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Abstract: Problem statement: The most important character within optimization problem is the 
uncertainty of the future returns. Approach: To handle such problems, we utilized probabilistic 
methods alongside with optimization techniques. We developed single stage and two stage stochastic 
programming with recourse. The models were developed for risk adverse investors and the objective of 
the stochastic programming models is to minimize the maximum downside semi deviation. We used 
the so-called “Here-and-Now” approach where the decision-maker makes decision “now” before 
observing the actual outcome for the stochastic parameter. Results: We compared the optimal portfolios 
between the single stage and two stage models with the incorporation of the deviation measure. The 
models were applied to the optimal selection of stocks listed in Bursa Malaysia and the return of the 
optimal portfolio was compared between the two stochastic models. Conclusion: The results showed that 
the two stage model outperforms the single stage model in the optimal and in-sample analysis.  
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INTRODUCTION 
 
 Portfolio optimization has been one of the 
important research fields in financial decision making. 
The most important character within this optimization 
problem is the uncertainty of the future returns. To 
handle such problems, we utilize probabilistic methods 
alongside with optimization techniques. Stochastic 
programming is our approach to deal with uncertainty. 
This approach can deal the management of portfolio 
risk and the identification of optimal portfolio 
simultaneously. Stochastic programming models 
explicitly consider uncertainty in some of the model 
parameters and provide optimal decisions which are 
hedged against such uncertainty. 
 Stochastic programming is a branch of mathematical 
programming where the parameters are random. The 
objective of stochastic programming is to find the 
optimum solution to problems with uncertain data. 
 In the deterministic framework, a typical 
mathematical programming problem could be stated as: 
 

x

i

min f(x)

s.t g (x) 0, i 1,...m≤ =
 (1) 

 
where, x is from Rn or Zn. Uncertainty, usually 
described by a random element ξ(ω), where ω is a 

random outcome from a space Ω, leads to situation 
where instead of just f(x) and gi (x) one has to deal with 
f(x,ξ(ω)) and gi(x,ξ(ω)). Traditionally, the probability 
distribution of ξ is assumed to known or can be 
estimated and is unaffected by the decision vector x. 
The problem becomes decision making under 
uncertainty where decision vector x has to be chosen 
before the outcome from the distribution of ξ(ω) can be 
observed. 
 Markowitz[11,12] used the concept of risk into the 
problem and introduced mean-risk approach that 
identifies risk with the volatility (variance) of the 
random objective. Since 1952, mean-risk optimization 
paradigm received extensive development both 
theoretically and computationally. Konno and 
Yamazaki[10] proposed mean absolute deviation from 
the mean as the risk measure to estimate the nonlinear 
variance-covariance of the stocks in the mean-variance 
model. It transforms the portfolio selection problem 
from a quadratic programming into a linear 
programming problem. At the same time, the popularity 
of downside risk among investors is growing and mean-
return-downside risk portfolio selection models seem to 
oppress the familiar mean-variance approach. The 
reason for the success of the former models is that they 
separate return fluctuations into downside risk and 
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upside potential. This is especially relevant for 
asymmetrical return distributions, for which mean-
variance model punish the upside potential in the same 
fashion as the downside risk. This led Markowitz[12] to 
propose downside risk measures such as (downside) 
semi variance to replace variance as the risk measure. 
Consequently, one observes growing popularity of 
downside risk models for portfolio selection[13]. 
 Young[14] introduced another linear programming 
model which maximize the minimum return or 
minimize the maximum loss (minimax) over time 
periods and applied to the stock indices from eight 
countries, from January 1991 until December 1995. The 
analysis showed that the model performs similarly with 
the classical mean-variance model. In addition, Young 
argues that, when data is log-normally distributed or 
skewed, the minimax formulation might be more 
appropriate method, compared to the classical mean-
variance formulation, which is optimal for normally 
distributed data. 
 Dantzig[8] and independently Beale[3] suggested an 
approach to stochastic programming and termed as 
stochastic programming with recourse. Recourse is the 
ability to take corrective action after a random event 
has taken place. The main innovation is to amend the 
problem to allow the decision maker the opportunity to 
make corrective actions after a random event has taken 
place. In the first stage a decision maker a here and now 
decision. In the second stage the decision maker sees a 
realization of the stochastic elements of the problem but 
he is allowed to make further decisions to avoid the 
constraints of the problem becoming infeasible.  
 Stochastic programming is becoming more popular 
in finance as computing power increases. There have 
been numerous applications of Stochastic Programming 
methodology to real life problems over the last two 
decades. The applicability of stochastic programs to 
financial planning problems was first recognized by 
Crane[7]. Worzel et al.[15] and Zenios et al.[17] develop 
multistage stochastic programs with recourse to address 
portfolio management problems with fixed-income 
securities under uncertainty in interest rates. The 
models integrate stochastic programming model for the 
selection of portfolios with Monte Carlo simulation 
models of the term structure of interest rates. Hiller and 
Eckstein [9](1994), Zenios 16 (1995) and Consiglo and 
Zenios [6](2001) also apply stochastic programs to 
fixed-income portfolio management problems. Chang et 
al.[5] modeled a portfolio selection problem with 
transaction costs as a two-stage stochastic programming 
problem and evaluated the model using historical data 
obtained from the Taiwan Stock Exchange. Their 

results show that the model outperforms the market and 
the MV and MAD model.  
 In this study we develop single stage and two stage 
stochastic programming with recourse for portfolio 
selection problem and the objective is to minimize the 
maximum downside deviation measure of portfolio 
returns from the expected return. We use the so-called 
“Here-and-Now” approach where the decision-maker 
makes decision “now” before observing the actual 
outcome for the stochastic parameter. The portfolio 
optimization problem considered in this study follows 
the original Markowitz formulation and is based on a 
single period model of investment. At the beginning of 
a period, an investor allocates capital among various 
securities. Assuming that each security is represented 
by a variable, this is equivalent to assigning a 
nonnegative weight to each variable. During the 
investment period, a security generates a random rate of 
return. The change of capital invested observed at the 
end of the period is measured by the weighted average 
of the individual rates of return.  
 The main objective of this study is to compare the 
optimal portfolio selected using two different stochastic 
programming models. We compare the optimal 
portfolios between the single stage and two stage 
models with the incorporation of deviation measure. 
This method is applied to the optimal selection of 
stocks listed in Bursa Malaysia and the return of the 
optimal portfolio from the two models is compared. 

 
MATERIALS AND METHODS 

 
 Consider a set of securities I {i: i 1,2,...,n}= = for an 

investment. At the end of a certain holding period the 
assets generate returns, T

1 2 nr (r ,r ,...,r )=ɶ ɶ ɶ ɶ . The returns are 

unknown at the beginning of the holding period, that is, 
at the time of the portfolio selection and are treated as 
random variables. Denote their mean value by, 

T
1 2 nr E(r) (r , r ,..., r )= =ɶ . At the beginning of the holding 

period the investor wishes to apportion his budget to 
these assets by deciding on a specific allocation 

T
1 2 nx (x ,x ,...,x )=  such that ix 0≥  (i.e., short sales are 

not allowed) and i
i I

x 1
∈

=∑  (budget constraint). We use 

boldface character to denote vectors and ~ to denote 
random variables. 
 The uncertain return of the portfolio at the end of 
the holding period is TR R(x, r) x r= =ɶ ɶ ɶ . This is a random 
variable with a distribution function, say F, that is: 
 

F(x, ) P{R(x, r) }µ = ≤ µɶ  
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 We assume that the distribution function F does not 
depend on the portfolio composition x. The expected 
return of the portfolio is: 
 

R [R] [R(x, r)] R(x, r)= Ε = Ε =ɶ ɶ ɶ  
 
 Suppose the uncertain returns of the assets, rɶ , are 
represented by a finite set of discrete scenarios Ω = {ω: 
ω = 1,2,…,S, whereby the returns under a particular 
scenario ω∈Ω take the values rω = (r1ω, r2ω …, rnω)T 
with associated probability pω>0, 

ω

ω Ω

p 1
∈

=∑ . The mean 

return of the assets is 
ω ω

ω Ω

r p r
∈

=∑ . The portfolio return 

under a particular realization of asset return rω is 
denoted by Rω = R(x, rω). The expected portfolio return 
is expressed as: 
 

ω ω

ω Ω

R R(x,r )  E[R(x,r )] p R(x, r )ω ω
∈

= = = ∑  

 
 Let M[R(x, rω)] be the minimum of the portfolio 
return. The maximum (downside) semideviation 
measure is defined as: 
 

(x) MM[R(x,r )] [E[R(x, r )] - Min [R(x, r )]ω ω ωκ = =  (2) 
 
 Maximum downside deviation risk MM[R(x,r )]ω  is 
a very pessimistic risk measure related to the worst case 
analysis. It does not take into account the distribution of 
outcomes other than the worst one.  
 
Properties of the MM[R(x,r)]ɶɶɶɶ  measures: Since being 
introduces in[2], the axiomatic approach to construction 
of risk measures has been repeatedly employed by 
many authors for development of other types of risk 
measures, tailored to specific preferences and 
applications[1,13].  
 
Proposition 1: MM[R(x, r)]ɶ  measure is a deviation 
measure. 
 
Proof:  
 
• Subadditivity: 1 2 1 2κ(X X ) κ(X ) κ(X )+ ≤ + : 
 

 

1 2

1 2

1 2

1 1

2 2

1 1

2 2

1 2

MM[R (x, r) R (x, r)]

max{E[R (x, r) R (x, r)]

[R (x, r) R (x, r)]}

max{(E[R (x, r)] R (x, r))

(E[R (x, r)] R (x, r)}

max{E[R (x, r)] R (x, r) }

max{E[R (x, r)] R (x, r)}

MM[R (x, r)] MM[R (x, r)]

+
= +

− +
= −

+ −
≤ −

+ −
≤ +

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

 

• Positive homogeneity: 
 
 MM[0] max(E[0] 0) 0= − =   

 
MM[ (R(x, r)] max{E[ R(x, r)] R(x, r)}

max{E[R(x, r)] R(x, r)}

MM[R(x, r)], for all 0

λ = λ − λ
=λ −
=λ λ >

ɶ ɶ ɶ

ɶ ɶ

ɶ

 

 
• Translation invariance: (X ) (X) ,κ + α = κ − α  for all 

real constant α: 
 

 

MM[(R(x, r) ] max{E([R(x, r) ] [R(x, r) ])}

max{E[R(x, r)] R(x, r) }

max{E[R(x, r)] R(x, r)}

MM[(R(x, r)]

+α = +α − +α
= +α − −α
= −
=

ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ

 

 
• Convexity: 1 2 1 2κ[λX (1 λ)X ] λκ(X ) (1 λ)κ(X )+ − ≤ + −  

for all [0,1] :λ ∈  

 

 

1 2

1 2

1 2

1 2

1 2

1 1

2 2

MM[ R (x, r) (1 )R (x, r)]

max{E[ R (x, r) (1 )R (x, r)]

[ R (x, r) (1 )R (x, r)]}

max{(E[ R (x, r)] E[(1 )R (x, r))]

R (x, r) (1 )R (x, r)}

max{ (E[R (x, r)] R (x, r))

(1 )(E[R (x, r)] R (x, r

λ + − λ
= λ + − λ

− λ + − λ
= λ + − λ

−λ + − λ
= λ −

+ − λ −

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

1 1

2 2

1 2

))}

max{(E[R (x, r)] R (x, r))}

(1 )max{E[R (x, r)] R (x, r))}

MM[R (x, r)] (1 )MM[R (x, r)]

≤ λ −
+ − λ −

≤ λ + − λ

ɶ ɶ

ɶ ɶ

ɶ ɶ

 

 
Single stage stochastic programming portfolio 
optimization model with MM deviation measure: 
We formulate the portfolio selection optimization 
model as a single stage stochastic programming model 
as follows: 
 
Definition 1: S_MM: The stochastic portfolio 
optimization problem where the difference between the 
expected portfolio return and the maximum of 
minimum portfolio returns is minimized and 
constraining the expected portfolio return is: 
 

x X ω

Minimize  max  [R(x, r )  -  R(x, r )]ω ω∈ ∈Ω
 (3) 

 
 Subject to: 
 

ω i ωi
i I

R(x, r ) x r ω Ω

∈

= ∀ ∈∑  (4) 
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ω ω

ω Ω

R(x, r )  p R(x, r )ω
∈

= ∑  (5) 

 
R (x, r ) αω ≥  (6) 

 

i
i I

x 1
∈

=∑  (7) 

 

i i iL x U i I≤ ≤ ∀ ∈  (8) 

 
 Model S_MM minimizes the maximum semi 
deviation of portfolio returns from the expected 
portfolio return at the end of the investment horizon. 
Equation 4 defines the total portfolio return under each 
scenario ω. Equation 5 defines the expected return of 
the portfolio at the end of the horizon, while Eq. 6 
constraints the expected return by the target return α. 
Equation 7 insures that the total weights of all 
investments sum to one, that is, budget constraints 
ensuring full investment of available budget. Finally 
Eq. 8 insures that the weights on assets purchased are 
nonnegative, disallowing short sales and place upper 
bound on the weights.  
 Solving the parametric programs (3) for different 
values of the expected portfolio return α yields the 
MM-efficient frontier.  
  
Linear programming formulation for S_MM: 
Models S_MM have a non linear objective function and 
a set of linear constraints. Thus the models are non 
linear stochastic programming. However the models 
can be transformed to linear model as discussed below. 
 For every scenario ω∈Ω, let an auxiliary variable, 
let: 
 

ω

  max  [R(x, r )  -  R(x, r )]ω ω∈Ω
η =  (9) 

 
 Subject to: 
 

ω

 max  [R(x,r ) R(x, r )] for     ω ω∈Ω
η ≥ − ∀ω ∈ Ω  

 
 Then, we have: 
 
MM[R(x,rω)] = η (10) 
 
Subject to: 
 

ω

 max  [R(x,r ) R(x, r )] for     ω ω∈Ω
η ≥ − ∀ω ∈ Ω  

  
 Substituting (10) in portfolio optimization models 
(3) resulting in the following stochastic linear 
programming model: 

Minimize  η  (11) 

 
 Subject to: 
 

ω i ωi
i I

R(x, r ) x r
∈

=∑  (12) 

 

ω ω

ω Ω

R(x, r ) p R(x, r )ω
∈

= ∑  (13) 

 
R (x, r )  αω ≥  (14) 

 

ω
R(x, r ) R(x, r )ω − ≤ η  (15) 

 

i
i I

x 1
∈

=∑  (16) 

 

i i iL x U i I≤ ≤ ∀ ∈  (17) 

 
Theorem 1: If x * is an optimal solution to (3), then 
(x*,η*) is an optimal solution to (11), where 

ω

 max  [R(x,r ) R(x, r )]ω ω∈Ω
η = − . On the other hand, if 

(x*,η*) where 
ω

  max  [R(x, r )  -  R(x, r )]ω ω∈Ω
η =  is an 

optimal solution to (11), then x* is an optimal solution 
to (3). 
 
Proof: If x * is an optimal solution to (3), then (x*,η*)   
is a feasible solution to (11), where 

* *

ω

  max  [R(x ,r ) R(x ,r )]ω ω∈Ω
η =  − . If (x*,η*) is not an 

optimal solution to (11), then there exists a feasible 
solution (x,η), to (11) where 

ω

  max  [R(x, r ) R(x, r )]ω ω∈Ω
η = −   such that η≤η*.  

 Noticing that 
ω

max  [R(x, r ) R(x,r )]  ω ω∈Ω
 − ≤ η , then we 

have: 
 

*

ω

* *

ω

max  [R(x, r ) R(x,r )]

max  [R(x ,r ) R(x ,r )]

ω ω∈Ω

ω ω∈Ω

− ≤ η < η

< −
 

 
which contradicts that x* is an optimal solution to (3). 
 On the other hand, if (x*,η*) is an optimal solution 
to (11), where 

ω

max  [R(x, r ) R(x, r )]ω ω∈Ω
η = −  then x* is an 

optimal solution to (3). Otherwise, there exists a 
feasible solution x to (3), such that: 
 

* *

ω ω

max  [R(x, r ) R(x,r )] max  [R(x , r ) R(x ,r )]ω ω ω ω∈Ω ∈Ω
− < −  

 
 Denote by: 
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ω

 max  [R(x,r ) R(x, r )]ω ω∈Ω
η = −  

 
then we have: 
 

ω

* *

ω

*

max  [R(x, r ) R(x, r )]

 max  [R(x ,r ) R(x ,r )]

ω ω∈Ω

ω ω
∈Ω

η = −

< −

<η

 

 
which contradicts  that  (x* ,η*) is an optimal solution 
to (11). 
 
Two stage stochastic programming model with 
recourse: We now introduce dynamic model where not 
only the uncertainty of the returns is included in the 
model but future changes, recourse, to the initial 
compositions are allowed. We formulate the portfolio 
optimization by assuming the investor can make 
corrective action after the realization of random values 
by changing the composition of the optimal portfolio. 
This can be done by formulating the single period 
stochastic linear programming models with the mean 
absolute negative deviation measure as a two-stage 
stochastic programming problem with recourse. The 
two-stage stochastic programming problem allows a 
recourse decision made after uncertainty of the returns 
is realized. 
 Now, consider the case when the investor is 
interested in a first stage decision x that hedges against 
the risk of the second-stage action. At the beginning of 
the investment period, the investor selects the initial 
composition of the portfolio, x. The first stage decision, 
x is made when there is a known distribution of future 
returns. At the end of the planning horizon, once a 
particular scenario of return is realized, the investor 
rebalances the composition by either purchasing or 
selling the selected stocks. In addition to the initial, or 
first stage, decision variables x, let a set of second stage 
variables, yi,ω to represent the composition of stock i 
after rebalancing is done, i.e., yi,ω = xi+Pi,ω or yi,ω = xi-
Qi,ω  where Pi,ω and Qi,ω are the quantity purchased and 
sold respectively. yi,ω is selected after the uncertainty of 
returns is realized. 
 
Linear representation of MM: Before formulating the 
two stage stochastic programming models for portfolio 
optimization problem to minimize the second stage risk 
measure, let formulate mean absolute negative 
deviation and maximum downside deviation of 
portfolio returns from the expected return in terms of 
the second stage variables y: 

Let (R(y , r )) MM[R(y , r )]

max[R(y , r ) R(y , r )]
ω ω ω ω

ω ω ω ωω∈Ξ

κ =

= −
 (18) 

 
 For every scenario ω∈Ω, let the auxiliary variable: 
 

,max[R(y ,r ) R(y ,r )]ω ω ω ωω∈Ω
η = −  (19) 

 
 Subject to: 
 

ω

 max[R(y ,r ) R(y , r )] for  ω ω ω ω∈Ω
η ≥ − ∀ω∈ Ω  (20) 

 
 Then , we have: 
 
MM[R(x, r )] ω = η  (21) 

 
 Subject to: 
 

ω

    max  [R(y , r ) R(y , r )] for     ω ω ω ω∈Ω
η ≥ − ∀ω ∈ Ω  

   
Two stage stochastic linear programming 
formulation of 2S_MM: We formulate the two stage 
stochastic linear programming model for portfolio 
optimization problem that hedge against second stage 
MM as follows: 
 
Definition 2: 2S_MM: The stochastic portfolio 
optimization problem where the downside maximum 
semideviation of portfolio returns from the expected 
return is minimized and constraining the expected 
portfolio return is: 
 
Minimizeη  (22) 
 
Subject to: 

i
i I

x 1
∈

=∑  (23) 

 

ωi
i I

y 1     ω Ω

∈

= ∀ ∈∑  (24) 

 
R(x, r )  R(y , r )  α     ω Ωω ω ω+ ≥ ∀ ∈  (25) 

 

i i iL x U     i I≤ ≤ ∀ ∈  (26) 

 

ωi ωi ωiL y U     i I, ω Ω≤ ≤ ∀ ∈ ∀ ∈  (27) 

 
R(y , r )     ω Ωω ω ≥ η ∀ ∈  (28) 
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 Model (22) minimizes the maximum downside 
semi deviation of portfolio return from the expected 
portfolio return of the second stage variables, y, at the 
end of the investment period. Equation 23 insures that 
the total weights of all investments in the first stage 
sum to one and Eq. 24 insures that the total weights of 
all investments in the second stage under each 
scenario ω sum to one that is, budget constraints 
ensuring full investment of available budget. Equation 
25 constraints the expected return by the target return, 
α, while Eq. 26 and 27 insures that the weights on 
assets purchased are nonnegative, disallowing short 
sales and place upper bound on the weights in the first 
stage and second stage respectively. Finally Eq. 28 
define the mean absolute negative deviation of 
portfolio returns from the expected portfolio return in 
the second stage and the auxiliary variables for the 
linear representation of the deviation measure. 

 
RESULTS 

 
 We tested our models on ten common stocks listed 
on the main board of Bursa Malaysia. These we tested 
our models on ten common stocks listed on the main 
board of Bursa Malaysia. These stocks were selected at 
random from a set of stocks that were already listed on 
December 1989 and still in the list on May 2004. The 
closing prices were obtained from Investors Digest. At 
the beginning, sixty companies were selected at 
random. Then, ten stocks were selected and the 
criterion we use to select the ten stocks in our analysis 
is described as follows: 
 
• Those companies which do not have complete 

closing monthly price during the analysis period 
are excluded 

• Since the portfolios are examined on the basis of 
historical data, those with negative average returns 
over the analysis period are excluded 

 
 We use empirical distributions computed from past 
returns as equiprobable scenarios. Observations of 
returns over NS overlapping periods of length ∆t are 
considered as the NS possible outcomes (or scenarios) 

of the future returns and a probability of 
s

1

N
 is assigned 

to each of them. Assume that we have T historical 
prices, Pt, t = 1,2,…,T of the stocks under 
consideration. For each point of time, we compute the 
realized return vector over the previous period of 1 

month, which will be further be considered as one of 
the NS scenarios for the future returns on the assets. 
Thus, for example, a scenario ris for the return on asset i 
is obtained as: 
 

i i
is

i

P (t 1) P (t)
r

P (t)

+ −=  (29) 

 
 For each stock, we obtain 100 scenarios of the 
overlapping periods of length 1 month, i.e., NS. 
 To evaluate the performance of the two models, we 
examined the portfolio returns resulting from applying 
the two stochastic optimization models. We make 
comparison between S_MM and 2S_MM models by 
analyzing the optimal portfolio returns in-sample 
portfolio returns and out-of-sample portfolio returns 
over 60 month period from to 06/1998 to 05/2004. At 
each month, we use the historical data from the 
previous 100 monthly observations as scenarios and 
solve the resulting optimization models and record the 
return of the optimal portfolio. Then we calculate the 
in-sample realized portfolio return. The clock is 
advanced one month and the out-of-sample realized 
return of the portfolio is determined from the actual 
return of the assets. The same procedure is then 
repeated for the next period and the average returns 
were computed for in-sample and out-of-sample 
realized portfolio return. We use the minimum 
monthly required return α equals to one in the analysis 
for both the S_MM and 2S_MM models. 
 
Comparison of optimal portfolio returns between 
S_MM and 2S_MM: Figure 1 presents the graphs of 
optimal portfolio returns resulting from solving the two 
models; S_MM and 2S_MM. 
 

 
 
Fig. 1: Comparison of optimal portfolio returns S_MM 

and 2S_MM models 
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Fig. 2: Comparison of average in-sample portfolio 

return between S_MM and 2S_MM models 

 

 
 
Fig. 3: Comparison of out-of-sample analysis between 

single stage S_MM and two stage 2S_MM 
models 

 
 The optimal portfolio returns of the two models 
exhibit the same pattern. There is a decreasing trend in 
the optimal returns in both models. However, in Fig. 1, 
it can be seen that the optimal portfolio returns from the 
two stage stochastic programming with recourse model, 
2S_MM are higher than the optimal portfolio returns 
from the single stage stochastic programming model, 
 S_MM in all testing periods. This shows that an 
investor can make a better decision regarding the 
selection of stocks in a portfolio when he takes into 
consideration both making decision facing the 
uncertainty and the ability of making correction actions 
when the uncertain returns are realized compared to 
considers only making decision facing the uncertainty 
alone. 

Comparison of average in-sample portfolio returns 
between S_MM and 2S_MM: We use average 
realized returns to comparison In-Sample portfolio 
returns between S_MM model and 2S_MM model and 
the results are presented in Fig. 2. 
 There is an increasing trend in the months from 
December 1999 until April 2000, then decreasing trend 
until June 2001. Starting from June 2001 until May 
2004, both averages show an increasing trend. The 
average in-sample portfolio returns of 2S_MM are 
higher than the average in-sample portfolio returns in 
all testing periods.  
 
Comparison of out-of-sample portfolio returns 
between S_MM and 2S_MM models: In real-life 
environment, models comparisons is usually done by 
means of ex-post analysis. Several approaches can be 
used in order to compare models. One of the most 
commonly applied method is based on the representation 
of the ex-post returns of the selected portfolios over a 
given period and on their comparison against a required 
level of return. 
 The comparison of out-of-sample portfolio returns 
between the single stage stochastic programming 
model, S_MM and the two stage stochastic 
programming with recourse model, 2S_MM is also 
done using the average return. The results of out-of-
sample analysis are presented in Fig. 3. 
 Throughout the testing periods, the average returns 
from the two models show similar patterns. There is an 
increasing trend in the months from December 1999 
until December 2000, then decreasing trend until June 
2001. Starting from June 2001, both averages show an 
increasing trend. The average out-of-sample of the two-
stage model, 2S_MM is higher than those of single 
stage model, S_MM. Certainly, the models have been 
applied directly to the original historical data treated as 
future returns scenarios thus loosing the trend 
information. Possible application of some forecasting 
procedures prior to the portfolio optimization models, 
we consider, seems to be an interesting direction for 
future research. For references on scenarios generation 
by Carino et al.[3]. 
 

DISCUSSION 
 
 Uncertainty is an inseparable property in financial 
decision making. To handle such problems, one needs 
to utilize probabilistic methods alongside with 
optimization techniques. The models were developed 
for risk-averse investors and the objective of the 
stochastic programming models was to minimize risk. 
The study more significant if involve the investment in 
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multi period where the optimal portfolio can be 
evaluated monthly and annual return is calculated. The 
return of the future portfolio can be further improved if 
the future returns can be forecast more accurately. 
 

CONCLUSION 
 
 In this study, a portfolio selection of stocks with 
maximum downside semi deviation measure is modeled 
as a single stage and a two stage stochastic 
programming models. Single stage model incorporates 
uncertainty in the model and in the two stage model the 
uncertainty is incorporated in the models and at the 
same considers rebalancing the portfolio composition at 
the end of investment period. The comparison of the 
optimal portfolio returns, the in-sample portfolio 
returns and the out-of-sample portfolio returns shows 
that the performance of the two stage model is better 
than that of the single stage model. Here, we use 
historical data as scenarios of future returns. In our 
future research we will generate scenarios of future 
asset returns using appropriate scenario generation 
method before applying to our developed models. 
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