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Abstract: Problem statement: Least Squares (LS) method has been the most popular method for 
estimating the parameters of a model due to its optimal properties and ease of computation. LS 
estimated regression may be seriously affected by multicollinearity which is a near linear dependency 
between two or more explanatory variables in the regression models. Although LS estimates are 
unbiased in the presence of multicollinearity, they will be imprecise with inflated standard errors of the 
estimated regression coefficients. Approach: In this study, we will study some alternative regression 
methods for estimating the regression parameters in the presence of multiple high leverage points 
which cause multicollinearity problem. These methods are mainly depend on a one step reweighted 
least square, where the initial weight functions were determined by the Diagnostic-Robust Generalized 
Potentials (DRGP). The proposed alternative methods in this study are called GM-DRGP-L1, GM-
DRGP-LTS, M-DRGP, MM-DRGP and DRGP-MM. Results: The empirical results of this study 
indicated that, the DRGP-MM and the GM-DRGP-LTS offers a substantial improvement over other 
methods for correcting the problems of high leverage points enhancing multicollinearity. 
Conclusion: The study had established that the DRGP-MM and the GM-DRGP-LTS methods were 
recommended to solve the multicollinearity problem with high leverage data points.  
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INTRODUCTION 

 
 Least squares estimation is one of the most 
important regression techniques used for estimating the 
parameters of a model. Two of the assumptions that 
make least squares so attractive in terms of general 
model hypothesis and parameter significance testing, 
are normality of error distribution and independency of 
explanatory variables. The normality assumption can be 
violated in the presence of one or more sufficiently 
outlying observations in the data set resulting in less 
reliable estimates of the model parameters. The second 
is multicollinearity, which is a near-linear dependency 
among the explanatory variables (X-direction). 
Multicollinearity can cause large variability in the 
estimation of parameters. Sometimes it causes the 
parameters estimation to be different from the true 
values by orders of magnitude or incorrect sign. It may 
also inflate the variance of the estimations. High 
leverage points, the points far from the rest of the data 
in the X-direction, have high potential for influencing 
most of the regression results such as eigenstructure and 

condition index of X. Hadi (1992) noted that 
collinearity-influential points are usually the points with 
high-leverage which tends to pull the model fit to their 
direction and introduced these points as a new source of 
multicollinearity problems. Thus, diagnosing the 
multiple high leverage points and recognizing 
estimations, methods which are resistant to these points 
may improve regression estimations. In this respect, 
alternative robust regression methods are designed to be 
less sensitive than least squares to outliers mostly in Y-
direction, resulting in improved fits to the non-outlying 
observations. In order to achieve this stability, 
alternative robust regression methods limit the 
influence of outliers. Three most important properties 
of any alternative robust regression method are 
efficiency, breakdown point and bounded influence 
(Andersen, 2008). The main objective of this study is to 
propose some alternative estimators that are able to 
perform well where multiple high leverage points cause 
multicollinearity problem in regression analysis. 
Nonetheless, the development of such estimators has 
not been published extensively in the literature. To 
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achieve this objective, different types of related 
alternative robust methods have been investigated and 
their properties are compared. Among the different 
types of robust techniques, we will consider the bounded 
influence or Generalized M-estimators (Marronna and 
Yohai, 2000; Ghazi et al., 2010; Ramzi. and 
Viviane, 2010) which attempt to assign less weight to the 
high influence observations and large residual points. To 
enhance the GM-estimators, these estimators may be 
defined as multi-stage estimators where in different stages, 
different alternative robust properties of each 
technique are applied to combine the desirable 
properties of each technique (Simpson et al., 1992). 
 

MATERIALS AND METHODS 
 
Robust regression methods: Let us consider the 
following linear regression model as Eq. 1:    
 
 Y X= β+∈  (1) 
 
Where: 
Y = The n × 1 vector of response 
X = The n × P (P = k+1) matrix  
∈ = The n × 1 vector which has standardized normal 

distribution 
 
 When the Least Squares (LS) method is employed, 
estimation of the regression parameters can be obtained 
from Eq. 2: 
 

1ˆ (x / x) x / Y−β =  (2)  

 
 Robust regression procedures are mainly aim to 
provide resistant (stable) results in the presence of 
outliers. The Least Absolute Values (LAV) is one of the 
first robust methods that was introduced by Armstrong 
and Kung (1987) with a higher efficiency than LS by 
minimizing the sum of the absolute residuals. The use 
of this criterion, rather than ordinary least squares, 
provides robustness against outliers and is particularly 
useful when the ∈i disturbances are generated by fat-
tailed distributions. Rousseuw (1984). Rousseuw et al. 
(2003) introduced two robust methods namely the Least 
Median of Squares (LMS) and the Least Trimmed 
Squares (LTS). The LMS attempts to minimize the 

median of e2
i while the LTS minimize

h
2
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 are the ordered squared residuals, i 

=1,…,n  and h is the number of residuals included in 
the calculation. Both estimators have high breakdown, 
that 50%. However, they are unbounded influence 

estimators, where the LMS and the LTS has low and 
medium efficiency value, respectively (Simpson et al. 
(1992). Huber (1973) proposed a robust M-estimators 
where β̂  are obtained by solving Eq. 3: 
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 It is important to point out that, there are two types 
of ψ-functions, that is the monotonic ψ-functions (e.g. 
Huber’s ψ-functions) and the redescending ψ - 
functions (e.g., biweight ψ function’s, Beaton and 
Tukey (1974). M-estimators are the simplest high 
efficiency robust procedures, both computationally and 
theoretically having desirable asymptotic properties. 
However, the M-estimator is not robust in the X-
direction and has a low breakdown point, that is equal 
to (1/n) (Simpson et al., 1992; Marronna et al., 2006) 
introduced a class of methods which is called the 
Generalized M-estimators (GM-estimators) with a 
major aim of downweighting those high leverage points 
which have large residuals. Marronna et al. (2006) also, 
reported that these estimators have high efficiency and 
bounded influence properties which achieve a moderate 
breakdown point equal to (1/P). 
 The GM-estimator is the solution of the normal 
equation (4):  
 

 
n

i i
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i 1

ˆy x x 0
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where, φ are defined to down weight high leverage 
points, with high residuals and s is a robust scale 
estimate. Iteratively Reweighted Least Squares (IRLS) 
may be used to solve (4). At convergence, the GM- 
estimator may be written as Eq. 5: 
 

( ) 1
GM

ˆ X WX X WY−′ ′β =  (5) 
 
where, in this case, the diagonal elements of W are the 
weights wi defined as Eq. 6:  
  

 

i i GM
i
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i i GM i

ˆy x s
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ˆ(y x ) s

⎡ ⎤− β
ψ ϕ⎢ ⎥
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− ϕ
 (6) 

 
 The main objective of this study is to study some 
alternative estimators that are able to perform well 
where multiple high leverage points are the cause of the 
multcollinearity problem in regression analysis. In 
particular, the development of such estimators has not 
been published extensively in the literature. Since high 
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leverage points may be collinearity-enhancing 
observations, we attempt to reduce its influence by 
employing robust estimator which is known to be 
resistant to high leverage points. In this connection, we 
will consider the bounded influence or Generalized M-
estimators with a major aim of down weighting the high 
leverage points which have large residuals. Hence, in 
this study, we propose mainly alternative multi-stage 
GM-estimators and weighted MM-estimators to remedy 
the problem of collinearity-enhancing observations on 
the parameter estimates of the multiple linear regression 
model. Unfortunately, the MM-estimators are also 
sensitive to outliers in X-variables. As a solution to this 
drawback of MM-estimators, an alternative robust 
method is developed in section four. 
 To confirm the advantage of our alternative 
proposed methods, these methods compared with 
reweighted least square based on LMS (RLS-LMS) 
defined by Rousseuw and Leroy (2003). They 
computed scale estimator as: 
 

0 2
i

5s  1.4826 * 1 med(r )
n p 1

⎛ ⎞
= − ∗⎜ ⎟− −⎝ ⎠

 

 
where, ri is the residual of LS. The following hard 

rejection function for standardized residuals ir
S

 is 

utilized to compute the following initial weights Eq. 7: 
 

0
i

ri1 if 2.5
w S

0 otherwise

⎡ ⎤
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  (7) 

 
 The final weights for RLS-LMS are identified by 
the usage of a hard rejection for standardizing the LMS 

residuals by new scale as scale =
2

n
ii 1

w r
w p 1

=

∗

− −∑
 the 

weakness of this method is using LMS which is a low 
efficiency estimator. 
 
Diagnostic robust generalized potential statistics: A 
traditional measure of the outlyingness of an 
observation xi with respect to the sample is three-Sigma 
edit rule which is defined as follows Eq. 8: 
 

x xT
S
−

=   (8) 

 
Where: 
x  = The mean  
s = The standard deviation of collinear explanatory 

variables 

 The robust version of (8) is Eq. 9: 
 

x median (x)T
Max (x)
−′ =   (9) 

 
where, Mad (x) is the normalized median absolute 
deviation about the Median (x) (Mad= 1.4826(median 
|ri-median (ri)|). When the distribution of the data is 
normal, T and T‘ are approximately equal. Any 
observation which has absolute value of T or T ‘ greater 
than 3, is considered as outlier (Marronna et al., 2006). 
This method can be used in univariate regression 
models as a diagnostics rule to detect high leverage 
points. Since in most of the regression analysis, more 
than one collinear explanatory variable exists in the 
model, investigating some useful methods in these 
cases seems to be necessary. One of the handiest 
methods can be defined as hat matrix. Hat matrix which 
is traditionally used as a measure of leverage points in 
regression analysis is defined as W=X (XTX)-1XT. The 
most widely used cutoff points of hat matrix is twice-
the- mean-rule (2k/n) by Hoaglin and Welsch (1978). 
Hadi (1988) pointed out that the hat matrix may fail to 
identify the high leverage points due to the effect of 
high leverage points in leverage structure. He 
introduced another diagnostic tool as follows Eq. 10: 
 

ii
ii
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i ix x x x

−
−
−

 is the diagonal element of W 

and the i-th, diagonal potential pii can be defined as pii = 
( )T T 1

i (i) (i) ix x x x− , where X(i) is the data matrix X 
without the i-th row. He proposed a cut off point for 
potential values pii as Median (pii) + c Mad (pii) (MAD-
cutoff point) and c can be taken as constant values of 2 
or 3. This method also is unable to detect all of the high 
leverage points. So, Hadi (1988) introduced another 
diagnostic tool as generalized potentials for the whole 
data set which is defined as Eq. 11: 
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Where: 
D = The deleted set which corresponds to the 

suspected outliers  
R = The remaining set from observations after 

deleting d < (n-k) and it contains (n-d) cases 
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 Since there isn’t any finite upper bound for pii* ‘s 
and the theoretical distribution of them are not easy to 
derived, he introduced a MAD-cutoff point for the 
generalized potential as well. Recently, Habshah et al. 
(2009) developed Diagnostic Robust Generalized 
Potential (DRGP) to determine outlying points in 
multivariate data set by utilizing the Robust 
Mahalanobis Distance (RMD) based on Minimum 
Volume Estimator (MVE) (RMD-MVE) (defined by 
Rousseuw (1985) as Eq. 12: 
 

1
i R R RRMD (x T (x)) C (x) ( T (x))

fori 1,...,n

−′= − −

=
 (12) 

 
where, TR (×) and CR (×) are robust location and shape 
estimate such as MCD or MVE. The RMD- MVE has 
been used to detect the suspected group (D group) in 
generalized potential method in (11). The merit of this 
method is swamping less good leverage as high 
leverage points comparing with the RMD -MVE. In the 
next section we propose robust methods based on DRGP. 
 
Alternative proposed robust methods: In this section, 
some proposed form of φ-weights in (4) are generated 
and discussed. It is important to point out that in the 
proposed methods, Pi is the DRGP statistics with MAD-
cutoff of this statistic. In these methods, we will employ 
the Tukey’s biweight redescending φ-function which is 
defined as Eq. 13: 
 

22 if t ct(t) t 1
if t cc

⎧ ⎡ ⎤ ≤⎪ ⎛ ⎞ψ = −⎢ ⎥⎨ ⎜ ⎟ >⎝ ⎠⎢ ⎥⎪ ⎣ ⎦⎩
 (13) 

 
 The Tukey’s biweight with the tuning constant c = 
4.685 will result a 95% efficiency under normal error 
distribution. Assigning lower weights (even zero if the 
residual is too large) to large outliers, a redescending φ-
function is better compared to monotonic functions 
such as Huber’s function. In this respect, a 
redescending φ-functions limits the influence of outliers 
more effectively than a monotone φ-function. Given the 
fact that iterative techniques are computationally 
expensive and there is no guaranty to result in better 
estimations (Simpson, 1995) a one step reweighted LS is 
used for most of the proposed methods except DRGP-
MM estimator. Simpson et al. (1992) enumerated that 
the GM and MM-estimators surpass other robust 
method. In this connection, most of the alternative 
proposed methods are similar to that of GM and MM 
estimators with alight modification in which the DRGP 
proposed by Habshah et al. (2009) is incorporated in 

the calculation of the φ. The first two proposed 
estimators are multi-stage GM-estimators, while the 
others are defined based on the M-estimator and MM-
estimators. The proposed methods will be computed in 
three steps and summarized as follow. 
 
GM-DRGP-L1: 
Step 1: Employ L1 as initial estimate and then obtain 
the standardized residuals of L1 estimator. Compute 
MAD = 1.4826 (med|ri-med (ri)|. according to 
Marronna and Yohai (2000). It is important to mention 
that if MAD is computed from all the residuals of L1 
estimators, the scale estimates will become too small 
due to defining some zero residual. Thus, non-null 
residuals have been used to compute the scale estimate. 
 
Step 2: Defining 

( )( ) ( )( )i min 1, MAD cutoff p i / p i↓ ↓ ↓
⎡ ⎤ϕ = −⎣ ⎦  in (4) and 

using function (13) to assign final weights to the 
observations. 
 
Step 3: Compute a one step reweighted least squares as 
a convergence approach. 
 
GM-DRGP-LTS: 
Step 1: Consider the LTS as initial estimate and 
compute the standardized residuals and scale 
estimate based on LTS. 
 
Step 2: Define ( )( ) ( )( )i min 1, MAD cutoff p i / p i↓ ↓ ↓

⎡ ⎤ϕ = −⎣ ⎦  

in (4) and using function (13) to assign final weights to 
the observations. 
 
Step3: Compute a one step reweighted least squares as 
convergence approach. 
 
M-DRGP: 
Step 1: Compute the residuals of M-estimates of scale 
by assigning the initial weight of Wi, (DRGP (MVE) 

( )( ) ( )( )min 1, MAD cutoff p i / p i↓ ↓
⎡ ⎤−⎣ ⎦  where Pi is DRGP 

(MVE) statistics. 
 
Step 2: Define new weights as wi = ri (M-
estimator)/scale (M-estimator) and using a Tukey’s 
biweight to assign final weight to the observations. 
 
Step 3: Compute a one step reweighted least squares. 
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MM-DRGP: This method is similar to that of M-
DRGP, where on the second and third steps the M is 
replaced with the MM-estimators. 
 
DRGP-MM:  
Step 1: Compute the initial weight Wi, (DRGP(MVE)) 
which is defined in the first step of M-DRGP and using 
function (13) to assign final weights to the 
observations. 
 
Step 2: Compute the weighted MM-estimators by these 
final weights. 
 
Weighted multicollinearity diagnostics: Weighted 
multicollinearity diagnostics are defined as practical 
tools to investigate the source of multicollinearity 
which may be the high leverage points in the data set. 
Indeed, robust estimators to deal with multicolinearity 
problems are largely ignored issues. Walker (1985) 
noted that sometimes the weighting process in robust 
methods can improve the multicollinearity of X matrix. 
An effective measure of robust methods which reduce 
multicollinearity problems due to the presence of 
multiple high leverage points can be defined as 
weighted multicollinearity diagnostics. The two most 
classical and practical multicollinearity diagnostics are 
Correlation X matrix and Variance Inflation Factors 
(VIF). In bivariate regression analysis, when correlation 
coefficient exceeds 0.9, multicollinearity can be 
detected. However, in the case of more than two 
explanatory variables model, multicollinearity may 
occur in less than 0.9 correlation coefficients (Rosen, 
1999). Since, this multicollinearity diagnostics is simple 
and easy to compute, it is more preferred (Belsley, 
1991, Belsley et al., 1990). Another practical approach 
to detect multicollinearity is by using variance inflation 
factors (VIF). VIF is defined as V1F (i) 

( )( ) 12
i1 R w

−
− where Ri is the coefficient determination 

of regressing each xi on the other explanatory variables, 
which produced a valuable indices to detect inflated 
variances of regression parameter estimations 
(Marquardt, 1970). A cutoff point of (11) is 
recommended as a rule of thumb for VIF to detect 
severe multicollinearity. The weighted linear regression 
can be expressed as a transformed model Eq. 14: 
 
Yw = Xwβ + Єw  (14) 
 
where, Yw = W1/2Y, Xw = W1/2X and Єw = W1/2Є (Neter 
et al. (2004). The final weight of the proposed 
estimator, which is expected to be robust against high 
leverage points, can be used in the computation of 

weighted multicollinearity diagnostics. These 
diagnostics can be defined as a measure to evaluate 
which method is more robust against the high leverage 
points that are responsible for the multicollinearity. It is 
important to point out that all high leverage points are 
not collinearity-influential and vice versa (Hadi, 1992) 
The weighted correlation matrix can be computed 
through the correlation matrix of Xw. The weighted VIF 
is defind as follows Eq. 15:  
 

( )( ) 12
w iVIF (i) 1 R w

−
= −  (15) 

 
where, R2 (W) is the coefficient of determination of 
regressing each Xwi on the other weighted explanatory 
variables. It is worth to mention that if the high 
leverage points are the source of multicollinearity in the 
data set, the weighted multicollinearity diagnostics will 
not detect multicollinearity due to these points 
otherwise multicolliearity will be detected easily. 
 

RESULTS 
 
Numerical example: In this section we consider a real 
data set to evaluate the performance of our proposed 
robust methods.  
 
Child mortality data set: Gujarati (2002) introduced 
this data set with 64 observations which includes child 
mortality as dependent variable and Gross National 
Production (GNP) per capita and Female Literacy 
Rate (FLR) as independent variables. Table 1 presents 
the classical multicollinearity diagnostics methods 
such as the correlation matrix and VIF. The classical 
diagnostics measures of the original data clearly 
indicates that the data set doesn’t have collinear 
explanatory variables. The T and F-tests confirm that 
there exists relationship between the explanatory and 
response variable. This data set has two high 
leverage points based on the hat matrix by twice-
mean-rule cutoff point, while DRGP (MVE) can 
detect  11  observations   as   high   leverage   points.  
 
Table 1: Multico llinearity diagnostics and least square coefficients of 

child mortality data set. 
 Cor VIF b1 b2 F p- S (e) 
 (x1,x2)  (t p- (t p- value 
   value) value) 
Original data 0.27 1.08 -2.23 -0.01 0.000 41.75 
   (0.007) (0.000)  
   -0.24 0.002 0.003 70.25 
Modified data 0.99 37.34 (0.512) (0.938)   
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Table 2: High leverage diagnostics for child mortality data set 
Original data    Modified data     
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
index Hat(x) (0.09) DRGP(x)(0.11) T1(3) T2(3) index modified X1 Hat(x) (0.09) DRGP(x)(0.11  
1 0.02 0.20 0.34 2.16 24 248 0.03 1.23 
5 0.03 0.14 0.89 2.47 27 180 0.02 0.55 
24 0.05 0.90 1.03 6.26 30 1107 0.75 34.72 
27 0.05 0.35 1.22 4.15 33 490 0.13 6.04 
30 0.77 31.67 0.47 33.22 53 258 0.04 1.36 
33 0.14 5.52 0.06 13,87 58 255 0.11 0.14 
38 0.05 0.15 1.25 2.54 62 214 0.03 0.85 
53 0.05 102 0.97 6.59     
54 0.05 014 1.10 0.60     
58 0.07 0.91 1.47 6.48     
62 0.05 0.59 1.16 5.21     
 
Table 3: Multicollinearity diagnostics and least square coefficients of different methods for modified child mortality data set 
Method Cor (x1,x2) VIF b1(t p-value) b2(t p-value) F p-value s (e)  
Ls 0.99 37.34 -0.24 0.002 0.00 70.25 
   (0.512) (0.938) 
GM-DRGP-L1 0.98 33.36 -0.68 -0.02 0.00 55.00  
   (0.02) (0.34) 
GM-DRGP- LTS 0.65 1.75 -1.78 -0.04 0.00 39.20  
   (0.00) (0.00) 
DRGP- MM 0.65 1.74 -1.61 -0.04  36.17  
   (0.00) (0.00) - -  
MM-DRGP (0.02) 0.90 -0.69 -0.01   
   (0.02) (0.33) 0.00 54.80 
M-DRGP 0.90 5.25 -0.69 -0.01 0.00 54.80 
   (0.02) (0.33) 
RLS-LMS 0.90 5.25 -1.80 -0.04 0.00 39.45  
 0.65 1.74 (0.00) (0.00) 

 
The high leverage points aren’t collinearity-enhancing 
observations evident by the small value of correlation 
matrix and VIF (Table 1). It is important to note here 
that the high leverage points will be the prime source of 
multicollinearity when they are in the same 
observations with at least two explanatory variables. 
The robust three-sigma edit rule (Eq. 9) is shown in 
Table 2. The results of Table 2 signify that all the T ‘2 
exceeds the cutoff point of 3 which can be considered 
as high leverage points, except observations 1,5,38,and 
54. In order to obtain a large magnitude of high 
leverage points in x1 as in x2 , a modification in x2 in 
the points 24, 27, 30, 33, 53, 58- 62 has been 
considered based on the following formula: 
 

( ) ( )1 2 1 1Modified x T mad (x median (x )∗= +  

 
 The modified x1 is also displayed in Table 2. It is 
interesting to point out that after the modification, the 
hat matrix can't detect all of these modified 
observations as high leverage points, while the DRGP 
(MVE) statistics identified them as high leverage 

points. The results of Table 1 suggests that there is a 
strong multicollinearity in the modified data set. 
Moreover, the non-significant of the t-statistics and the 
significant of the F-statistics of two coefficient 
estimations confirmed the presence of multicollinearity 
in the modified data. The presence of multicollinearity 
has produced larger standard deviation of the errors for 
the modified data. 
 Table 3 presents the multicollinearity diagnostics 
and least squares coefficients of the modified child 
mortality data set for proposed robust methods and the 
existing robust methods which were introduced 
previously.  
 The results of Table 3 point out that the F-statistics 
can’t be obtained for DRGP- MM estimator because it 
is not a one step reweighted estimator. It can be shown 
also from Table 3 that, among the proposed robust 
methods, only three estimators, that is the DRGP-MM, 
GM-DRGP-LTS and RLS-LMS can solve the 
multicollinearity problems. It is interesting to note that 
the DRGP- MM has the least standard deviation error, 
followed by the GM-DRGP- LTS and RLS-LMS.Thus 
the new proposed estimators namely the DRGP-MM 
and the GM-DRGP-LTS, outperforms all other 
defined estimators.  
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DISCUSSION 
 
 Let us first focus our attention to the result of 
modified child mortality data set which is displayed in 
Table 1. The classical diagnostics measures of the 
original data clearly indicate that the data set does not 
have collinear explanatory variables. The T and F- tests 
confirm that there exists relationship between the 
explanatory and response variable. This data set has 
two multiple high leverage points based on the hat 
matrix by twice the mean-rule cutoff point , while 
DRGP (MVE) can detect 11 observations as multiple 
high leverage points. The high leverage points are not 
collinearity-enhansing observations evident by the 
small value of correlation matrix and VIF (Table 1). 
The results of Table 2 signify that all the T ‘2 of these 
multiple high leverage points for the original data 
exceeds the cutoff point of 3 which can be considered 
as high leverage points in x2, except for observation 
1,5,38and 54. It is interesting to point out that after the 
modification (values for variable x1 are modified to 
become high leverage collinearity-enhancing 
observations ), the hat matrix can not detect all of these 
modified observations as multiple high leverage points , 
while the DRGP (MVE) statistics identified them as 
high leverage points. The result of Table 1 suggests that 
there is a strong multicollinearity in the modified data 
set . Moreover, the non-significant of the t- statistics 
and the significant of the F-statistics of the two 
coefficient estimations confirmed the presence of 
multicollinearity in the modified data. The presence of 
multicollinearity has produced larger standard deviation 
of the errors for the modified data as well. It is 
important to point out that the F-statistics for the 
DRGP-MM estimator as shown in Table 3 can not be 
obtained because it is not a one step reweighted 
estimator. It can be observed from Table 3 that, among 
the proposed robust methods, only three estimators, that 
is the DRGP-MM, GM-DRGP-LTS and RLT-LMS can 
solve the multicollinearity problems. This result also 
suggests that the other methods can hardly rectify the 
multicollinearity problem evident by the larger p values 
and higher VIF values. It is interesting to note that the 
DRGP-MM has the least standard deviation error, 
followed by the GM-DRGP-LTS and RLS-LMS. We 
have not pursued the analysis of this example to the 
final conclusion , but a reasonable interpretation up to 
this stage is that the proposed Multi-stage GM- 
incorporated the DRGP are able to solve the problem 
of multicollinearity which is caused by high leverage 
points. 

CONCLUSION 
 
 Outliers in the X-direction which are refer as 
multiple high leverage points can render least squares 
estimation meaningless and cause multicollinearity 
problems. Many robust methods have been developed 
to reduce the effect of outliers in the X-direction. 
Nonetheless, the development of robust methods that 
deal with the multicollinearity problems which are 
mainly due to multiple high leverage points has not 
been published extensively in the literature. The main 
focus of this study is to develop a reliable method for 
correcting the problem of high leverage points 
enhancing multicollinearity. In this study, we 
incorporate the DRGP (MVE), one of the latest 
multiple high leverage diagnostics method with 
different types of robust estimators. The empirical study 
indicates that the DRGP-MM emerge to be more 
efficient and more reliable than other methods, 
followed by the GM-DRGP-LTS as they are able to 
reduce the most effect of multicollinearity. The results 
seem to suggest that the DRGP-MM offers a substantial 
improvement over other methods for correcting the 
problems of high leverage points enhancing 
multicollinearity. 
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