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Abstract: Problem statement: The ratio scheduling algorithm to solve the allocation of jobs in the 
shop floor was proposed. The problem was to find an optimal schedule so as to minimize the 
maximum completion time, the sum of distinct earliness and tardiness penalties from a given common 
due date d. Approach: The objective of the proposed algorithm was to reduce the early penalty and the 
late penalty and to increase the overall profit of the organization. The proposed method was discussed 
with different possible instances. Results: The test results showed that the algorithm was robust and 
simple and can be applied for any job size problem. Conclusion: The proposed algorithm gave 
encouraging result for the bench mark instances when the due date is less than half of the total 
processing time. 
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INTRODUCTION 

 
 In the Job Shop Scheduling Problem (JSP), a finite 
set of jobs has to be processed for a specified duration 
on a single machine around a common due date. The 
machine can process at most one job at a time and no 
preemption was allowed. Scheduling decision should be 
made according to a certain measure of performance, or 
scheduling criterion which is elaborated by Sule (2007). 
Industries job shop scheduling is a complex 
phenomenon to be solved with novel computational 
methods. Early finished jobs can lead to inventory loss 
and finishing jobs late lead to customer dissatisfaction. 
In general, a constructive optimization method tries to 
give the best possible solution. On the other hand, an 
iterative process improvises an assumed initial solution, 
which may take a long time, since we do not know 
which would give the optimal solution in a stipulated 
time frame. Hence we used the constructive method of 
optimization, barring the time taken to get the solution. 
The JSP is NP-hard discussed by Lenstra and Rinnooy 
Kan (1979) has continuously challenged to 
computational researchers. As the due date approaches 
processing speed of the jobs cannot be altered as 
discussed like in the Bender et al. (2007). Hong et al. 
(2007) developed LPT and PT algorithms for flexible 
flow-shop problem. Two-stage scheduling problem 

which minimizes total completion time was discussed 
by Yang and Lin (2009). A scheduling algorithm to 
solve sub models for complex scheduling problem was 
developed by Ghoul et al. (2007). Ismail and Loh 
(2009) developed ASO to minimize operational cost of 
an industry. 
 A set of n independent jobs has to be scheduled in 
a single machine, which can handle one job at a time. 
Assuming that there is no preemption of jobs and the 
machine is available from time t = 0 onwards. Let Jobs 
Ji(i = 1,2,…n) having processing time pi, earliness 
penalty αi and tardiness penalty βi are non symmetric. 
Every job has the Common Due Date d. 
 If S being the optimal schedule then the objective 
is to minimize: 
 

F(S) = F(ES)+F(LS) 
 
Where: 

m i

s j ii 1 j 1
F(E ) {(d p ) }

= =
= − α∑ ∑  

n i

s j ii m 1 j 1
F(L ) {( p d) }

= + =
= − β∑ ∑   

 
 The Common Due Date d and the ratio between 
early and late penalties are the decision variables Cheng 
and Gupta (1989) and Dileepan (1993). The problem is 
a restricted problem Feldmann and Biskup (2003) 
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studied the restricted Earliness and Tardiness problem 

in which 
n

ii 1
d p

=
<∑ . Hoogeveen and van de Velde 

(1991) discussed the earliness and tardiness penalties 
are taken as symmetric αi = βi for all jobs. Bagchi et al. 
(1987) discussed non symmetric case with all αi are 
equal and βi are equal. They developed an algorithm 
which takes O(n log n) time to schedule the non 
symmetric case. Biskup and Feldmann (2001) created 
the bench marks for scheduling jobs on a single 
machine by considering the Common Due Date as 
decision variable. Figure 1-5 in the Materials and 
Methods are drawn by using the bench mark test 
instances. In this study we discussed about restricted 
problem with common due date and the early and late 
penalties being non symmetric and distinct. 
 Hemamalini et al. (2010) proposed DMGS 
algorithm to solve job of scheduling in m machines. 
 The sequence of jobs Ji(i = 1,2.. n) are partitioned 

to two subsets E(J) and L(J) according to the ratio i

i

α
β

. 

To minimize F(S) two sets are created E(J) and L(J). 

The set E(J) which have jobs with i
i

1
α <
β

, to be 

completed before the due date in an optimal sequence 

and the set L(J) which has jobs with i
i

1
α >
β

, to be 

completed after the due date d.  
 In section 2 we discussed about job scheduling 

according to the ratio i

i

α
β

and the sum of the processing 

times of E(J) which is less than the common due date d. 
In section 3 we proved the properties of the optimal 

sequence according to the ratio i

i

α
β

 and the sum of the 

processing times of E(J) which is greater than the 
common due date d. In section 4 ratio scheduling 

algorithm is developed based on the ratio i

i

α
β

which 

gives an optimal sequence with minimum penalty and 
the results are illustrated.   

 
MATERIALS AND METHODS 

 
Case 1: In a sequence if  ji (J) ip d∈ <∑  then there is a 

time gap (d-∆) ji (J) i(where p )∈∆ =∑  before the due date 

d. Also if iJ L(J)∀ ∈ , its ip (d )< − ∆  then the starting 

time of the global optimal sequence is either 
t min(0, d)= ∆ −  or kmin(0, d)∆ + τ −  which depends on 

i
i i

i

p
αγ =
β

  and τk is the processing time of a job in L(J) 

with min γi. 
 
Proof: In the optimal schedule the m jobs of E(J) has to 
be completed before the common due date d and n-m 
jobs of L(J) has to be completed after the common due 
date d. Since ∆<d and each job of L(J) has lesser 
processing time than (d-∆), but it is not beneficial if a 
job Jk of L(J) is completed before the due date d (since 

in the set i

i

L(J), 1
α >
β

) which will increase the penalty. 

Therefore the job whose completion time coincides 
with common due date d belongs to either E(J) or L(J) 

which depends on i
i i

i

p
αγ =
β

. If ∑γi of L(J)>d then 

starting time of the schedule is t min(0, d)= ∆ − . And 

∑γi of L(J)>d than  starting time of the optimal schedule 
is a job in L(J) with min γi. Figure 1 demonstrates this 
scenario. Thus if t min(0, d)= ∆ − , then the minimum 

penalty is: 
 

m 1 i n i

i i i ii 1 j 1 i m 1 j 1
F(s) {(d p ) } {( p d) }

−

= = = + =
= − α + − β∑ ∑ ∑ ∑  

 
i.e., the completion time of the last job of E(J) in the 
optimal schedule coincides with the due date d with nil 
penalty. 
and if kt min(0, d)= ∆ + τ − , then the minimum penalty 

is: 
 

m i

k i ii 1 j 1

n i

i k ii m 2 j 1

F(s) {(d p ) }

{( p d) }

= =

= + =

= − τ − α

+ + τ − β

∑ ∑

∑ ∑
 

 

 
 
Fig. 1: For ∆<d and pi<d-∆∀Ji of L(J), idle time was 

inserted before starting the process 
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i.e., the completion time of a job of L(J) with min γi 

coincides with the common due date d with nil penalty. 
 
Case 2: If

i
iJ E(J)

p d
∈

<∑  and some i ip L(J),p (d )∈ > − ∆  

then the starting time of optimal schedule is t = 0 and a 
job of L(J) with max γi will be completed before the 
common due date d. 
 
Proof: Here also ∆<d, but some of the jobs of the set 
L(J) has the processing time pi>(d-∆). Assuming that 
there is no job with pi = (d-∆) (which will be discussed 
in next case). In all the other cases except the case 1, it 
is advantageous only if the starting time is t = 0. Since 
there is a time gap d-∆, it is possible to processes a job 
of L(J) before the due date d, which depends on γi. i.e., 
a job of L(J) with max γi  moves to E(J) and then 
scheduled according to its processing time and early 
penalty. Therefore some jobs of E(J) will be completed 
after the due date d (Fig. 2). Therefore in this case, the 
number of jobs completed before and after the due date 
d is less than or equal to m. And the remaining jobs of 
L(J) will be processed only after all the jobs of E(J) 
along with a job of L(J) with max γi are completed. 
 
Case 3:  If  ∆<d  and  if  at  least  one job of L(J) with 
pi = (d-∆) then the starting time of the schedule is t = 0 
and the completion time of such a job in L(J) coincides 
with the common due date d. 
 
Proof: In the set E(J) if (∆<d), then L(J) be the set of 
jobs which has to be completed after the due date. 
Suppose L’(J) be the jobs in which pi = (d-∆) then 
choose a job in L’(J) with min γi moves to E(J) and it is 
scheduled according to its processing time and early 
penalty. Therefore m jobs will be completed before the 
due date d and the job of L(J) with min γi, is completed 
exactly at the due date d with nil penalty. And combine 
the remaining jobs L’(J) with L(J) which will be 
completed after the common due date d (Fig. 3). Now 
in this case the early penalty is: 
 

m i

s j ii 1 j 1
F(E ) {(d p ) }

= =
= − α∑ ∑  

 
and the late penalty is: 
 

m i

s j ii m 2 j 1
F(L ) {( p d) }

= + =
= − β∑ ∑  

 
Then F(S) = F(Es ) + F(Ls). 
 
If the sum of the processing time of the jobs of E(J) is 
greater than the common due date. i.e., 

i
ip E(J)

p d
∈

>∑  

then it is obvious that the starting time of the sequence 
is t = 0 and the completion time of the last job of E(J) in 
the optimal schedule is after the common due date. 
 
Case 1: If there exists some jobs of E(J) with the 
processing time pi such that ∆-pi<d, then the job with 
max γi will be completed after the due date d in the 
optimal sequence.  
 
Proof: Let E’(J) be the non empty subset of E(J) such 
that E’(J) = {Ji/∆-pi<d}. Since ∆<d and E’(J) is non 
empty, exactly one of the job in E’(J) will be completed 
after the due date d with late penalty Li. The remaining 
jobs of E’(J) are processed before the common due date 
d with early penalty Ei. Here also γi is the decision 
variable that the job of E’(J) with max γi will move to 
L(J) and scheduled according to its processing time and 
late penalty (Fig. 4). Therefore n-m+1 jobs will be 
completed after the due date d: 
 

m 1 i n i

j i j ii 1 j 1 i m j 1
F(S) {(d p ) } {( p d) }

−

= = = =
∴ = − α + − β∑ ∑ ∑ ∑  

 

 
 
Fig. 2: For ∆<d and not all pi<d-∆ of L(J), then the 

process starts at time t = 0 
 

 
 
Fig. 3: For ∆<d and at least one pi = d-∆ of L(J), then 

the completion time of that job coincides with 
the common due date 
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Fig. 4: For ∆>d, then jobs of L(J) moves to E(J)  
 

 
 
Fig. 5: For ∆>d and at least one pi = d-∆ of E(J) then 

the completion time of that job coincides with 
common due date  

 
Corollary 1: If there exists some job of  E(J) such that 
∆-pi = d then E’(J) = {Ji/∆-pi = d}. Therefore in the 
optimal sequence the job of E(J) with max γi combines 
with L(J), also a job of E(J) is completed exactly on the 
due date d with nil penalty. This can be proved in a 
similar way. 
 
Corollary 2: If the set E’(J) = {Ji/∆pi<d} is empty in 
E(J), then there exist two or more jobs in E(J), which 
are completed after the common due date d with late 
penalty such that γi of those jobs are greater than γi of 
the jobs which are completed before the due date d in 
an optimal sequence (Fig. 5). 
 
Corollary 3: It is obvious that the above case is true if 
L(J) is empty (i.e.,) in the given sequence all the jobs 
with (αi/βi)<1 for the restricted problem. 
 

Corollary 4: If there exists some jobs with i

i

1
α =
β

, 

Then i
i

i

S(J) {J / 1}
α= =
β

. But in our algorithm we have 

partitioned the given set of jobs as E(J) and L(J), so in 
order to move the jobs of S(J) to E(J) or L(J),let us use 
the following conditions: 
 
• If ∆<d, then the job with max γi of S(J) move to 

E(J), the process repeats until the gap (∆-d) is zero 
or pi of max γi is greater than (∆-d) and the 
remaining jobs of S(J) combines with L(J) 

• If ∆>d, then all the jobs of S(J) combines with 
L(J). Thus the given set of jobs can be partitioned 
to E(J) and L(J) 

 
Scheduling algorithm:  
 
algorithm scheduleJobs(list of jobs, common due date) 
{ sort list of jobs based on ratio_factor in non 
increasing order 
 { 
 Update ratio list 
 } where γi >∅;∅-higher ratio should be scheduled 

before lower ratio in early order split ratio_list into 
two lists early_list and late_list 

 for (i = 0;i<NumberOfJobs;i++) 
 { 

 If i

ij 1
p d

=
<∑   

 Update early_list 
 Else 
 Update early_list 
} 
for (i = 0;i<NumberOfJobsEarlyJobs;i++) 
{ sort early_list in non decreasing order 
 jobi value (γi) is higher than jobi+1 

value(γi) if and only if (jobi cost * 
 jobi+1 early penalty ) > (jobi+1 cost * jobi 

early penalty) 
} 
for (i = 0;i<NumberOfJobsEarlyJobs;i++) 
{ sort late_list in ascending order 
 jobi value (γi) is higher than jobi+1 value (γi) if 

and only if (jobi cost * jobi+1 
 late penalty ) > (jobi+1 cost * jobi late penalty) 
 } 
} 
 

RESULTS 
 
 Results are demonstrated with the set of jobs to be 
sequenced before the due and after the due date. Jobs 
displayed before the red mark should be scheduled 
before due date d. Sequence was highlighted in the X-
axis. Processing time was placed in the Y-axis. Each 
cell was updated with the penalty. Figure 1-5 illustrated 
with all possible cases. 
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DISCUSSION 
 
 The existing algorithms like Tabu search and 
Genetic Algorithm, the time complexity is more i.e., in 
worst case time complexity is O(n!). But the proposed 
algorithm time complexity is 2 log (n). So the proposed 
algorithm outperforms in many instances of the test 
cases. The proposed algorithm is also suitable for 
unrestricted problem against single machine, the 
algorithm can also be extended to m machine 
scheduling problems.  
 

CONCLUSION 
 
 Based on proposed algorithm we present some of 
the properties of the jobs whose completion time 
coincides with the common due date and the instances 
in which early jobs moves after the due date and the 
late jobs before the due date. The proposed algorithm 
gives encouraging result for the bench mark instances 
when the due date is less than half of the total 
processing time. The algorithm was implemented using 
Java platform. The authors are gladly willing to 
distribute the jar file by email. 
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