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Abstract: Problem statement: A cryptosystem allows a sender to send any confidential or private 
message using a receiver’s public key and later the receiver confirms the integrity of the received 
message using his secret key. Currently the existing cryptosystems were developed based on a single 
hard problem like factoring, discrete logarithm, residuosity, knapsack or elliptic curve discrete 
logarithm. Although these schemes appear secure, one day in a near future they may be broken if one 
finds a solution of a single hard problem. Approach: To solve this problem, we developed a new 
cryptosystem based on two hard problems; factoring and discrete logarithm. We integrated the two 
problems in our encrypting and decrypting equations so that the former depends on two public keys 
whereas the latter depends on two corresponding secret keys. Results: The new cryptosystem is shown 
secure against the most three considering attacks. The efficiency performance of our scheme only 
requires 3Texp +Tmul + Thash time complexity for encryption and 2Texp + Tmul time complexity for 
decryption and this magnitude of complexity is considered minimal for multiple hard problems-like 
cryptosystems. Conclusion: The new cryptosystem based on multiple hard problems provides longer 
and higher security level than that schemes based on a single hard problem. The adversary has to solve 
the two problems simultaneously in order to recover a corresponding plaintext (message) from the 
received ciphertext (encrypted message).  
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INTRODUCTION 

 
 Most the existing Cryptosystems (CRS) have the 
common feature that they are based on a single number-
theoretic cryptographic assumption (Diffie and 
Hellman, 1975) like Discrete Logarithms (DL) 
(Verkhovsky and Sadik, 2009) or Factoring (FAC) 
(Verkhovsky, 2009) a large composite number or 
Elliptic Curve Discrete Logarithm (ECDL) (Koblizt et 
al., 2000) problem. Even though such problems remain 
hard today, it is understood that one day in the future 
the FAC, DL or ECDL problems could be easily 
solved.  As soon as this happens, CRS based on such 
problems will no longer be secure. This scenario has led 
many cryptographers to come up with CRS based on 
multiple number-theoretic hard problems (Baocang and 
Yupu, 2005; Othman et al., 2008; Pramod and Manju, 
2010). The major motivation is that these kinds of 
schemes are more secure than the schemes based on a 
single hard problem. In other words, an adversary needs 
a longer period of time in order to break the two hard 
problems-based CRS since it is very unlikely for the 
adversary to obtain the solutions of these two problems 

simultaneously. However, how to design a public key 
encryption scheme based on multiple number-theoretic 
cryptographic assumptions is still a field in need of 
cultivation. 
 In this article, we designed a new cryptosystem 
based on two hard problems namely; factoring and 
discrete logarithm problems. With its guaranteed 
security, we also showed that the performance of the 
scheme requires reasonable numbers of operations in 
both encrypting and decrypting processes, which makes 
it very efficient to be implemented in the real world 
applications. 
 
Some notations and parameters: Throughout the 
paper, we use the following notations and parameters 
unless otherwise specified: 
 
• Two large strong random primes (Gordon, 1984) p 

and q which are safe primes and set the modulus n 
= pq 

• A function φ(n) = (p-1) (q-1) is a phi-Euler 
function and gcd (a, b) is the greatest common 
divisor of a and b 
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• g is a primitive element in *
n {z | gcd(z,n) 1}= =ℤ  

with order n satisfying n 1g 1(mod n)− ≡   

• h(.) is a cryptographic hash function (Schneier, 
1996) whose output is a t-bit length and we assume 
here that t = 128  

 
MATERIALS AND METHODS 

 
 We present a cryptosystem based on hybrid-mode 
problems; factoring and discrete logarithms. The 
scheme is described in three phases namely Setup, 
Encryption and Decryption. In Setup phase, the public 
and secret keys of users are calculated. Once computed, 
the public keys will be published in public directory so 
that anyone including the adversaries could access it 
while the secret keys remain secret except the owners. 
In Encryption phase, the original message that to be 
sent is first hashed using the appropriate cryptographic 
hash function h(.). This function determines a fixed 
length of output by hashing any arbitrarily length of 
input. Then a sender gets his hashed message 
encrypted. This is done by using the receiver’s public 
key and sender’s commitment of secret number. The 
encrypted message is then sent to the legal receiver. In 
Decryption phase, the receiver recovers the original 
message by using his own secret keys and without these 
secret keys no one can read the original message.  
 
Setup phase: 
 
• Pick randomly two integers e, x < n from *nℤ  such 

that gcd(e, n) = 1 
• Solve the equation ed ≡ 1 mod φ(n) for d  
• Compute the number  y ≡ gx mod n 
 
 The public key is formed by (e, y) and can be 
accessed in the public directory and the secret keys is 
given by (d, x) and only known to the legal receiver.  
 
Encryption: The sender encrypts his message h(m) as 
follows: 
 
• Select at random an integer c<n from *

nℤ  

• Get the original message hashed and assume that 
the resultant becomes h(m)  

• Disguise the message by computing: 
 
                       c e

1c (h(m)y ) mod n−≡  (1a) 

 
• Calculate the number: 

                          c
2c g mod n≡  (1b) 

 
 In the original El-Gamal (1985) cryptosystem, we 
compute the number c1 in Eq. 1 without the exponent e. 
In our scheme, we need this exponent to disguise our 
message ‘twice’ and to realize the hybrid-mode 
problems-based cryptosystem. 
 
Decryption: The receiver decrypts the obtained 
encrypted message (c1, c2) as below: 
 
• Compute the following: 
 
                           d x

1 2c c h(m)mod n≡  (2) 

 
A simple example: For purpose of validation, we 
illustrate an example to show the basic principle of our 
developed cryptosystem. Practitioners are not 
recommended to choose keys or parameters computed 
in this example in practice since inappropriate 
parameters would make this scheme vulnerable to 
attacks.   
 Assume that p = 29, q = 43. Then the modulus and 
its Euler-function are now given by n = 1247 and φ(n) = 
1176. Next chooses the number e = 11, x = 19 and g = 
17. Thus our public and secret keys of the scheme are 
(11, 1143) and (107, 19) respectively. To encrypt the 
message h(m) = 1122, the sender selects c = 3 and 
computes and sends receiver: 
 
c1 ≡ (1122 × 1143-3)11 ≡ 322 mod 1247 and  
c2 ≡ 173 ≡ 1172 mod 1247 
  
 The receiver recovers the original message as 
below: 
 
322107 117219 ≡ 1122 mod 1247 
 

RESULTS 
 
 We discuss our results according to the following 
criterion:  
 
• Verification of the new cryptosystem 
• Security analysis 
• Efficiency performance 
 
 To verify our scheme, we prove that the decrypting 
Eq. 2 is correct. For security consideration, we use a 
technique from heuristic security to show that the 
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scheme is secure. We do this by delivering the scheme to 
the literature for attacks. We consider three possible 
attacks by which an adversary (Adv) may try to take 
down the new cryptosystem. We define each attack and 
give the corresponding analysis of why this attack would 
fail. For efficiency performance, we evaluate the time 
complexity for both phases; encryption and decryption 
and also the communication cost for our scheme. 
 
Verification: We validate our new scheme by proving 
the following theorem. 
 
Theorem: If the algorithms of Setup and Encryption 
run smoothly then the decryption of the encrypted 
message in Decryption is correct. 
 
Proof: The Eq. 2 above is true for all encrypted 
message (c1, c2) since: 
 

d x
1 2

c e d c x c cx

cx cx

c c

[h(m)y ) ] (g ) (h(m)y )g

(h(m)g )g h(m)mod n

− −

−

≡ ≡
≡ ≡

                             

 
Security attack: We show that our scheme is 
heuristically secure by considering the following three 
most common attacks. 
 
Direct attack: Adv wishes to obtain all secret keys 
using all information available from the system. In this 
case, Adv needs to solve FAC and DL. The best way to 
factorize the modulus n = pq, is by using the number 
field sieve method (Lenstra et al., 1990). However, this 
method is just dependent on the size of modulus n and 
it is computationally infeasible to factor an integer of 
size 1024-bit and above. Next, to increase the security 
of our scheme, we must select strong primes (Gordon, 
1984) to avoid attacks using special-purpose 
factorization algorithms. We can achieve and maintain 
the same security level for DL by selecting the modulus 

n = pq  with 
p 1

2

−
  and 

q 1

2

−
  respectively are product 

of two 512-bit strong primes.  
 
Factoring attack: Assume that the Adv successfully 
solves the factoring problem so that he knows the secret 
d. With this information in hand, he learns that 
 
 d c ed cx

1c (h(m)y ) h(m)g mod n− −≡ ≡  

  
 From the above equation, to recover the original 
message h(m), one has to remove the term g-cx from d

1c   

and this only can be done if one knows the secret 
number x. Since at this stage the DL problem remains 
hard to solve then the Adv would fail.   
 
Discrete logarithm attack: Assume that the Adv is 
able to solve the DL problem and thus obtain the secret 
integer x. He then knows that 
 

x cx
2c g mod n≡  

 
 By knowing this number the Adv tries to recover 
the original message h(m) from the equation 
 
 c e e cxe

1c (h(m)y ) h(m) g mod n− −≡ ≡   

 
 Since the exponent e is public, he manages to 
remove the term g-cxe from c1 and obtains h(m)e. 
Unfortunately, to read the original message he must has 
the secret d in hand but this is impossible since the FAC 
is hard to solve. 
 
Efficiency performance: Next, we investigate the 
performance of our scheme in terms of number of keys, 
computational complexity and communication costs. 
The following notations are used to analyse the 
performance of the scheme. 
 
• SK  and  PK  denote the number of secret and 

public keys respectively 
• Texp is the time taken for a modular exponentiation 

and Tmul is the time taken for a modular 
multiplication 

• Tsqu is the time taken for a modular square 
computation and Tsrt is the time taken for a 
modular square-root computation 

• Tinv is the time taken for a modular inverse 
computation and Thash is the time taken for 
performing a hash function, 

• |x| denotes the bit length of x 
          
 Here we ignore the time performing modular 
addition or subtraction computation and we assume that 

the probability of the bit being selected as 0 or 1 is 
1

2
. 

The performance of our new cryptosystem is 
summarized as in Table 1.  
 From Table 1, the sender performs 721Tmul + Thash 
time complexity for encryption and the receiver 
performs 481Tmul time complexity for decryption using 
the conversion Texp

 = 240Tmul (Koblizt et al., 2000).  
Finally the communication costs or size of parameters 
of the scheme is 3|n|. 
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Table 1: The performance of our new cryptosystem 
Our new cryptosystem 
The number of keys SK 2 
 PK 2 
Computational complexity Encryption 3Texp + Tmul + Thash 
 Decryption 2Texp + Tmul 
Communication cost Encryption 2n 
 Decryption n 

 
DISCUSSION 

 
 Most of the designated cryptosystems are based on 
a single hard problem like factoring, discrete logarithm 
and elliptic curve discrete logarithm problems. If one 
day an enemy could find a polynomial algorithm 
solving this problem, he then can read the original 
message from any corresponding encrypted message.  
 Our new developed cryptosystem is prevented 
from this type of problem. This is because our scheme 
is designed based on two hard problems namely 
factoring and discrete logarithm. The enemy only can 
break this scheme if he can solve the two problems 
simultaneously and this is very unlikely to happen. If he 
manages to find a solution to one of the underlying hard 
problem, our scheme remains secure as the other 
problem remains hard to solve for at least another 
period of time. 
 Our scheme next is protected from the most 
common considering attacks for scheme based on two 
hard problems. The performance analysis reveals that 
the developed scheme requires only minimal operations 
in encryption and decryption phases and thus makes it 
very efficient. 
 

CONCLUSION 
 
 We presented a new cryptosystem based on 
factoring and discrete logarithms. The proposed scheme 
requires respectively 721Tmul + Thash and 481Tmul for 
encryption and decryption. Some possible attacks have 
also been considered and we showed that the scheme is 
secure from those attacks.  
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