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Abstract: Problem statement: When analyzing random variables it was useful tasnee the degree
of their monotone dependence or compare pairs oflom variables with respect to their
monotonicity. Existing coefficients measure geneoal linear dependence of random variables.
Developing a measure of monotonicity was useful daactical applications as well as for general
theory, since monotonicity was an important typedependenceApproach: Existing measures of
dependence are briefly reviewed. The Reimann cueffi was generalized to arbitrary random
variables with finite variance®esults: The article describes criteria for monotone depeod®f two
random variables and introduces a measofethis dependence-monotonicity coefficient. The
advantages of this coefficient are shown in congoariwith other global measures of dependence. It
was shown that the monotonicity coefficient satisfnatural conditions for a monotonicity measure
and that it had properties similar to the propsrtéthe Pearson correlation; in particular, itagqu (-

1) if and only if the pair X, Y was comonotonic (gter-monotonic). The monotonicity coefficient
was calculated for some bivariate distributions trelsample version of the coefficiemas defined.
Conclusion/Recommendations. The monotonicity coefficient should be used to careppairs of
random variables (such as returns from financise® with respect to their degree of monotone
dependence. In the problems where the monotongorelaf two variables has a random noise, the
monotonicity coefficient can be used to estimatéavece and other central moments of the noise. By
calculating the sample version of the coefficiene avill quickly find pairs of monotone dependent
variables in a big dataset.

Key words: Monotonicity, comonotonic, counter-monotonic, mamet dependence, measure of
dependence, pearson correlation, bivariate digtobs, random variables

INTRODUCTION Kimeldorf and Sampson (1978) introduced the
. ] . concept of monotone dependence as follows: two
Dependence of random variables is studied angontinuous random variables ¥nd Y are called
estimated in various applications (see, for exampleémonotone dependent if there exists a monotone
Tularamet al., 2010). Two most important types of ,nction g, in which Y = g (X) with probability 1.

dependence are linear and monotone dependence. goha| measures of dependence of two random
Other types include positive and negative quadrant

dependence (see Kimeldorf and Sampson, 1987). van;plgst mclfudse the Pea|r<sond (ﬁorrsel?]tlm the d
Random variables >and Y are called Positively coetticients of spearman, Kendall, -schweizer an

: Wolff and others (see, for example, Scarsini, 1984;
drant D dent (PQD) if fi , ;
(ngu?(;a;) Zer:(e(r:()e[rllzy((y)(? ) ifforany XJR Schweizer and Wolff, 1981)

“Negative Quadrant Dependence (NQD) is defined  Kimeldorf ~and Sampson (1978) introduced
by reversing the concept of PQD” (Kimeldorf and Monotone correlation p* and showed that if and Yare
Sampson, 1987). monotone dependent, thept (X, Y) = 1; but the

Suppose K and H are the joint distribution converse is false. Alsp* does not distinguish between
functions of <X, Y;> and <%, Y,>, respectively, with  the increasing and decreasing types of monotonicity
the same marginals; then gXY,> is called more PQD The Spearman, Kendall and Schweizer-Wolff
than <X, Y> if for any x, Y1 R, Hi(X, y) 2 Hx(X, V). coefficients can be used to measure monotone
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dependence but they are more appropriate for drdina

variables rather than continuous variables, simesy t
depend only on the ranks of the observations.

2) A pair <X, Y > of random variables is said ® b
comonotonic if it has a comonotonic support.
A counter-monotonigair <X, Y > is defined by

Schweizer and Wolff (1981) used copulas andchanging the second row in 1) to:

metrics to generate several nonparametric meastfires

dependence. Copulas are a useful technique dewelope

earlier for Pearson, Spearman and Kendall corogiati
Reimann (1992) introduced a measw® for
PQD random variables X and Y. In this article it is
generalized to some random variables X andvith
finite variances; it is shown to measure monotdyici

MONOTONICITY CONDITIONS

In this article we will consider only non-degertera
random variables (a degenerate random variable
constant almost surely).

As usual, for a random variable Xwith

distribution function k, the quantilefunction F is
defined by:

F () =inf{XOR: Fx (x)=u}, udo, 1],

with inf O = +co by convention.
The quantile functiorf,* is non-decreasing and left-

either (x < Xy and y > y,) or (x> X, and y < y,) holds.
Three criteria for comonotonicity were proven in
(Dhaeneet al., 2002). In case = 2 they have the
following form.

Theorem 1. A pair <X, Y > of random variables is
comonotonic if and only if one of the following
equivalent conditions holds:

(1) (Ox, YOR) [Fx, v (x, y) = min {F (X), & (V)}]

(2) For U ~ Uniform (0, 1), <X, Y > £<F? (U), F*

iS
(U)>

(3) There exist a random variable Z and non-
decreasing functions g, h, such that

<X, Y>=<g(2),h(2)>
Here K y denotes the joint distribution function of

X, Y and ¥ denotes equality in distribution. A
similar theorem for counter-monotonicity follows.

continuous. Other simple properties of the quantile

function are listed in the following lemma.

Lemma 1:

1)
1.
2)
3)

For any W[O0, 1], xOR: F*(u) <X = u<Fx (X)
2) R}, (u) =F;(u) +a for all ud(0, 1)

If B >0, thenFy (u) =BF,*(u) forall £J(0, 1)

If B <0, thenFy (u) = BF,*(1-u) for all ud(0,
1), except a countable or finite set of points

The concepts of comonotonicity and counter-

monotonicity were studied by Bauerle and Muller
(1998); Denuit and Dhaene (2003); Dhaeete al.
(2002); Dempster  (2002); Rachev  (2003).
Comonotonicity of a pair of random variables X and

Theorem 2: The pair <X, Y> is counter-monotonic
if and only if one of the following equivalent
conditions holds:

(4) (Ox, YOR)[Fxy (x, y) = max{F(x) + K(y) -1, 0}]
(5) For U ~ Uniform (0, 1)

<X, Y>="<F}(U), R*@1-V) >

(6) There exist a random variable Z, a non-decreasing
function g and a non-increasing function h, such
that:

<X, Y>=<g(@2).h(@>

In the following theorem we prove other criteria
for comonotonicity and counter-monotonicity. We

means their monotone increasing dependence, i.eassume that the random variables X andr¥ defined
their values change in the same direction. Counterpn the same probability spacexy., P >, whereX. is

monotonicity of the pair of X and Y means their

the collection of all events in this space.

monotone decreasing dependence, i.e., their values

change in opposite directions. Dhaegteal. (2002)
give a mathematically accurate definition of
comonotonicity for n random variables, which we
reproduce here forn 2.

1) A set A 0 R?is called comonotonic if for any of
its elements <x y;> and <x%, y,>: either (X < x, and y
<y,) or (x> Xz and y > y,) holds.

Theorem 3:

1) The pair <X, Y > is comonotonic if and only if
there exists BY., such that P (B) = 1 and

(7) (Hax, o UB) [X () < X (a3) =Y (@) < Y ()]

2) The pair <X, Y > is counter-monotonic if and only
if there exists B}, such that P (B) = 1 and
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(8) (Do, wp UB) [X (wy) < X (o) = Y (1) 2 Y (wy)]

Proof:

1) = Suppose <X, Y > is comonotonic. Then it has a,

comonotonic support A. Denote:
B={wlQ: <X (w), Y (w>OA}

Considerwy, «», OB with X () < X (w). This
implies Y (@)<Y (wy), since both pairs
< X (), Y () >and < X (), Y () > belong to A.
O Suppose there existd B, of probability 1, such
that the condition (7) holds. Denote:

A={<X(w),Y (w>: wd B}

Then P (< X, Y>OA) =P (B)=1,s0 Ais a
support of < X, Y >.

Suppose < y;> OA and <%, y»> OA. Then for
somewy, wp OB, X = X (@), y1 =Y (W), X2 = X (o)
and ¥ =Y (w). By (7), x <X implies y<y,and X%
> X, implies y > y,. Hence A is comonotonic.

2) <X, Y > is counter-monotonic if and only if <X,

-Y> is comonotonic. Hence part 2) of the Theorem

follows from part 1)

Note: Clearly X and Y can be interchanged with each
of the conditions (7) and (8).

): 221-228, 2012

is counter-monotonic if and only if one of the
following equivalent conditions holds:

Y = K1 - Fx(X)] with probability 1
There is a non-increasing function h such that
Y = h (X) with probability 1

According to Theorems 4 and 5, in the case of
continuous marginals, comonotonicity (counter-
monotonicity) is equivalent to monotone increasing
(decreasing) dependence defined by Kimeldorf and
Sampson (1978), which was described in our
introduction.

MONOTONICITY COEFFICIENT
We will fix a random variable U with the
uniform distribution on (0, 1). For a random vaii@ab
X with distribution function k denote:

X" = F*(U) and X = F*(1-U)

By the quantile transfer theorem, ¥° X and
X' =% X (see Dhaenet al., 2002).

Lemma 2: For the random variable Y and BOR, the
following holds:

Sometimes the condition (1) in Theorem 1 is taken

as the definition for comonotonicity and the coratit
(4) in Theorem 2 for counter-monotonicity. The
criteria in Theorem 3 are more suitable for the
definitions of comonotonicity and countgx
monotonicity, since they reflect their meaning and
are similar to the definitions of increasing and
decreasing functions.

In the case of continuous marginalg, i~, the
second inequality in the formulas (7) and (8) can b
made more strict. Also in the following two theorem
the conditions (2), (3), (5) and (6) are made sien
(the proofs follow from Theorem 3).

Theorem 4: Suppose the marginal distribution
functions k and Kk are continuous. The pair <X, Y > is
comonotonic if and only if one of the following
equivalent conditions holds:

Y = F;}(F, (X)) with probability 1.

There is a non-decreasing function g such that
Y = g (X) with probability 1.

Theorem 5: Suppose the marginal distribution
functions k and k are continuous. The pair <X, Y >
223

(Y+a) =Y +a.

If >0, thenBY)*= BY" and BY)' =BY".

If 3 <0, thenBY)* = BY' with probability 1 and
(BY)' =BY" with probability 1.

1)
2)
3)

Lemma 2 follows from Lemma 1.

In the rest of the article we will consider onlgm
degenerate random variables with finite variandés
following theorem presents some well-known results
(see, for example, Denuit and Dhaene, 2003) usiag t
aforenamed notations.

Theorem 6. For the random variables X and ftfie
following holds:

1)
2)

<X', Y"> is comonotonic and Cov {XY") > 0.
<X, Y'> is counter-monotonic and
Cov (X, Y')=Cov (X, Y)<0.
Cov (X, Y') < Cov (X, Y)< Cov (X, Y).
<X, Y> is comonotonic-
Cov (X, Y) = Cov (X, Y").
<X, Y> is counter-monotonie-
Cov (X, Y) = Cov (X, Y').

3)
4)

5)
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1.8x if 0< xs},

3
4 h(x)=1 -0.6x+ 0.8 if}< xsg,
3 3

. 2
AN / 1.8x- 0.8 if 5< x<1
/ The monotonicity coefficients for these bivariate
4 distributions are:

pm (X, Y) = 13/10=0.7692 and
pm (X, Z) = 293/ 26% 0.8908.

0 05 1 X . . L
So the second pair is more comonotonic, which is

) also obvious from the graphs in Fig. 1.
Fig. 1: Graphs for Example 1

Theorem 7. Properties of the monotonicity

variables X and Y is defined by: following holds:
1) pm(X,Y)>0<= p(X,Y)>0,
COV({(-Y) if Cov(X,Y)>0, wherep (X, Y) is the Pearson correlation of X and Y.
Cov(XY) 2) pm(X,Y)<0= p(X,Y)<O0.
3 X, Y) < X, Y) |1
pm(X,Y) = 0 if Cov(X,Y)=0, ) e ) I=lem (X V)
The degree of linear dependence is not grehsar
_M if Cov(X,Y)<0. the degree of monotone dependence.
Cov(X,Y')

4) -1<pm(X,Y)<1.
5) pm (Y, X)=pm (X, Y).

The definition is valid due to Theorem 6.1), 2). 6) If X and Y are independent, them (X, Y) = 0

When the coefficienpm (X, Y) is closer to 1, . -
th*en Cov (X, Y) is closer to the covariance Cov (X 273; Eg; ZE£S§ pm (X +a, ¥) = pm (X, Y).
Y ) of a comonotonic pair, hence the pair <X, Y> is ™. ' .
more comonotonic. Similarly, when the coefficient if B> 0, therpm (X, BY) = pm (X, Y);
pm (X, Y) is closer to-1, then Cov (X, Y) is closer if B < 0, therpm (X, BY) = —pm (X, Y) .
to the covariance Cov (X Y') of a counter- ' ' '
monotonic pair, hence the pair <X, Y> is more 9) pm (X, Y) = 1 if and only if the pair <X, Y> is
counter-monotonic. Thugm can be used to measure comonotonic.
the degree of monotonicity (monotone dependenceio) pm (X, Y) = -1 if and only if the pair <X, Y> is

between X and Y. counter-monotonic.
11) If X and Y are PQD, thepm (X, Y) = 0.
Example 1: Suppose X ~ Uniform (0, 1), Y =g (X) and If X and Y are NQD, thepm (X, Y) < 0.
Z = h (X), where: 12) If <Xy, Y1> is more PQD than <X Y,>, thenpm
(X1, Y1) 2 pm (X3, Y2).
2x ifOsxs?lg, p(XY)
o ) X*,Y* if p(X,Y)>0,
g(x)=4 1-x |f§<xs5, p( ' )
13) pm(X.Y)= 0 if p(X,Y)=0,

2x-1 if g<xsl,
3

and: p(x*'Y')
224
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Proof: 1)-10) follows from Lemma 2 and Theorem 6. Then the monotonicity coefficient is:
11) and 12) follow from the formula of Hoeffding:
2

32-9n

= 0.5368

pm (X, Y) =

© o

Cov(X,Y)= [ [ [ Ry (xy) =K () § ()] dxdy

-0 —0o

versus the Pearson correlatipriX, Y) = 0.5.
13) Obvious.
The linear properties in Theorem 7.7), 8) are dtate Example 3: Suppose X~normal (0,1)~normal (k,1),
only for one argument but they also hold for theeot X and € are independent and Y = (X2 Then the

argument due to symmetry. monotonicity coefficient is:

Thus, the properties of the monotonicity coeffitie
pm are similar _to the properties of the Pearson pm (X, Y) = 1
correlationp but with respect to monotone dependence. 1+7°

The measur@m is not entirely new. For PQD random

variables X and Y, Reimann (1992) defined a measure As expected, the monotonicity coefficient

A" by the formula: decreases with increase Dfthe spread of the nois
and does not depend pr{the constant shift of X).

The Pearson correlation is:
[ Ko —K K | dxdy

§e—3

() (v o)

_J; XY
Io[min(Fx,FY)—E F | dxdy p(X, Y) =

§e—3

\/15(l+‘c )" +36u2(1+72) " ou (141 )

The coefficienpm is a generalization of  to any
random variables with finite variances; for PQD  In the case zwhene has the standard normal
variables X and Ypm (X, Y) = A" (X, Y) by the distribution (1 = 0,1° = 1), the monotonicity coefficient is

Hoeffding formula. Reimann (1992) did not study thepm (X, ) :iz = 0.7071 versus the Pearson correlation

properties of A" except the property\” > p. He V2
described\” as a measure of association of two _ 3

X,Y)= —=0.5477.
random variables rather than a measure of monoton%( ) J30

dependence. He defindd in terms of double integrals
andpm has a simpler definition in terms of covariances.Example 4: Suppose X anc are the same as in

Example 3 and Y =£X)°. Then:
COMPARISON TO OTHER COEFFICIENTS

AND APPLICATIONS 1
pm (X, Y) =-pm (-X,Y) = - —
The relation betweepm andp is described in the 1+1

following theorem.
Scarsini (1984) introduced some conditions for a

Theorem 8: Relation to the Pearson correlation: measure of dependence of two random variables.
Suppose Cov (X, Y} 0. Then: Theorems 7 and 8 shows thgm satisfies a
reasonable modification of these conditions. In
pm (X, Y) =p(X,Y) = particular, if each of random variables X and Y has
normal distribution, therpm(X, Y) = p(X, Y) by

there exist numbers a and b, such thaf"é = bX.
In the following examples we compare the val eSTheorem 8.
o o die P vl One of the Scarsini’'s conditions is the invariance

of pm andp for some bivariate distributions. of a measure of concordance under increasing

transformations of X and Y. This condition might be

useful for a measure of general dependence but not

monotone dependence, since the result of increasing

2 it 0sx<y<l transformations of two yariableg can get cIosep¢o

f(x, ):{ shESEs further from a monotonic relation than the original
0 otherwise pair, i.e., increasing transformations can charige t

225
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degree of monotone dependence. The Pearsamoisee included; the monotonicity coefficient can be
correlation does not satisfy this condition; it used to estimate some characteristics of the ntis®.
measures linear dependence, which is a particulafatural to assume thathas a normal distribution, as
case of monotone dependence. The Spearmapsual. The following two examples illustrate some
Kendall and Schweizer-Wolff coefficients satisfy cases whepm(X, Y) is used to estimate the variance
this condition; they depend only on the ranks @& th ang central moments of the noise. Cleagy) cannot
observations. The coefficierim is only invariant pe ysed to estimate the mearepsince this mean is a
under changes of scale and location in X and Y. W&gnstant shift of X or Y and it does not affect tegree
believe thatpm is a more appropriate measure ofof their monotone dependence. In the following
monotone dependence of two variables and illustratgxamples we also assume the normality of X or Y,
this with the following two examples. which simplifies the calculations.

Example 5. Table 1defines random variables X, Y and Example 7: Suppose Y = g (X) +, where g is a
monotone function, noise has a normal distribution
with variancet?, variables X and are independent and
k=1, 2,3). g (X) has a normal distribution with varian@& Then:

Since the pairs <X, Y > and <X, Z > have the same
ranks, their Kendall coefficients are equa{X, Y) =

Z on the sample space = {g,, &,, €3} with P (g) =

wlk

pm(X,Y):% if g is increasing and

=1(X, 2= % and so are their Spearman coefficients: P+t
1 I
Ps (X, Y) = pPs (X, Z) = —E. But the second pair Is pm(X,Y): _% |fg is decreasing_
more counter-monotonic: it is closer to a decraasin P
relation as the graphs in Fig. 2 shows; this iseotéd
by its lower monotonicity coefficient: Table 1: Random variables X, Y and Z from Example 5
o oy s
) X 1 2 3
__f__ Y 2t 28 22
pm (X, Y) = §~ 0.667 and 7 1ot 10° 102
10 _
pm (X, Z) :—E*- -0.909 Table 2: Random variables X, Y and Z from Example 6
oy &3 &3 o) s s
X 1 2.000 3.00 400  5.00 6
Example 6: Table 2defines random variables X, Y and v -1 0.199 -0.90 0.90 0.20 1
Z on the sample spa€e= {wy, uy, W, Wy, W, W} z -1 -0.010 -0.05 0.35  0.34 1
with P(wy) = ‘—15 k=1, 2,..,6).
Since the pairs <X, Y > and <X, Z > have the same 95 1
ranks, their Kendall coefficients are equa(X, Y) =
=1(X,2) = i—; and so are their Spearman coefficients: 0.375
v
ps (X, Y) =ps (X, 2) =§—;. But the second pair is more o2
comonotonic: it is closer to an increasing relatethe
graphs in Fig. 3 shows; this is reflected by itghler i
monotonicity coefficient: o .
pm (X, Y) = 0.766 angm (X, Z) = 0.991. 0 S~

The coefficientpm can be applied to the problems
where Y is a monotone function of X with a randomFig. 2: Graphs for Example 5.
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1.23 The coefficient pm naturally generates a
monotonicity measure rm for a two-dimensional
0.5 sample:
0.41 s(xy) .
if s(x,y)>0,
S( XD’)F) ( y)
0
X rm(x,y) = 0 if s(xy)=0,
04 s(xy) .
- if s(xy)<0
0.8 S(X 'y)
127 where s(x, y) is the sample covariance, x* is tasle
_ X with its values in ascending order aridsythe sample
Fig. 3: Graphs for Example 6 y with its values in descending order. The propertf

rm are similar to the properties pifn. Details are given
The result holds for the particular case whenin (Kachapova and Kachapov, 2010).
g(x) = In x, so X has a lognormal distribution with
the second paramet@r The following example is a CONCLUSION
generalization of Example 3.

This article introduced the monotonicity coeffitie
Example 8 Suppose Y = g(Xe), where g is a pm, a new measure of the monotone dependence of
monotone function, noise has a normal distribution random variables with finite variances. It was @ov
with variancer?, variables X and are independent and that pm satisfies reasonable conditions for such a
X has a normal distribution with varianBé Then measure:

B . _ e pm has linear properties
m(X,Y)=—— ifg is increasing and e ;
PIRA 2.2 19 9 e itisinvariant under changes of scale and location

+
P «  pm(X,Y) = 0 for independent random variables X,
Y
pm(x,y) = B if g is decreasing. « pm(X,Y) =1 for a comonotonic pair X, Y
B2+1? « pm(X, Y) =-1 for a counter-monotonic pair X, Y

The coefficientpm is a more sensitive measure of
monotonicity than the coefficients depending onty o
the ranks of observations.

The sample version rm of the monotonicity
coefficient was defined.

.[2:[32[ 12_ j We recc_)mmend _usingpm to compare pairs of
pm random variables with respect to their degree of

monotonicity. For example, in portfolio analysiseth

monotonicity coefficient can be used to assessléigeee

of increasing or decreasing monotone dependence

between two asset returns and to do respective

comparison of pairs of assets. In the problems eviiex

For the random variables from Examples 7 and 8
the varianca? of the noise can be expressed in terms
of the monotonicity coefficierpm =pm(X, Y):

Sincee has a normal distribution, this also defines
its central moments:

o, =f (iz—l] (k-1 k=1,2,3,.. monotone relation of two variables has a randorsejoi
pm the coefficientpm can be used to estimate variance and
other central moments of the noise.
Thus, in applications the monotonicity We recommend to use the sample monotonicity
coefficient can be used to estimate the centratoefficient rm to find monotonic relationships imgb
moments of the noise. datasets.
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