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Abstract: Problem statement: One-dimensional cutting stock problem with discrete demands and capacitated 
planning objective is an NP hard problem. Approach: The mathematical model with column-generation technique 
by a branch-and-bound procedure and the heuristic based on the first fit decreasing method are proposed. Then, both 
approaches were compared and some characteristics were investigated such as upper-bound value, percentage above 
lower-bound value, computation time, and number of patterns. Results: The 24 instances were examined. The 
proposed heuristic provides the upper-bound value above the lower-bound around 0-16.78%. All upper-bound 
values from column-generation and integer programming are better than the proposed heuristic but all computation 
times are higher. Conclusion: The proposed heuristic has consistently high performance in computation times.   
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INTRODUCTION 
  
 More than four decades ago, mathematicians 
studied intensively and developed techniques involved 
with large-scale problems. The extensive work on 
large-scale mathematical programming has been 
initiated by (Dantzig and Wolfe, 1961). One of classical 
NP-hard problems which could not be solved within the 
polynomial computation time is a cutting stock problem 
(CSP). The finite number of cutting patterns may be 
very large. Gilmore and Gomory (1961; 1963) claimed 
that if the stock to be cut has length l = 200 inches and 
there  are  demands  for 40  different lengths from 20-
80 inches, the number of possible patterns could be 
exceed 10-100 million. The more cutting patterns and 
the more columns of constraints are involved.  The 
most powerful algorithm for solving linear programs 
with many columns is the Column-Generation 
Procedure. To apply in the real world problem, 
uncertainty is inherent in many real combinatorial 
problems. Uncertainty seems to be an important issue in 
constraint programming. The Stochastic CSP (SCSP) is 
a framework that can be used to model combinatorial 
decision problems involving uncertainty and 
probabilities recently. Therefore, the number of 
scenarios depends on the number of random variables 
and the discrete random choices. The increasing of 
number of scenarios is tremendously such, 5 variables 
and 2 discrete demand choices have made 32 scenarios, 

10 variables and 2 discrete demand choices have made 
1,024 scenarios, but 20 variables and 2 discrete demand 
choices have made 1,048,576 scenarios. So the specific 
algorithms must be concerned for solving it.   
 In this study, we investigate the mathematical 
model of 1-dimensional cutting stock problem with 
discrete random demands and propose the column-
generation technique for searching the effective cutting 
patterns. The model is based on “here and now” 
assumption with minimizing capacitated planning 
objective. The objectives of this study are to propose a 
mathematical programming with column-generation 
technique for solving the stochastic with discrete 
demands and capacitated planning objective, to propose 
a heuristic based on the first fit decreasing method and 
to compare between the mathematical programming 
method and the proposed heuristic method. In materials 
and methods shows two algorithms; the mathematical 
programming with column-generation and the 
constructive heuristic method. The result compares the 
computational time of both algorithms on the test 
problem with various retail items and choices of 
demands. Sequentially, conclusions are drawn.  
 

MATERIALS AND METHODS 
 
 There are two algorithms proposed in this study 
which are the method of column-generation technique 
and the proposed heuristic. Both algorithms were coded 
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in the C++ programming and run on Pentium 4, 256 
MB, 2.4 GHz. The column-generation procedure is 
linked with LINGO 6.0 solver. Their methodologies 
can be shown as follows: 
 
The mathematical programming with column-
generation technique: Consider the 1D-CSP with 
discrete demands and minimized capacitated planning 
objective. The following assumptions are made: 

 
• There is different length of items to be cut from a 

stock 
• Each item has associated a certain length 
• Each cutting pattern for a stock are not limited in 

the number of knives, but the sum of length of 
items  are not exceed a length of stock 

• The discrete demands are considered 
• The cost of capacity planning such as raw material 

or stock, inventory and backorder costs are 
considered  

 
 To describe the problem, we introduce the 
following notations: 
 
k = Index for stock lengths (k = 1, …, K) 
m = Index for retail items (m = 1, …, M) 
Lk = The length of stock k; (k = 1, …, K) 
lm = The length of item m; (m = 1, …, M) 
gk =  The cost of stock k 
Rk =  Amount of stock k available 
p = Index for patterns 
Pk = The number of feasible patterns for stock k 
amkp = The number of strips of item m cut in pattern p 

for stock length k, fulfilling 
M

m mkp k
m 1

l a L
=

≤∑  

s = Index for scenario of discrete demands (s = 1,., S) 
Fms = The probability of demand of item m at a 

scenario s, it equals 
H

hm
h 1

f
=

∏  

h = Index for choices of discrete random demands  
(h = 1,…, H) 

fhm = The probability of choice h of item m 
Ims = The inventory units of item m at scenario s 
Tms = The inventory costs of item m at scenario s 
Bms = The backorder units of item m at scenario s 
Ams  = The backorder units of item m at scenario s 
Dms  = The demand of item m at scenario s 
xkp = Decision variables that represent the number of 

times pattern p of stock k is used 
 
Minimize: 

K Pk

k kp
k 1 p 1

g x
= =
∑ ∑ +
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ms ms ms ms ms
m 1 s 1
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= =
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Subject to: 
 

kP

kp k
p 1

x R
=

≤∑ ∀k (2) 

 
kPK

mkp kp ms ms ms
k 1 p 1

a x I B D
= =

− + =∑ ∑ , ∀m, ∀s (3) 

 
xkp≥0, ∀k, p (4) 
 
 For a large instance, Pk can be extremely large. To 
reduce the number of Pk, we are not adding all feasible 
patterns in the model, but selecting some necessary 
patterns p* that maximized its dual objective function. 
To determine amk*p* we develop the knapsack based 
model using the simplex multipliers obtained from (1-
4) as follows: 
 
ek = The simplex multipliers of the used stock k 

from constraints (2) 
rms = The simplex multipliers of the item m from 

constraints (3) 
amk*p*  =  The obtained variable that defined number of 

strips of item m cut in pattern p* for stock 
length k* 

qk = The used stock length; qk∈{0,1} 
if qk = 1 then the stock length k is used. Otherwise, 

the stock length k is not used  
 
Minimize: 
 

K S M

k k k ms mk*p*
k 1 s 1 m 1

V (g e )q r a
= = =

= − −∑ ∑ ∑  (5) 

 
Subject to: 
 

M K

m mk*p* k k
m 1 k 1

l a L q
= =

≤∑ ∑   (6) 

 

k
k 1

q   1
Κ

=

=∑  (7) 

 
amk*p*≥0 and integer, m = 1, ..., M (8) 
 
qk≥0 and binary, k = 1,...,K (9) 
 
 The obtained output from (5-9) is a new legitimate 
cutting pattern and introduced into model (1-4) as a 
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new basis column. The new cutting pattern is to be 
adding until the objective dual values V from (5)≥0, the 
current column is proven to be globally linear 
programming optimal point. For a profound description 
of the column-generation (CG) procedure for cutting 
stock problems, Lasdon (1970). To illustrate this CG 
procedure, a flow chart is shown in Fig. 1. 
 Since the obtained xkp from globally linear 
programming optimal point usually are not integer 
therefore, the branch-and-bound procedure is applied 
for selecting integer values of xkp by the same basis 
column. The obtained integer solution from the branch-
and-bound procedure by the same basis column or 
necessary patterns are not providing the optimality that 
proven by solving all the feasible patterns, but it nearly 
the optimal value than the other heuristics. 
 
The constructive heuristic method: Although the 
column-generation approach provides the nearly 
optimal solution, variables and constraints increase 
drastically when increasing the number of items and 
the chance of discrete demand. Therefore, the obtained 
solution  from  the  column-generation  approach is 
not   always   attainable   within   the   allowable  time.  
 

 
 
Fig. 1: Flow chart of column-generation procedure for 

the problem 

The proposed heuristic is based on first fit decreasing 
method of Bin Packing problem (Brandimarte and 
Villa, 1995). Items are sorted in such a way that the 
longer item is selected before others. The outline of the 
algorithm has been shown in Fig. 2. 
 The algorithm is presented in the following steps: 
 
Step 1: Selected the longest length item from the item 

list and the stock size of lowest cost from the 
stock list. Go to Step 2 

Step 2: Knifed the selected item on the selected stock 
size from step 1 until the remainder length of 
stock size is not sufficient. Go to Step 3 

Step 3: From the remainder length of stock size, 
searching the longest length item that 
sufficient from all items and knives it as step 
2. Repeated this step until the remainder 
length is zero or the item are not selected. Go 
to Step 4  

Step 4: Adding one cutting pattern from step 3 to the 
pattern list. Remove the longest length item 
from the item list. If the item list is empty go 
to Step 5, else return to Step 1     

 

 

  
 
Fig. 2:  Flow chart of the heuristic for the problem 
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Step 5: Return all items into the item list but remove 
the stock size of lowest cost from the stock list. 
If the stock list is empty go to Step 6, else 
return to Step 1       

Step 6: From all patterns in the pattern list, calculated 
the maximum usage value of pattern j (uj) as: 

 

zd  = Average demand of item z 

zn  = Number of knives of item z 
 

z
j

z

d
u

n
=                        (10) 

 
  And set the iteration index as 1 then go to Step 7. 
Step 7: Sorting the pattern from the pattern list as 

randomly. If all items in the selected pattern j 
are not exceed the maximum demand choices, 
then repeat the selected pattern j from the 
sorting order randomly between 0 and uj. If the 
pattern in the last order is reached, then 
calculated cost as objective (1). Go to Step 8 

Step 8: If the maximum iteration is reached then 
STOP else increasing the iteration index and 
go to Step 7 

 
RESULTS 

 
 The 24 instances were considered and separated 
into 3 groups of eight instances. The first group is 
performed with 10 retail items; all items are 2 choices 
of demands with 50% of probability. For each instance, 
all items have the same demand are such (50, 130), (50, 
120), (50, 110), (50, 100), (50, 90), (50, 80), (50, 70), 

(50, 60). All possible scenarios are 1,024. The second 
group is performed with 6 retail items; all items are 3 
choices of demands with probabilities 0.3, 0.3, and 0.4, 
respectively. For each instance, all items having the 
same demand are such (50, 90, 130), (50, 90, 120), (50, 
90, 110), (50, 80, 130), (50, 80, 120), (50, 80, 110), (50, 
70, 130), (50, 70, 120). All possible scenarios are 729. 
The last group is performed with 5 retail items; all 
items have 4 choices of demands with probabilities 0.3, 
0.3, 0.2, and 0.2, respectively. For each instance, all 
items have the same demand are such (50, 70, 100, 
130), (50, 70, 100, 120), (50, 70, 90, 130), (50, 70, 90, 
120), (50, 70, 90, 110), (50, 80, 100, 130), (50, 80, 100, 
120), (50, 80, 90, 120). All possible scenarios are 1,024.  
For all instances, the stock length is 400, the stock cost 
is 100, the limited of stocks is 1000, inventory cost is 
10 and backorder cost is 50.  
 The lower-bound is computed by solving linear 
programming model (1-4). The limited time for a 
branch-and-bound procedure to obtain all integer 
solutions is 360 seconds. For the proposed heuristic, we 
set the maximum iterations of randomly generate the 
repeated cutting pattern to 10.  
 In order to compare the performance between 
column-generation technique and proposed heuristic, 
the upper-bound value and computation times are 
shown in Table 1-3. From the results, the proposed 
heuristic provides the upper-bound value above the 
lower-bound 0.00-16.78% approximately. The upper-
bound value from column-generation and integer 
programming is better than the proposed heuristic but 
the computation times are higher.  

 
Table 1: Eight instances with 10 retail items and 2 varied demands 
   Column generation + ILP  Proposed heuristic 
   --------------------------------------------------------- ----------------------------------------------------------------- 
Problem Demand 1 Demand 2 UB LB Time (sec) Patterns UB Time (sec) Patterns Above LB (%) 
Test 1 50 130 35700 35687 360 19 39290 29 10 10.10 
Test 2 50 120 33250 33212 360 18 36200 29 10 9.00 
Test 3 50 110 30620 30620 153 19 33690 29 10 10.03 
Test 4 50 100 28140 28140 83 18 31220 29 10 10.95 
Test 5 50 90 25670 25670 74 18 28160 29 10 9.70 
Test 6 50 80 23200 23200 79 18 26470 29 10 14.09 
Test 7 50 70 20720 20720 82 18 23050 29 10 11.25 
Test 8 50 60 18240 18240 76 18 21300 29 10 16.78 
Note: Time (sec): Computing times in seconds; Patterns: The number of generated cutting patterns 
 
Table 2: Eight instances with 6 retail items and 3 varied demands 
    Column generation + ILP  Proposed heuristic 
    ----------------------------------------------------- ----------------------------------------------------------- 
Problem Demand 1 Demand 2 Demand 3 UB LB Time (sec) Patterns UB Time (sec) Patterns Above LB (%) 
Test 9 50 90 130 18374 18374 179 11 19596 29 6 6.65 
Test 10 50 90 120 17174 17174 179 11 18350 29 6 6.85 
Test 11 50 90 110 15974 15974 179 11 17050 29 6 6.74 
Test 12 50 80 130 17940 17940 33 11 19586 29 6 9.18 
Test 13 50 80 120 18034 18034 33 11 18034 29 6 0.00 
Test 14 50 80 110 16656 16656 33 11 16656 29 6 0.00 
Test 15 50 70 130 17560 17560 120 11 19010 29 6 8.26 
Test 16 50 70 120 16360 16360 120 11 17964 29 6 9.80 
Note: Time (sec): Computing times in seconds; Patterns: The number of generated cutting patterns 



J. Math. & Stat., 6 (2): 79-83, 2010 
 

 83 

Table 3: Eight instances with 5 retail items and 4 varied demands 
     Column generation + ILP  Proposed heuristic 
     ---------------------------------------------- -------------------------------------------------------- 
Problem Demand 1 Demand 2 Demand 3 Demand 4 UB LB Time (sec) Patterns UB Time (sec) Patterns Above LB (%) 
Test 17 50 70 100 130 12686 12686 37 9 13956 29 5 10.01 
Test 18 50 70 100 120 13192 13192 37 9 13192 29 5 0.00 
Test 19 50 70 90 130 12186 12186 37 9 13312 29 5 9.24 
Test 20 50 70 90 120 11686 11686 37 9 12756 29 5 9.16 
Test 21 50 70 90 110 11186 11186 37 9 12052 29 5 7.74 
Test 22 50 80 100 130 13950 13950 37 9 13950 29 5 0.00 
Test 23 50 80 100 120 13306 13306 37 9 13306 29 5 0.00 
Test 24 50 80 90 120 12870 12870 37 9 12870 29 5 0.00 
Note: Time (sec): Computing times in seconds; Patterns: The number of generated cutting patterns 
 

DISCUSSION 
 
 From Table 1-3, 24 instances were tested. The 
computation times of all instances are not always 
related with various retail items and choices of 
demands. The column-generation and integer linear 
programming provides more patterns than the proposed 
heuristic. The numbers of scenarios for each table are 
1,024, 729, and 1,024, respectively. For the 
mathematical model, the number of variables and 
constraints after adding the basis column to linear 
optimal of all groups are (20,498, 10,241), (8,759, 
4,375), and (10,249, 5,121) respectively. That causes 
the computation times of all instances, solved by the 
proposed heuristic, are almost equal and also less than 
those solved by the column-generation and integer 
linear programming.           
 

CONCLUSION 
 
 In this study, we have examined the problem of 
minimizing the number of cutting stocks and 
capacitated planning cost such inventory and backorder. 
The 24 instances were experimented into three groups, 
varying by number of retail items and number of 
uncertain demands; (10, 2), (6, 3), and (5, 4). All test 
problems are solved by column-generation technique 
and the proposed constructive heuristic. For the 
column-generation technique, the linear programming 
model is proposed as (1-4) and the  new cutting pattern 
are adding as the new basis column by solving (5-9), 
the lower-bound is obtained when stop adding the new 
basis column and the upper-bound is obtained by 
applied branch-and-bound steps for rounding variables 
to integer.  For the proposed heuristic, it has 
consistently high performance in computation times but 
the obtained upper-bounds are not closed to the lower-
bound as the column-generation technique. 
Nevertheless, the proposed heuristic should be more 
appropriate to solve a large instance because of the 
quick response requirement.   
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