets and
assign each of them into one of the larger
objects with the conditions all small items of the
subset lie entirely within the large object and
the small items are not overlapping”

 The C and P problems contribute to many areas of
application in business and industry such as in metal,
wood, glass and textile industries, newspaper paging
and cargo loading. The objective of the allocation
process is to maximize the utilization of the larger
objects or maximizing the number of items to be
packed in the larger objects.

 In this study, we consider oriented and non-oriented
cases of two-dimensional rectangular single bin size bin
packing problems which known as 2DRSBSBPP in
Wäscher et al.[10]. According to Lodi et al.[8], the problem
can be defined as follows:

“Given a set of n rectangular items j∈J = {1,
2,…, n}, each item j is defined by a height hj
and a width wj and an unlimited number of
rectangular bins, each having a height H and
width W. The objective is to allocate without
overlaps, all the rectangles into the minimum
number of bins”

 For the oriented case, the rectangles have fixed
orientation while the rectangles can be rotated at 90° in
non-oriented case of 2DBPP. This problem is classified
as a class of NP-hard problem by[6].
 The non-oriented case of 2DBPP can be found in
metal industry, where the pieces of the metal as the bins
(larger objects) while the different dimension of layouts
that needed to be cut out from the pieces of metal are
the items. The aim of this problem is to find a good

J. Math. & Stat., 5 (4): 334-341, 2009

335

arrangement of the layout which give the highest
utilization of the metal. The oriented case of 2DBPP
can contributes in newspaper paging process where the
pieces of pages in newspaper are the bins and the news
or advertisements (with fixed orientation) are the items.
The purpose is to arrange the maximum numbers of
news into minimum number of pages.
 Most of the classical placement routines for 2DBPP
work on levels heuristics where the packing is obtained
by placing the rectangles in row from left to right which
form levels. The first level is at the bottom edge of the
bin while the subsequence levels in the bin are the
horizontal line denoted by the top edge of the tallest
rectangle packed on the level below. Coffman et al.[4]

suggested three classical strategies for level packing
which are summarized in Table 1 (note j = current
rectangle).
 In this study, we consider Bottom-Left Fill
(BLF)[3], Lowest Gap Fill (LGF)[7], Touching Perimeter
(TP)[8], Floor Ceiling (FC)[8] and Alternate Direction
(AD) [8], which are some well known heuristic
placement routines for solving the problem.
 The BLF routine places the rectangles by searching
through a list of location points in bottom left ordering
sequence that indicates potential positions where the
rectangle may be placed. Meanwhile, TP will first
initialize L bins (where L is the lower bound) before
packing the rectangle at the bin and position which give
the highest score (percentage of the rectangle perimeter
which touches the bin and the others rectangles that
have been packed). The FC is a two-phase placement
routine. In the first phase, the current rectangle will be
packed on a floor, according to Best-Fit strategy or on a
ceiling if the rectangle cannot be packed on the floor
below. If neither floor nor ceiling at that level can fit
the rectangle, a new level is initialized. In the second
phase, the levels are packed into finite bins either
through the Best-Fit Decreasing (BFD) algorithm or by
using an exact algorithm for the one-dimensional bin
packing problem. BFD algorithm is referred to the
rectangles that are initially sorted in decreasing width,
height or area following by the BF routine. For the AD,

Table 1: Classical strategies for levels packing
Packing strategy Description
Next-Fit (NF) Rectangle j is packed left justified on a level if it
 fits. Otherwise, the level is closed and a new level
 is created to pack the rectangle left justified.
First-Fit (FF) Rectangle j is packed left justified on the first
 level where it fits. If there are no level can pack j,
 a new level is initialized as in NF.
Best-Fit (BF) Rectangle j is packed left justified on that level,
 among those where it fits, for which the resulting
 packing has the minimum remaining horizontal
 space. If no level can accommodate j, a new level
 is initialized as in NF.

the routine is started by sorting the items according to
non-increasing heights and L (lower bound) bins are
initialized by packing on their bottoms a subset of the
rectangles, following best-fit decreasing policy. The
remaining rectangles are packed into the bands
according to the current direction associated with the
bin. The LGF routine consists of two stages:
Preprocessing and packing stage. In the preprocessing
stage, the rectangles are initially arranged following a
horizontal orientation and sorted in non-increasing
order of their width (breaking ties by non-increasing
order of height). LGFi uses a pointer (x, y) to indicate
the position of the lowest available gap in the bin
during packing stage. Best-fit strategy is used to
examine the rectangles list and dynamically select a
best fitting rectangle to place at the lowest available gap
in the bin.
 The objective of this study is to develop an
improved version of the Lowest Gap Fill (LGF) routine
proposed by Lee[7] for 2DBPP. Then, the developed
heuristic routine will be modified to design a new
heuristic placement routine for solving the oriented
case.

MATERIALS AND METHODS

Heuristic placement routine for non-oriented case:
The heuristic placement routine, LGFi is a modified
version of LGF. Unlike LGF, LGFi chooses the shortest
edge between the remaining gap height and gap width
as the current gap. This allows the routine to identity
the shortest available gap so that it is easier to examine
the rectangles list in term of finding a rectangle with its
width or height that can fit the current gap completely.
If there is no rectangles can fit the current gap
completely, the first rectangle in the list that can fit the
gap without overlaps is selected.
 The preordering process is an important procedure
in giving the advantage in time for searching the best-fit
rectangle. The appropriate sorting of the rectangles will
allow the rectangle with a larger dimension to be
packed first to reduce the wastage in the bin. With this
in mind, the LGFi will apply the preordering procedure
in the preprocessing stage.
 Similar to LGF, LGFi uses the pointer (x, y) to
indicate the lowest and leftmost point in the current bin
where a rectangle can be packed without overlaps with
other rectangles that have been packed in the current
bin. LGFi consists of two stages: preprocessing stage
and packing stage.

Preprocessing stage: The rectangles are first rotated so
that the width of the rectangle is always greater than its

J. Math. & Stat., 5 (4): 334-341, 2009

336

height. For example, by denoting each rectangle by a
(width, height) pair, the rectangles list of set P:

{(5, 8), (4, 9), (7, 6), (5, 4), (2, 3), (6, 3)}

will become:

{(8, 5), (9, 4), (7, 6), (5, 4), (3, 2), (6, 3)}

after rotating. Initial investigation of different
preordering sequences of the rectangles as in Table 2
and the computational results in Table 3 and 4 show
that initially sorted the rectangles in decreasing order of
height (breaking ties by decreasing order of width)
which denoted as DH(DW) gives better packing
quality. Hence, the rectangles in set P:

{(8, 5), (9, 4), (7, 6), (5, 4), (3, 2), (6, 3)}

will become

{(7, 6), (8, 5), (9, 4), (5, 4), (6, 3), (3, 2)}

after sorting in DH(DW) preordering sequence. This
preprocessing stage required O(nlogn) time.

Packing stage: The smallest dimension of height among
the available rectangles in the list, mini = 1,2,…,j{w j,hj}
(where j = number of the remaining rectangles in the
rectangles list) is stored. The value of minj{h j} will be
updated if the rectangle with the smallest dimension of
height is packed.
 At first, an empty bin is initialized as the current
bin, the current point is at the bottom-left corner (x = 0,
y = 0) and the current gap is the shortest edge between
the height H and the width W of the bin. The first
rectangle in the rectangles list is removed and placed at
the bottom left of the current bin. The current point and
the current gap are updated as follow. The current point
is the lowest and leftmost point in the current bin. The
current gap is the shortest edge between the remaining
gap height and gap width at the current point. The gap
width is the difference between the x-coordinate and the
right edge of the bin or the left edge of a tall rectangle
while the gap height is the difference between the y-
coordinate and the height of the bin. The current gap area
which is the area with the dimension of the gap width
and gap height at the current point is determined.
 If the current gap is less than the current value of
minj{h j}, then the relevant space is regarded as the
wastage. Then, the pointer is raised to the next lowest
and leftmost point where the corresponding current gap
is at least as big as the value of minj{h j}. The rectangles
list is examined again. The rectangle with its width or
height that can fill the gap completely is given the
priority to be chosen to be packed at the current point.

Fig. 1: Improved Lowest Gap Fill (LGFi) for non-

oriented case

 If there is no any rectangle either its width or height
can fill the gap completely, then the first rectangle in the
list with its area is less than or equal to the current gap
area and can fill the gap without overlapping with other
rectangles that have been packed is selected. The selected
rectangle is placed at the current point by its shortest
edge packed at the current gap. The selected rectangle is
removed from the rectangles list and the current point
and gap are updated. When the current bin is full or the
pointer has been raised to the top of the current bin, the
bin is closed. A new empty bin is initialized as the
current bin and the process is continues until all the
rectangles in the rectangles list are packed. This packing
stage required O(n2) time.
 The time consuming overlapping test is not needed
in LGFi since the selected rectangle will always be
packed at the updated current point and current gap.
Since the current gap will give us both the dimensions of
the available gap, the selected rectangle will not overlap
with other rectangles that already packed in the current
bin. Hence, this will reduce the processing time. Figure 1
shows the LGFi by packing the set P using two bins.

Heuristic placement routine for oriented case: We
propose a new heuristic called, LGFiOF which is a
modified version of LGFi to solve the oriented case of
2DBPP. Unlike the non-oriented case, the small
rectangles have fixed orientation. LGFiOF also consists
of two stages: preprocessing stage and packing stage.

Preprocessing stage: The rectangles are sorted in non-
increasing order of area (breaking ties by non-
decreasing order of the differences between the width
and the height). For instance, set Q:

{(7, 5), (8, 2), (6, 4), (3, 5), (4, 4), (10, 3), (2, 4), (1, 2),
(9, 1), (6, 5)}

will become:

J. Math. & Stat., 5 (4): 334-341, 2009

337

{(7, 5), (6, 5), (10, 3), (6, 4), (4, 4), (8, 2), (3, 5), (9, 1),
(2, 4), (1, 2)}

after sorting. The preprocessing stage required
O(nlogn) time.

Packing stage: The smallest dimension among the
available rectangles in the list mini = 1,2,…j{w j,hj} (where
j = number of the remaining rectangles in the rectangles
list) is stored. The value of minj{w j,hj} is updated after
the corresponding rectangle is packed.
 At first, an empty bin is initialized as the current
bin, the current point is at the bottom-left corner (x = 0,
y = 0) and the current gap is the shortest edge between
the height of the bin, H and the width of the bin, W.
The first rectangle in the rectangles list is removed and
placed at the bottom left of the current bin.
 The pointer and the gap are updated as follow.
The current point is the lowest and leftmost point of
the current bin. The gap width is the difference
between the x-coordinate and the right edge of the bin
or the left edge of a tall rectangle while the height of
gap is the difference between the y-coordinate and the
height of the bin. The current gap is the shortest edge
between the remaining gap height and gap width. The
area of the current gap is also determined. Next, the
rectangles list is examined again. If the current gap is
less than the current value of minj{w j,hj}, then the
relevant space is regarded as the wastage. The pointer
is raised to the next lowest and leftmost point where
the corresponding current gap is at least as big as the
value of minj{w j,hj}. If the current gap is the gap
width, then the rectangle with its width that can fill the
gap completely is given priority to be chosen to be
packed at the current point. If the current gap is the
gap height, then the rectangle with its height that can
fill the current gap completely is given the priority.
 If there is no any rectangle that can fill the gap
completely, the first rectangle in the list which its area is
less than or equal to the area of the current gap and can
fill the gap without overlapping with other rectangles that
have been packed is selected to be placed at the current
point. When the current bin is full or the pointer has been
raised to the top of the current bin, the bin is closed. A
new empty bin is initialized as the current bin and the
process is continues until all the rectangles in the
rectangles list are packed. Only one bin is opened at a
time. This packing stage required O(n2) time. Figure 2
shows the LGFiOF by packing the set Q using two bins.

Computational experiments: The first set of
experiment compares the different preordering
sequences of the rectangles in the preprocessing stage
of LGFi by using the lower bounds proposed by[2,5].

Fig. 2: Improved Lowest Gap Fill (LGFiOF) for

oriented case

Then, the LGFi is compared with some well known
heuristic placement routines, namely BLF, LGF, FC and
TP using the lower bounds proposed by[5]. The LGFi is
also compared with BLF and LGF where both routines
required O(n2) time using lower bound proposed by
Boschetti and Mingozzi[2]. In the oriented case, LGFiOF is
compared with AD and FC. All placement routines are
coded in ANSI-C using Microsoft Visual C++ version
6.0 as the compiler. In this study we consider ten
different classes of problems instances proposed in the
literature. The first six classes (I-VI) are proposed by[1].
In each class all the items are generated in the same
interval and are classified as follows:

Class I: wj and hj uniformly random in [1, 10],
 W = H = 10
Class II: wj and hj uniformly random in [1, 10], W =

H = 30
Class III: wj and hj uniformly random in [1, 35], W =

H = 40
Class IV: wj and hj uniformly random in [1, 35], W =

H = 100
Class V: wj and hj uniformly random in [1, 100], W

= H = 100
Class VI: wj and hj uniformly random in [1, 100], W

= H = 300

 The other four classes (VII-X) are introduced by
Martello and Vigo[9] where a more realistic situation is
considered. The items are classified into four types:

Type 1: wj uniformly random in
2

W,W
3
 
 
 

, hj

uniformly random in
1

1, H
2

 
 
 

.

J. Math. & Stat., 5 (4): 334-341, 2009

338

Type 2: wj uniformly random in
1

1, W
2

 
 
 

, hj

uniformly random in
2

H,H
3
 
 
 

.

Type 3: wj uniformly random in
1

W,W
2
 
 
 

, hj

uniformly random in
1

H,H
2
 
 
 

.

Type 4: wj uniformly random in
1

1, W
2

 
 
 

, hj

uniformly random in
1

1, H
2

 
 
 

.

 The bin size is W = H = 100 for all classes, while
the items are as follow:

Class VII: Type 1 with probability 70%, Type 2, 3, 4

with probability 10% each.
Class VIII: Type 2 with probability 70%, Type 1, 3, 4

with probability 10% each.
Class IX: Type 3 with probability 70%, Type 1, 2, 4

with probability 10% each.
Class X: Type 4 with probability 70%, Type 1, 2, 3

with probability 10% each.

 For each class, we consider five values of n: 20, 40,
60, 80 and 100, where n is the number of rectangles that
need to be packed into the bins. For each combination
of class and value of n, ten problem instances are
generated. To investigate the best sorting procedure that
gave LGFi better packing quality, different preordering
sequences of the rectangles are tested in the
preprocessing stage which is listed in Table 2.
 The performance of the different preordering
sequences of the rectangles and the various heuristic
placement routines are compared on the basis of the
average Ratio defined by:

10 i
i

i

1 UB
Average Ratio

10 LB
= ∑ (1)

where, UBi and LBi represent the heuristic solution and
the lower bound of the problem instance i respectively.

Table 2: Preordering sequences of the rectangles
Type of preordering sequences of the rectangles Notation
Decreasing area (breaking ties by decreasing height) DA (DH)
Decreasing area (breaking ties by decreasing width) DA (DW)
Decreasing width (breaking ties by decreasing height) DW (DH)
Decreasing height (breaking ties by decreasing width) DH (DW)
Without preordering Random

RESULTS AND DISCUSSION

 Table 3 and 4 show the computational results of
LGFi with different preordering sequences of the
rectangles in the preprocessing stage by using the lower
bounds proposed by Dell’Amico et al.[5] and Boschetti
and Mingozzi[2] respectively. Table 5 gives the
comparison of five different heuristic placement
routines namely BLF, LGF, FC, TP and LGFi using the
lower bound proposed by Dell’Amico et al.[5] while
Table 6 shows the comparison of LGFi with other two
heuristic placement routines namely BLF and LGF
where both routines required O(n2) time by using the
lower bound proposed by Boschetti and Mingozzi[2].
Table 7 gives the comparison between the three
different heuristic placement routines for oriented case
of 2DBPP namely FC, AD and LGFiOF. For each type
of sorting in Table 3 and 4 as well as the different
placement routines in Table 5-7, the entries report the
average ratio, computed over ten problem instances.
The final line for each class gives the average overall
values over that class. The final line in all tables gives
the overall average value over all classes. We do not
give the execution time because it is negligible (never
exceed 0.1 CPU sec).
 From the overall average ratio of all classes in
Table 3 and 4, we found that LGFi with DH(DW)
preordering sequence gives the best solution quality.
Therefore, in the preprocessing stage of LGFi, the
rectangles are initially sorted in DH(DW). The
computational results in Table 5 indicate that the LGFi
produced a slightly better packing quality compared to
LGF. However, neither of the placement routines for
LGF, LGFi and TP can be classified as the clear
winner in this experiment as they produced mixed
degrees of success in each class. It is worth
mentioning that TP has a time complexity of O(n3),
while both LGF and LGFi has a time complexity of
only O(n2). This shows that the LGFi is a more
competitive heuristic placement routine.
 Since the results in Table 5 gives the LGFi a more
competitive heuristic, so the purpose of the
computational experiment in Table 6 is only to
investigate the improvement in term of ratio for the
heuristic routines which required the same time
complexity. Therefore, the comparisons are only done
on BLF, LGF and LGFi. The computational results in
Table 6 show that BLF, LGF and LGFi give the
improvement in terms of the ratio by using lower
bound proposed by Boscetti and Mingozzi[2]. All three
heuristic placement routines show a 1.2% of
improvement if compared with the ratio using the
lower bound proposed by Dell’Amico et al.[5].

J. Math. & Stat., 5 (4): 334-341, 2009

339

Table 3: Comparison of different preordering sequences of the
rectangles for LGFi using lower bound proposed by[5]

 DA(DH) DA(DW) DW(DH) DH(DW) RANDOM

Class I
20 1.030 1.030 1.050 1.040 1.080
40 1.050 1.050 1.060 1.050 1.080
60 1.060 1.060 1.060 1.060 1.110
80 1.060 1.060 1.060 1.060 1.120
100 1.030 1.030 1.030 1.030 1.070
Average 1.045 1.045 1.052 1.049 1.092
Class II
20 1.000 1.000 1.000 1.000 1.000
40 1.100 1.100 1.100 1.000 1.100
60 1.100 1.100 1.050 1.050 1.150
80 1.000 1.000 1.000 1.000 1.070
100 1.000 1.000 1.000 1.030 1.060
Average 1.040 1.040 1.030 1.017 1.075
Class III
20 1.110 1.110 1.180 1.130 1.200
40 1.120 1.120 1.150 1.120 1.220
60 1.100 1.100 1.110 1.110 1.230
80 1.090 1.090 1.120 1.100 1.220
100 1.070 1.080 1.090 1.090 1.190
Average 1.097 1.098 1.130 1.107 1.211
Class IV
20 1.000 1.000 1.000 1.000 1.100
40 1.000 1.000 1.100 1.000 1.100
60 1.100 1.100 1.100 1.100 1.250
80 1.070 1.070 1.100 1.030 1.100
100 1.030 1.030 1.030 1.030 1.100
Average 1.040 1.040 1.067 1.033 1.130
Class V
20 1.070 1.070 1.110 1.070 1.200
40 1.100 1.100 1.170 1.140 1.200
60 1.090 1.090 1.140 1.110 1.200
80 1.090 1.090 1.150 1.100 1.180
100 1.090 1.090 1.120 1.090 1.160
Average 1.087 1.087 1.136 1.100 1.186
Class VI
20 1.000 1.000 1.000 1.000 1.000
40 1.400 1.400 1.400 1.300 1.400
60 1.050 1.050 1.050 1.000 1.150
80 1.000 1.000 1.000 1.000 1.000
100 1.070 1.070 1.100 1.100 1.170
Average 1.103 1.103 1.110 1.080 1.143
Class VII
20 1.170 1.150 1.190 1.170 1.220
40 1.150 1.150 1.160 1.140 1.230
60 1.120 1.120 1.120 1.130 1.160
80 1.120 1.110 1.150 1.130 1.160
100 1.120 1.120 1.110 1.120 1.150
Average 1.135 1.129 1.146 1.138 1.182
Class VIII
20 1.150 1.150 1.190 1.170 1.270
40 1.180 1.180 1.160 1.170 1.240
60 1.110 1.110 1.120 1.120 1.140
80 1.120 1.120 1.140 1.130 1.160
100 1.100 1.100 1.110 1.100 1.150
Average 1.131 1.132 1.143 1.137 1.193
Class IX
20 1.010 1.010 1.020 1.000 1.010
40 1.020 1.020 1.020 1.010 1.020
60 1.010 1.010 1.010 1.010 1.010
80 1.010 1.010 1.010 1.010 1.010
100 1.010 1.010 1.010 1.010 1.010
Average 1.009 1.009 1.013 1.007 1.012
Class X
20 1.180 1.180 1.150 1.130 1.270
40 1.100 1.100 1.120 1.090 1.230
60 1.100 1.100 1.120 1.120 1.240
80 1.070 1.070 1.080 1.080 1.180
100 1.050 1.050 1.078 1.070 1.160
Average 1.099 1.099 1.105 1.098 1.216
Average 1.079 1.078 1.093 1.077 1.144

Table 4: Comparison of different preordering sequences of the
rectangles for LGFi using lower bound proposed by[2]

 DA(DH) DA(DW) DW(DH) DH(DW) RANDOM

Class I
20 1.000 1.000 1.020 1.010 1.050
40 1.030 1.030 1.040 1.030 1.060
60 1.020 1.020 1.020 1.020 1.070
80 1.010 1.010 1.010 1.010 1.060
100 1.020 1.020 1.020 1.020 1.060
Average 1.014 1.014 1.021 1.018 1.060
Class II
20 1.000 1.000 1.000 1.000 1.000
40 1.100 1.100 1.100 1.000 1.100
60 1.100 1.100 1.050 1.050 1.150
80 1.000 1.000 1.000 1.000 1.070
100 1.000 1.000 1.000 1.030 1.060
Average 1.040 1.040 1.030 1.017 1.070
Class III
20 1.090 1.090 1.170 1.110 1.190
40 1.080 1.080 1.110 1.080 1.180
60 1.050 1.050 1.060 1.060 1.170
80 1.050 1.050 1.070 1.060 1.170
100 1.050 1.060 1.070 1.070 1.160
Average 1.064 1.065 1.095 1.073 1.174
Class IV
20 1.000 1.000 1.000 1.000 1.100
40 1.000 1.000 1.100 1.000 1.100
60 1.100 1.100 1.100 1.100 1.250
80 1.070 1.070 1.100 1.030 1.100
100 1.030 1.030 1.030 1.030 1.100
Average 1.040 1.040 1.067 1.033 1.130
Class V
20 1.030 1.030 1.070 1.030 1.150
40 1.050 1.050 1.120 1.090 1.140
60 1.060 1.060 1.110 1.080 1.170
80 1.040 1.040 1.100 1.050 1.130
100 1.060 1.060 1.090 1.060 1.130
Average 1.050 1.050 1.098 1.062 1.146
Class VI
20 1.000 1.000 1.000 1.000 1.000
40 1.400 1.400 1.400 1.300 1.400
60 1.050 1.050 1.050 1.000 1.150
80 1.000 1.000 1.000 1.000 1.000
100 1.070 1.070 1.100 1.100 1.170
Average 1.103 1.103 1.110 1.080 1.143
Class VII
20 1.170 1.150 1.190 1.170 1.220
40 1.150 1.150 1.160 1.140 1.230
60 1.120 1.120 1.120 1.130 1.160
80 1.110 1.110 1.150 1.130 1.160
100 1.110 1.110 1.110 1.110 1.140
Average 1.133 1.127 1.145 1.136 1.180
Class VIII
20 1.150 1.150 1.190 1.170 1.270
40 1.180 1.180 1.160 1.170 1.240
60 1.110 1.110 1.120 1.120 1.140
80 1.110 1.110 1.130 1.120 1.150
100 1.100 1.100 1.100 1.100 1.150
Average 1.128 1.129 1.140 1.134 1.190
Class IX
20 1.010 1.010 1.020 1.000 1.010
40 1.000 1.000 1.010 1.000 1.010
60 1.000 1.000 1.000 1.000 1.000
80 1.000 1.000 1.000 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000
Average 1.002 1.002 1.007 1.000 1.005
Class X
20 1.150 1.150 1.120 1.100 1.250
40 1.100 1.100 1.120 1.090 1.230
60 1.100 1.100 1.120 1.120 1.240
80 1.070 1.070 1.080 1.080 1.180
100 1.050 1.050 1.070 1.070 1.160
Average 1.094 1.094 1.100 1.093 1.211
Average 1.067 1.067 1.081 1.065 1.131

J. Math. & Stat., 5 (4): 334-341, 2009

340

Table 5: Comparison of BLF, LGF, FC, TP and LGFi routines using
lower bound proposed by Dell’Amico et al.[5]

 BLF LGF FC TP LGFi
Class I
20 1.090 1.030 1.060 1.050 1.040
40 1.120 1.040 1.080 1.060 1.050
60 1.130 1.050 1.090 1.050 1.060
80 1.150 1.060 1.090 1.060 1.060
100 1.120 1.040 1.070 1.030 1.030
Average 1.122 1.044 1.078 1.050 1.049
Class II
20 1.000 1.000 1.000 1.000 1.000
40 1.100 1.100 1.100 1.100 1.000
60 1.100 1.050 1.050 1.000 1.050
80 1.070 1.070 1.030 1.070 1.000
100 1.060 1.030 1.030 1.000 1.030
Average 1.065 1.050 1.042 1.034 1.017
Class III
20 1.200 1.060 1.180 1.060 1.130
40 1.220 1.130 1.160 1.110 1.120
60 1.260 1.100 1.190 1.110 1.110
80 1.270 1.100 1.150 1.100 1.100
100 1.230 1.080 1.130 1.080 1.090
Average 1.239 1.093 1.162 1.092 1.107
Class IV
20 1.000 1.000 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000 1.000
60 1.100 1.150 1.100 1.100 1.100
80 1.100 1.100 1.100 1.070 1.030
100 1.130 1.070 1.070 1.030 1.030
Average 1.065 1.063 1.054 1.040 1.033
Class V
20 1.150 1.090 1.080 1.060 1.070
40 1.180 1.100 1.100 1.110 1.140
60 1.160 1.090 1.110 1.080 1.110
80 1.170 1.090 1.110 1.080 1.100
100 1.160 1.080 1.100 1.080 1.090
Average 1.165 1.092 1.100 1.082 1.100
Class VI
20 1.000 1.000 1.000 1.000 1.000
40 1.400 1.400 1.400 1.400 1.300
60 1.100 1.050 1.050 1.050 1.000
80 1.000 1.000 1.000 1.000 1.000
100 1.130 1.070 1.070 1.070 1.100
Average 1.127 1.103 1.104 1.104 1.080
Class VII
20 1.220 1.190 1.190 1.130 1.170
40 1.200 1.120 1.170 1.100 1.140
60 1.200 1.100 1.180 1.120 1.130
80 1.200 1.100 1.170 1.110 1.130
100 1.190 1.090 1.170 1.110 1.120
Average 1.202 1.119 1.176 1.114 1.138
Class VIII
20 1.230 1.150 1.160 1.160 1.170
40 1.220 1.160 1.190 1.160 1.170
60 1.190 1.090 1.180 1.110 1.120
80 1.190 1.100 1.160 1.110 1.130
100 1.190 1.090 1.170 1.120 1.100
Average 1.204 1.116 1.172 1.132 1.137
Class IX
20 1.010 1.010 1.000 1.010 1.000
40 1.020 1.020 1.010 1.020 1.010
60 1.010 1.010 1.010 1.010 1.010
80 1.010 1.010 1.010 1.010 1.010
100 1.010 1.010 1.010 1.010 1.010
Average 1.011 1.011 1.008 1.012 1.007
Class X
20 1.150 1.200 1.150 1.200 1.130
40 1.130 1.070 1.090 1.080 1.090
60 1.140 1.080 1.090 1.090 1.120
80 1.140 1.060 1.060 1.060 1.080
100 1.110 1.070 1.070 1.060 1.070
Average 1.135 1.098 1.092 1.098 1.098
Average 1.133 1.079 1.099 1.076 1.077

Table 6: Comparison of BLF, LGF and LGFi routines using lower
bound proposed by Boschetti and Mingozzi[2]

 LGFi LGF BLF LGFi LGF BLF
Class I Class VI
20 1.010 1.000 1.060 20 1.000 1.000 1.000
40 1.030 1.020 1.090 40 1.300 1.400 1.400
60 1.020 1.010 1.090 60 1.000 1.050 1.100
80 1.010 1.010 1.090 80 1.000 1.000 1.000
100 1.020 1.030 1.110 100 1.100 1.070 1.130
Average 1.018 1.012 1.089 Average 1.080 1.103 1.127
Class II Class VII
20 1.000 1.000 1.000 20 1.170 1.190 1.220
40 1.000 1.100 1.100 40 1.140 1.120 1.200
60 1.050 1.050 1.100 60 1.130 1.100 1.200
80 1.000 1.070 1.070 80 1.130 1.100 1.200
100 1.030 1.030 1.060 100 1.110 1.080 1.190
Average 1.017 1.050 1.065 Average 1.136 1.117 1.200
Class III Class VIII
20 1.110 1.040 1.190 20 1.170 1.150 1.230
40 1.080 1.090 1.180 40 1.170 1.160 1.220
60 1.060 1.050 1.210 60 1.120 1.090 1.190
80 1.060 1.060 1.230 80 1.120 1.090 1.180
100 1.070 1.060 1.210 100 1.100 1.090 1.190
Average 1.073 1.059 1.202 Average 1.134 1.113 1.201
Class IV Class IX
20 1.000 1.000 1.000 20 1.000 1.010 1.010
40 1.000 1.000 1.000 40 1.000 1.010 1.000
60 1.100 1.150 1.100 60 1.000 1.000 1.000
80 1.030 1.100 1.100 80 1.000 1.000 1.000
100 1.030 1.070 1.130 100 1.000 1.000 1.000
Average 1.033 1.063 1.065 Average 1.000 1.004 1.002
Class V Class X
20 1.030 1.050 1.110 20 1.100 1.180 1.130
40 1.090 1.050 1.130 40 1.090 1.070 1.130
60 1.080 1.070 1.130 60 1.120 1.080 1.140
80 1.050 1.050 1.120 80 1.080 1.060 1.140
100 1.060 1.060 1.140 100 1.070 1.070 1.110
Average 1.062 1.055 1.125 Average 1.093 1.093 1.130
 Average 1.065 1.067 1.121

Table 7: Comparison of FC, AD and LDFiOF routines for oriented

case of 2DBPP
 FC AD LDFiOF FC AD LDFiOF
Class I Class VI
20 1.120 1.120 1.110 20 1.000 1.000 1.000
40 1.080 1.090 1.060 40 1.400 1.400 1.400
60 1.070 1.070 1.050 60 1.100 1.050 1.100
80 1.060 1.060 1.040 80 1.000 1.000 1.000
100 1.060 1.050 1.030 100 1.1 1.070 1.100
Average 1.078 1.078 1.059 Average 1.12 1.104 1.120
Class II Class VII
20 1.100 1.000 1.000 20 1.08 1.100 1.100
40 1.100 1.100 1.100 40 1.09 1.100 1.070
60 1.100 1.100 1.100 60 1.07 1.070 1.040
80 1.070 1.070 1.030 80 1.06 1.060 1.060
100 1.030 1.030 1.030 100 1.04 1.040 1.030
Average 1.080 1.060 1.053 Average 1.068 1.074 1.059
Class III Class VIII
20 1.180 1.200 1.230 20 1.160 1.130 1.120
40 1.140 1.150 1.170 40 1.070 1.080 1.080
60 1.110 1.130 1.100 60 1.060 1.060 1.060
80 1.100 1.100 1.070 80 1.060 1.060 1.040
100 1.090 1.090 1.090 100 1.060 1.060 1.050
Average 1.124 1.134 1.131 Average 1.082 1.078 1.068
Class IV Class IX
 20 1.000 1.000 1.000 20 1.010 1.010 1.010
40 1.000 1.000 1.000 40 1.020 1.020 1.010
60 1.100 1.150 1.100 60 1.020 1.020 1.010
80 1.100 1.100 1.100 80 1.020 1.020 1.010
100 1.100 1.030 1.070 100 1.010 1.010 1.010
Average 1.060 1.056 1.053 Average 1.016 1.016 1.012

J. Math. & Stat., 5 (4): 334-341, 2009

341

Table 7: Continued
Class V Class X
20 1.140 1.140 1.110 20 1.140 1.100 1.130
40 1.110 1.110 1.100 40 1.090 1.090 1.090
60 1.100 1.100 1.090 60 1.080 1.110 1.110
80 1.090 1.090 1.080 80 1.110 1.100 1.090
100 1.090 1.090 1.090 100 1.090 1.100 1.080
Average 1.106 1.106 1.092 Average 1.102 1.100 1.100
 Average 1.084 1.081 1.075

 In Table 7, the overall average ratio of all classes
indicates that LGFiOF gives better packing quality if
compared to AD and FC. LGFiOF is also better than
AD and FC in terms of time complexity where both of
AD and FC required O(n3) time while LGFiOF required
only O(n2) time.

CONCLUSION

 In this study, we developed heuristics placement
routines called the Improved Lowest Gap Fill, LGFi
and LGFiOF for solving both non-oriented and oriented
cases of two-dimensional bin packing problems
respectively. Both routines are capable of filling the
available gaps in the partial layout by dynamically
selecting the best rectangle for placement during
packing stage. The routines require only O(n2) time.
Computational results shown that our proposed
routines are capable of producing high quality
solution.

REFERENCES

1. Berkey, J.O. and P.Y. Wang, 1987. Two

dimensional finite bin packing algorithms. J.
Operat. Res. Soc., 38: 423-429.
http://www.jstor.org/pss/2582731

2. Boschetti, M.A. and A. Mingozzi, 2003. The two-
dimensional finite bin packing problem. Part II:
New lower and upper bounds. 4OR: Q. J. Operat.
Res. Soc., 1: 135-147. DOI: 10.1007/s10288-002-
0006-y

3. Chazelle, B., 1983. The bottom-left bin packing
heuristic: An efficient implementation. IEEE
Trans. Comput., 32: 697-707.
http://www2.computer.org/portal/web/csdl/doi/10.1
109/TC.1983.1676307

4. Coffman, E.G., M.R. Garey and D.S. Johnson,
1984. Approximation Algorithms for Bin Packing.
In. Algorithm Design for Computer Systems
Design, Ausiello, G., N. Lucertini and P. Seratini
(Eds.). Springer, Vienna, ISBN: 0-387-81816-2,
pp: 49-106.

5. Dell’Amico, M., S. Martello and D. Vigo, 2002. A
lower bound for the non-oriented two-dimensional
bin packing problem. Discrete Applied Math.,
118: 13-24.

 http://portal.acm.org/citation.cfm?id=584685.584688
6. Garey, M.R. and D.S. Johnson, 1979. Computer

and Intractability: A guide to the Theory of NP-
Completeness. WH Freeman, San Francisco,
ISBN: 0716710455, pp: 338.

7. Lee, L.S., 2008. A genetic algorithms for two-
dimensional bin packing problem. MathDigest.
Res. Bull. Inst. Math. Res., 2: 34-39.

8. Lodi, A., S. Martello and D. Vigo, 1999. Heuristic
and metaheuristic approaches for a class of two-
dimensional bin packing problems. INFORMS J.
Comput., 11: 345-357.
http://portal.acm.org/citation.cfm?id=768372

9. Martello, S. and D. Vigo, 1998. Exact solution of
the two-dimensional finite bin packing problem.
Manage. Sci., 44: 388-399.
http://portal.acm.org/citation.cfm?id=289228

10. Wäscher, G., H. Hauβner and H. Schumann, 2007.
An improved typology of cutting and packing
problems. Eur. J. Operat. Res., 183: 1109-1130.
http://ideas.repec.org/a/eee/ejores/v183y2007i3p11
09-1130.html

