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Abstract: Problem statement: In order to calculate step size, a suitable line search method can be 
employed. As the step size usually not exact, the error is unavoidable, thus radically affect quasi-
Newton method by as little as 0.1 percent of the step size error. Approach: A suitable scaling factor 
has to be introduced to overcome this inferiority. Self-scaling Variable Metric algorithms (SSVM’s) 
are commonly used method, where a parameter is introduced, altering Broyden’s single parameter 
class of approximations to the inverse Hesssian to a double parameter class. This study proposes an 
alternative scaling factor for the algorithms. Results: The alternative scaling factor had been tried on 
several commonly test functions and the numerical results shows that the new scaled algorithm shows 
significant improvement over the standard Broyden’s class methods. Conclusion: The new algorithm 
performance is comparable to the algorithm with initial scaling on inverse Hessian approximation by 
step size.  An improvement over unscaled BFGS is achieved, as for most of the cases, the number of 
iterations are reduced. 
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INTRODUCTION 

 
 The quasi-Newton methods are very popular and 
efficient methods for solving unconstrained 
optimization problem: 
 

n

min f (x)
x R∈

  (1) 

 
where, f: Rn →R  is a twice continuously differentiable 
function. There are a large number of quasi-Newton 
methods but the Broyden’s class of update is more 
popular. As other quasi-Newton method, the Broyden’s 
method are iterative, whereby at (k+1)-th iteration: 
 

k 1 k k kx x d+ = + α   (2) 
 
where, dk denotes the search direction and αk is its step 
size. The search direction, dk, is calculated by using: 
  

kkk gHd −=  (3) 
 
Where: 
gk  =  The gradient of f evaluated at the current iterate 

xk  

kH  = The inverse Hessian approximation.  
 The step size αk is a positive step length chosen by 
a line search so that at each iteration either: 
  

T
k k

k k k k 1 k T
k k

g df (x d ) f (x )
s y

+ α ≤ − η α  (4) 

 
Or: 
 

T
k k k k 2 k kf (x d ) f (x ) g d+ α ≤ − η  (5) 

 
where, η1 and η2 are positive constants.  
 Note that the conditions (4) and (5) are assumes in 
Byrd and Nocedal (1989). They cover a large class of 
line search strategies under suitable conditions. If the 
gradient of f is Lipschitz continuous, then for several 
well known line search satisfy the Wolfe conditions: 
 

T
k k k k 1 k kf (x d ) f (x ) d g+ α ≤ − δ α   (6) 

 
T T

k k k k 2 k k(g(x d ) d d g+ α ≥ δ  (7) 
 

where, 1 2
11 and 1
2

< δ < δ < δ <  (4). 
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 Byrd and Nocedal (1989) prove that if the ratio 
between successive trial values of α is bounded away 
from zero, the new iteration produced by a backtracking 
line search satisfies (4) and (5). The inverse Hessian 
approximation is then updated by: 
 

T T
Tk k k k k k

k 1 k k kT T
k k k k k

s s H y y hH H v v
s y y h y

φ
+ = + − φ  (8) 

 
Where: 
 

k k 1 ks x x+= −  (9) 
 

k k 1 ky g g+= −   (10) 
 

( )
1

T k k k2
k k k k T T

k k k k k

s H yv y H y
s y y H y

 
= − 

 
 (11) 

 
and φ is a parameter that may take any real value.  
 According to Dennis and More (1977), there are 
two updated formulae that are contained in the 
Broyden’s class method, namely BFGS update if the 
parameter φk = 0 and DFP update if φk = 1.  
Consequently, (1.8) may be written as: 
 

DEP BFGSH (1 )H Hφ = − φ + φ   (12) 
 
 If we let φ1∈[0,1] (1.8) is called Broyden convex 
family. Meanwhile, if φ1∈[0,1-σ] for σ∈[0,1] then 
(1.8) is called the restricted Broyden’s class method 
(Byrd et al., 1987). 
 

MATERIALS AND METHODS 
 
Scaling the Broyden’s class method: 
Self-scaling Variable Metric (SSVM) method: Many 
modifications have been applied on quasi-Newton 
methods in attempt to improve its efficiency. Now, the 
discussion will be on the self-scaling variable metric 
algorithms developed by Oren (1973) and Oren and 
Luenberger (1974). Multiplying Hk by γk and then 
replacing γk Hk in (8), the Broyden’s class formula can 
be written as: 
 

T T
Tk k k k k k

k 1 k k k kT T
k k k k k

H y y H y yH H v v
y H y y s

φ
+

 
= − + φ γ + 
 

 (13) 

 
where γk is a self-scaling parameter. The formula (13) is 
known as self-scaling variable metric (SSVM) formula. 

Clearly, when γk = 1, the formula (13) is reduced to 
Broyden’s class update (8). 
 
Choices of the scaling factor: The choice of a suitable 
scaling factor can be determined by the following 
theorem. 
 Theorem (Oren and Luenberger, 1974) 
 
 Let φ∈[0,1] and γk>0  Let Hk be the inverse 
Hessian approximation and k 1Hφ

+  be defined by (13). 
Let λ1≥λ2≥…≥λn and 1 2 n....φ φ φµ ≥ µ ≥ ≥ µ be eigenvalues of 
Hk and Hk+1 respectively. Then the following statements 
hold: 
 
• If k n 1γ λ ≥ , then n 1φµ = and k i 1 n k i1 φ

+≤ γ λ ≤ µ ≤ γ λ i = 
1,2,…,n-1 

• If k i 1γ λ ≤  then n 1φµ =  and k i i k i 1 1φ
−γ λ ≤ µ ≤ γ λ ≤ , i = 

2,3,…,n 
• If k 1 k 11γ λ ≤ ≤ γ λ  and i0 is an index with  

k i0 k i01γ λ ≤ ≤ γ λ   k 1 1 k 2 2 k i01 ...φ φγ λ ≥ µ ≥ γ λ ≥ µ ≥ ≥ γ λ  
 then i0 i0 1 k i0 1 k k1 ....+ +≥ µ ≥ ≥ µ ≥ γ λ ≥ ≥ γ λ and there is at 

least one eigenvalue in i0
φµ  and i0 1

φ
+µ  which equals 

1.  
 
 Readers who are interested in the proof for the 
above theorem may refer Oren and Luenberger (1974), 
or Sun and Yuan (2006). From the above theorem, it 
can be shown that: 
 

T
k k

k T
k k k

s y
s H s

γ =  (14) 

 
is a suitable scaling factor (Sun and Yuan, 2006).  
 Shanno and Phua (1978)  suggested a simple  
initial scaling which require no additional information 
about the object function than that routinely required by 
variable  metric algorithm.  Initially Ho = I may be used 
to determine x1, where αo is chosen according to some 
step length or linear search criterion to assure sufficient 
reduction in the function f. Once x1 has been chosen, 
but before H1 is calculated, H0 now being scaled by: 
 

0 0 0Ĥ H= α  (15) 
 
and: 
 

T T
Tk k 0 k k 0

1 0 k kT T
k k k 0 k

ˆ ˆs s H y y HˆH H v vˆs y y H y
φ = + − φ  (16) 

 

( )
1

T k 0 k2
k k 0 k T T

k k k 0 k

ˆs H yˆv y H y ˆs y y H y
 

= −  
 

 (17) 
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 Substitution of (15) into (16) yields: 
 

T T
T0 k k 0 k k

1 0 k kT T
k 0 k k k

H y y H y yH H v v
y H y y s

φ  
− φ α + 

 
 (18) 

 
 After the initial scaling of H0 by an appropriate 
step size α, the inverse Hessian approximation is never 
rescaled. Numerical experiments show that the initial 
scaling is simple and effective for a lot of problems in 
which the curvature changes smoothly (Sun and Yuan, 
2006). 
 
An alternative scale factor: In this article, the smallest 
eigenvalue of inverse Hessian approximation was 
proposed as an alternative scaling factor of initial 
scaling on H as in (15). Replacing step size, α with the 
smallest eigen value of H, λ into (18) yields: 
 

T T
T0 k k 0 k k

1 0 k kT T
k 0 k k k

H y y H y yH H v v
y H y y s

φ  
− φ λ + 

 
 (19) 

 
 As proposed by Shanno and Phua (1978), this 
update is also an initial scaling on inverse Hessian 
approximation. After the initial iteration, the inverse 
Hessian approximation is never rescaled. The following 
algorithm is proposed with the smallest eigenvalue of 
H1, λ as the scaling factor. 
 
Eigenvalue scaled algorithm: For simplicity,    we let 
φ = 1, thus a modification of the BFGS method is 
obtained. For other members of Broyden’s class 
methods, this algorithm is also applicable. 
 
Step 1: Initialization Given x0, set k = 0 and H0 =I . 
Step 2: Computing search direction dk = -Hkgk If gk = 0, 

then stop. 
Step 3: Computing step size, α.  
Step 4: Updating new point, xk+1 = xk +αk dk 
Step 5: Updating approximation of inverse Hessian 

approximation, Hk+1. For k = 1, use (19), else, 
use (8). 

Step 6: Convergent test and stopping criteria If 
(xk+1<(xk) and kg ≤ ε , then stop. 

 Otherwise go to Step 1 with k = k+1. 
 

RESULTS 
 

 A MAPLE subroutine was programmed to test 
three algorithms, BFGS algorithm without scaling 

(BFGS), with eigenvalue scaling (19) (denoted as ES-
BFGS) and with the initial scaling (18) (denoted as S-
BFGS). The three algorithms was applied on eight 
commonly  tested functions, consist of two   variables 
(n = 2) (functions and four variable) (n = 4) functions: 
 
• Rosenbrock function with n = 2 
 

2 2 2
2 1 1f (x) 100(x x ) (x 1)= − + −  

 
• Cube function with n = 2 
 

3 2 2
2 1 1f (x) 100(x x ) (x 1)= − + −  

 
• Shalow function with n = 2 
 

2 2 2
2 1 1f (x) (x x ) (1 x )= − + −  

 
• Strait function with n = 2 
 

2 2 2
2 1 1f (x) (x x ) 100(x 1)= − + −  

 
• Rosenbrock function with n = 4 
  

2 2 2 2 2
2 1 1 4 3 3f (x) 100(x x ) (x 1) 100(x x ) (x 1 )= − + − + − + −  

 
• Cube function with n = 4 
 

3 2 2 3 2 2
2 1 1 4 3 3f (x) 100(x x ) (x 1) 100(x x ) (x 1)= − + − + − + −  

 
• Shalow function with n = 4 
 

2 2 2 2 2 2
2 1 1 4 3 3f (x) (x x ) (1 x ) (x x ) (1 x )= − + − + − + −  

 
• Wood function with n = 4 
 

2 2 2 2 2
2 1 1 4 3

2 2 2
3 2 4 2 4

f (x) 100(x x ) (1 x ) 90(x x )

(1 x ) 10(x x 2) 0.1(x x )

= − + − + −

+ − + + − + −
 

 
 The numerical results produced by implementing 
the three algorithms to the test functions are presented 
in the Table 1. The efficiency of the algorithm are 
based on the number of iterations needed to reach the 
minimum value of the  functions. Algorithm  with less 
iteration  is  considered more efficient. A tolerance of 
ε = 10−6 is set as the stopping criteria. 
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Table 1: Numerical results produced by the three tested algorithms, BFGS without scaling (BFGS), with Eigenvalue Scaling (ES-BFGS) and 
with step size scaling (S-BFGS) 

    Number of iterations 
   ---------------------------------------------------------------------------- 
Test function   Initial point BFGS  ES-BFGS  S-BFGS 
 Rosenbrock  (-2,-2)  17  15  16 
 (n = 2)  (-100,100)  30  28  28 
  (10 000, 10 000)  133  11  131 
 Cube  (-1.2, 1.6)  17  8  8 
 (n = 2)  (1.5,-150)  62  54  63 
  (100, 50)  44  44  35 
 Shalow  (5, 5)  9 9  9 
 (n = 2)  (-100,100)  15  13  13 
  (1000,-5000)  11  9  9 
 Strait  (2, 2)  5  5  5 
 (n = 2).  (100,100)  9  13  9 
  (1000, 1000)  12  13  13 
 Rosenbrock  (-2,-2,-2,-2)  16  18  17 
 (n = 4).  (-100,100,100,100)  30  29  28 
  (100, 100, 100, 1.5)  156  102  137 
 Cube  (1.5,-1.5, 1.5,-1.5)  42  40  39 
 (n = 4).  (10,-10, 10,-10)  18  17  18 
  (15,-15, 15,-15)  45  28  24 
 Shalow  (2, 4, 2, 4)  7  8  7 
 (n = 4)  (-200,400,200,400)  326  23  23 
  (2000, 2000, 2000, 2000)  78  74  99 
 Wood  (2,-2, 2,-2)  29  24  22 
 (n= 4)  (200,-5, 200,-5)  43  29  30 
  (2000, 2000, 2000, 2000) 80 56 58 
 

DISCUSSION 
 
 From the calculation using MAPLE software, an 
interesting relation between step size and eigenvalues is 
observed. For initial iteration, the value of step size and 
the smallest eigen value of Hessian approximation is 
almost identical, but after a number of iterations, the 
difference increased accordingly. This explains why the 
ES-BFGS is effective on initial scaling only, a 
similarity with the scaled algorithm proposed by 
Shanno and Phua (1978). When the scaling on Hessian 
approximation was done on every iteration, the 
performance of the scaled BFGS deteriorated, or even 
failed at all. 
 The numerical results show that the new algorithm 
(ES-BFGS) performance is comparable to the algorithm 
with initial scaling (S-BFGS). 
 

CONCLUSION 
 
 An improvement over unscaled BFGS is achieved, 
as for most of the cases (18 out of 24), the number of 
iterations are reduced. Further investigation will be 
carried out using the alternative scaling factor, λ on the 
other types of quasi-Newton methods. The relationship 
between the smallest eigenvalue of Hessian 
approximation and the optimal step size is also of the 
interest in future research, triggering the possibility of 

using eigenvalue as a new step size in the quasi-Newton 
methods. 
 For every test function, the minimum point is (0,0) 
for the two variables functions and (0,0,0,0) for the four 
variables functions . The minimum value 
is equal to zero for all the test functions. 
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