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Abstract: In this study the ability of Autoregressive Moving Average (ARMA) and Autoregressive 
Integrated Moving Average (ARIMA) models in forecasting the monthly inflow of Dez dam reservoir 
located in Teleh Zang station in Dez dam upstream is estimated. ARIMA model has found a 
widespread application in many practical sciences. In addition, dam reservoir inflow forecasting is 
done by some methods such as ordinary linear regression, ARMA and artificial neural networks. On 
the other hand, application of both ARMA and ARIMA models simultaneously in order to compare 
their ability in autoregressive forecast of monthly inflow of dam reservoir has not been carried out in 
previous researches. Therefore, this paper attempts to forecast the inflow of Dez dam reservoir by 
using ARMA and ARIMA models while increasing the number of parameters in order to increase the 
forecast accuracy to four parameters and comparing them. In ARMA and ARIMA models, the 
polynomial was derived respectively with four and six parameters to forecast the inflow. By comparing 
root mean square error of the model, it was determined that ARIMA model can forecast inflow to the 
Dez reservoir from 12 months ago with lower error than the ARMA model. 
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INTRODUCTION 

 
 More accurate estimation of the monthly inflow to 
the reservoir is significantly important in water 
resources management due to the importance of 
management and operation of reservoirs, hydroelectric 
energy generation and structures designed to control. In 
this study, the monthly inflow to the reservoir has been 
forecast by two models of ARMA and ARIMA. After 
publishing the paper of Box and Jenkins (1976), 
ARIMA and ARMA models or Box-Jenkins models 
became one general time series model of hydrological 
forecasting. An ARIMA model is a generalization of an 
ARMA model. Access to basic information requires 
integration from the series (for a continuous series) or 
calculating all of differences the series (for a continuous 
series). Since the constant of integration in derivation or 
differences deleted, the probability of using these amount 
or middle amount in this process is not possible. 
Therefore, ARIMA models are non-static and cannot be 
used to reconstruct the missing data. However, these 
models are very useful for forecasting changes in a 
process (Karamouz and Araghinejad, 2012). Models of 
time series analysis (ARMA and ARIMA) in various 
fields of hydrology are widely applied, which some of 
them will be described in the following. 

 Baareh et al. (2006) used the artificial neural 
network and Auto-Regression (AR) models to the river 
flow forecasting problem. A comparative study of both 
ANN and the AR conventional model networks 
indicated that the artificial neural networks performed 
better than the AR model. They showed that ANN 
models can be used to train and forecast the daily flows 
of the Black Water River near Dendron in Virginia and 
the Gila River near Clifton in Arizona. Xiong and 
O’connor (2002) used four different error-forecast 
updating models, Autoregressive (AR), 
Autoregressive-Threshold (AR-TS), Fuzzy 
Autoregressive-Threshold (FU-AR-TS) and Artificial 
Neural Network (ANN) to the real-time river flow 
forecasting. They found that all of these four updating 
models are very successful in improving the flow 
forecast accuracy. Chenoweth et al. (2000) estimated 
the ARMA model parameters using neural networks. 
Their results showed that the ability of neural networks 
to accurately identify the order of an ARMA model 
was much lower than reported by previous researchers 
and is especially low for time series with fewer than 
100 observations. Using forecasting of hydrologic time 
series with ridge regression in feature space, Yu and 
Liong (2007) showed that the training speed in data 
mining method was very much faster than ARIMA 
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model. See and Abrahat (2001) used of data fusion for 
hydrological forecasting. Their results showed that 
using of data fusion methodologies for ANN, fuzzy 
logic and ARMA models accuracy of forecasting 
would increase. Using hybrid approaches, Srinivas and 
Srinivasan (2000) improved the accuracy of AR model 
parameters for annual streamflows. Using the Fourier 
coefficients, Ludlow and Enders (2000) estimated the 
ARMA model parameters with a relatively good 
accuracy. Chenoweth et al. (2004) estimated the 
ARMA model parameters using the Hilbert 
coefficients. Their results showed that the Hilbert 
coefficients are considered a useful tool for estimating 
ARMA model parameters. Balaguer et al. (2008) used 
the method of Time Delay Neural Network (TDNN) 
and ARMA model to forecast asking for help in 
support centers for crisis management. The obtained 
correlation results for TDNN model and ARMA were 
0.88 and 0.97, respectively. This study confirmed the 
superiority of ARMA model to the TDNN. Toth et al. 
(2000) used the artificial neural network and ARMA 
models to forecast rainfall. The results show the 
success of both short-term rainfall-forecasting models 
for forecast floods in real time. Eslami et al. (2005) 
forecast Karaj reservoir inflow using data of melting 
snow and artificial neural network and ARMA methods 
and regression analysis. 60% of inflow in dam happens 
between Aprils until June, so forecasting the inflow in 
this season is very important for dam’s performance. 
The highest inflows were in the spring due to the snow 
melt caused by draining in threshold winter. The results 
showed that artificial neural network has lower 
significant errors as compared with other methods. 
Mohammadi et al. (2006) in other research estimated 
parameters of an ARMA model for river flow 
forecasting using goal programming. Their results 
showed that the goal programming is a precise and 
effective method for estimating ARMA model 
parameters for forecasting inflow. 
 Therefore, considering the above mentioned 
performed researches, we can know the efficacy of 
ARMA and ARIMA in forecasting field and hydrologic 
sampling as compared with another statistic models 
such as usual linear and nonlinear regression. 
However, in forecasting inflow to the reservoir, by 
ARMA and ARIMA methods the maximum number 
of parameters was two.  Furthermore, concurrent use 
of ARMA and ARIMA models has not been done in 
previous research to compare them. This study aims 
to forecast inflow to Dez reservoir using ARMA and 
ARIMA models, by increasing the number of 
parameters to evaluate the accuracy of forecast to 
four parameters, according to discharge of Taleh 
Zang station located on the Dez dam upstream. 

MATERIALS AND METHODS 
 
 Dez basin encompasses some part of the middle 
peaks of Zagros. The basin ranges between 32°, 35' to 
34°, 07’ North latitude and 48°, 20’ to 50°, 20’ east 
longitude and is located in southwestern Iran. Dez 
basin is limited from west to Karkheh basin, from north 
to Ghareh Chay basin and from east and south to Karun 
basin. In this research due to the characteristic of 
autocorrelation of ARMA and ARIMA models for 
forecasting irrigation of entrance station in Dez 
reservoir, Taleh Zang station data is used. In order to 
forecast the goal station discharge (Taleh Zang station 
at the entrance to the Dez reservoir) at the monthly 
scale, the station's monthly discharge period from 
water year 1960-1961 water year 2006-2007 has been 
selected. Actually, the used data involved 564 data that 
began from October 1960 and end in September 2007. 
 In this study ARMA and ARIMA models for 
forecasting monthly flow of Teleh Zang station 
individually were used. ARMA and ARIMA models 
obtained from a combination of autoregressive and 
moving average models. For modeling seasonal time 
series beside non-seasonal series, ARIMA (p, d, q) (P, 
D, Q)ω model known as multiplicative ARIMA model 
is defined as follows Eq. 1: 
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where, εt is the random variable, ω is the periodic term, 
B is the difference operator as B (Zt) = Zt-1, (1-Bω)D s 
the D-th seasonal difference measure ω, d = (1-B)d is 
the d-th non-seasonal difference, p is the order of 
nonseasonal  utoregressive model, q is the order of 
nonseasonal moving average model, P is the order of 
seasonal autoregressive model, Q is the order of 
seasonal moving average model, φ is the parameter of 
non-seasonal autoregressive model, θ is the parameter 
of non-seasonal moving average model, Φ  is the 
parameter of seasonal autoregressive model and Θ  is 
the seasonal moving average model (Karamouz and 
Araghinejad, 2012). It should be noted that, in equation 
(1) when d = D = 0, ARIMA model becomes ARMA 
model. The next stage is determining the number of 
ARMA and ARIMA models parameters that perform 
by PACF and ACF curves (Cryer and Kung-Sik, 
2008; Mohammadi et al., 2006). These curves are 
depicted in the Fig. 1 and 2 which the axis line 
shows the delay time and the vertical axis showed 
the amounts of ACF and PACF, respectively. 
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Fig. 1: ACF diagram for the inflow to the Dez reservoir in Taleh Zang station 
 

 
 

Fig. 2: PACF diagram for the inflow to the Dez reservoir in Taleh Zang station 
 

 
 

Fig. 3: A flowchart of calculated steps by ARIMA model 
 
 These curves show that the amounts of ACF and 
PACF in the delays 1 and 2 are high. So choosing up to 
two autoregressive parameters and two moving average 
parameters are sufficient (Karamouz and Araghinejad, 
2012), but in order to investigate the effect of 
increasing the number of parameters in forecasting 
accurately in this study, up to 4 autoregressive 
parameters and also up to 4 moving average parameters 
were used. The next parameters that should be 
determined are d and D, which defined for ARIMA 
models. These parameters are considered in practice 

maximum one or two (Karamouz and Araghinejad, 
2012). Due to the number of possible scenarios for the 
parameters, p = P = q = Q = {0, 1, 2, 3, 4} and 
considering two cases for the presence or absence of a 
constant term in the models, number of ARMA 
structures used to forecast the inflow to Dez dam is 
equal to 1250. Also, considering the three modes d = 1, 
D = 0, d = 0, D = 1 and d = D = 1, the number of 
ARIMA structures is equal to 3×1250 = 3750. If we 
proceed to determine the effects of seasonal trends 
between the data in ARMA and ARIMA models, the 
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parameter of the periodic trend must be specified- by 
symbol ω- and given that discharge data is monthly and 
input data to the model is 504, it is determined as follows: 
 

A Bω = ∩  (2) 
 
where, A is the divisors set of 504 and B is the 
multiples of 12. Therefore, ω = {12, 24, 36, 72, 84, 
126, 186, 252, 504}. To determine the best value for 
this parameter, the annual discharge data was classified 
separately for different months and given as input to 
the ARMA and ARIMA models. The results to 
determine the parameters p, q, P, Q, d and D were 
computed using MINITAB software and are given in 
Tables 1-5. Figure 3 shows a flowchart of calculation 
steps by the ARIMA model. 
 As specified in Fig. 3 initially, data related to the 
calibration and forecasting stages are entered to 
ARIMA model. Then it is determined that whether the 
model is seasonal or non-seasonal. Since both seasonal 
and non-seasonal models are used in this study, firstly 
the non-seasonal and then seasonal models were 
chosen. If chosen model is non-seasonal, it is not 
necessary to determine the period and otherwise that 
must be determined. Next step is determining the 
parameters p, q, P, Q, d and D. Then presence or 
absence of constant term in the model is investigated. 
In this study, all the ARIMA constructs with and 
without constant term were performed. In the next step, 
the monthly discharge is forecast. Finally, the best 
structure is selected based on the root mean square 
error. The algorithm of calculation steps by the ARMA 
model is similar to ARIMA model, except that it is not 
required to determine two parameters d and D in 
parameter determination step. 
 
Criterion to select the best structure of ARMA and 
ARIMA models: In order to select the best structure 
between ARMA and ARIMA the root mean square 
error and the mean bias error were used as follows: 
 

n
2

ci oi
i 1

RMSE (Q Q ) / n
=

= −∑  (3) 

 
where, RMSE is the root mean square error, MBE is 
the mean square error, i is the number of months, Qci is 
the computational discharge in month i, the Qoi 
observational discharge in month i and n is the num of 
data. Finally, for being comparable the results with 
other similar studies, oiRMSE / Q  error index are used, 

where oiQ  is the average of observational discharge. 

Remarkably, the amount of oiQ  for calibration 

(calibration) period contain data 445 to 504 and is 
equal to 335.7 m3/s and for the forecasting period 
contain data 505 to 564 and is equal to 199.9 m3/s. In 
addition, to determine the time error and the best time 
of the forecasting, three following criteria were used: 
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where, Ei is the relative error in month i, Fi is the 
average of cumulative relative error in the month i,E  is 
the average of relative error and Cv is the variation 
coefficient of relative error.  
 

RESULTS 
 
 Results from forecasting the annual discharge is 
given in Table 1 for every water month. In Table 1, 
for example, ARIMA (2, 1, 2)42 indicate an ARIMA 
model structure with two seasonal autoregressive 
parameters (P), 2 seasonal moving average 
parameter (Q), D = 1 and ω = 42. 
 

DISCUSSION 
 
 Since 504 monthly data are relevant to 42 years, 
obtaining ω = 42 for the most of months indicates that 
once in a 42 years a logical trend between the data is 
established, i.e., it is 42 years that there is no 
significant relationship between data. For example, if 
in the annual discharge forecasting ω = 2, then in 
monthly discharge forecastingω = 2×12 = 24. 
However, it can be seen in Table 1 that in annual 
discharge forecasting ω = 1, i.e., each year has a 
relationship just with itself; therefore, periodic trend 
for forecasting monthly discharge in models ARMA 
and ARIMA is equal to 12. The best value of 
parameters in the ARMA and ARIMA models ared 
shown in Table 2. 
 According to Table 2 it is determined by increase 
in number of autoregressive and the moving average 
parameters, error rate is reduced. Thus, as is clear from 
Table 1 the best ARMA model has three seasonal 
autoregressive parameters and four seasonal moving 
average parameters. The best ARIMA model has four 
autoregressive parameters, one moving average 
parameter, one seasonal autoregressive parameter and 
one seasonal moving average parameter and d = 1. 
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Fig. 4: Compare the best structures of used models in this study in calibration period 
 

 
 

Fig. 5: Compare the best structures of used models in this study in forecasting period 
 

 
 

Fig. 6: Comparison of observed data and ARMA model in forecasting period regardless occurrence time 
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Fig. 7: Comparison of observed data and ARIMA model in forecasting period regardless occurrence time 
 

 
 

Fig. 8: E index changes of models in forecasting period 
 

 
 

Fig. 9: F index changes of models in forecasting period 
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Table 1: Results from forecasting the annual discharge for every water month 
Month Best structure (ARMA) Best structure (ARIMA) Month Best structure (ARMA) Best structure (ARIMA) 
October ARMA(1,0)42 ARIMA(2,1,0)42 April ARMA(2,0)42 ARIMA(2,1,2)42 
November ARMA(2,0)42 ARIMA(2,1,2)42 May ARMA(2,0)42 ARIMA (2,1,2)42 
December ARMA(2,0)42 ARIMA(2,1,2)42 June ARMA(4,0)7 ARIMA(2,1,2)42 
January ARMA(2,0)42 ARIMA(2,1,2)42 July ARMA(4,0)7 ARIMA(2,1,2)42 
February ARMA(4,0)7 ARIMA(2,1,0)(2,0,1)21 August ARMA(2,0)42 ARIMA(2,1,2)42 
March ARMA(2,0)42 ARIMA(2,1,2)42 September ARMA(2,0)42 ARIMA(2,1,2)42 

 
Table 2: Increasing the accuracy of the increasing number of parameters in the ARMA and ARIMA models 
 Best structure in   Best structure in 

 considering ACF and PACF oiRMSEQ  oiRMSEQ  current research (increase oiRMSEQ  oiRMSEQ  

Model (such as previous research) (calibration) (forecasting) the number of parameters) (calibration) (forecasting) 
ARMA ARMA (1,0)(2,1)12 0.5468 0.8077 ARMA(0,4)(3,0)12 0.5603 0.7981 
ARIMA ARIMA(1,1,0)(1,1,2)12 0.5514 0.7873 ARIMA(4,1,1)(1,0,1)12 0.5589 0.7148 

 
Table 3: Obtained coefficients for the ARMA model 

Constant term θ1 θ2 θ3 θ4 Φ 1 Φ 2 Φ 3 x2 DF 
71.3400 -0.5526 -0.4807 -0.2369 -0.1194 0.3602 0.0716 0.2899 53.5345 41 

 
Table 4: Obtained coefficients for the ARIMA model 

 ϕ1 ϕ2 ϕ3 ϕ4 Φ 1 θ1 Θ 1 x2 DF 

0.2575 0.1056  -0.0979 -0.0061 1.0010 0.6394 0.9522 56.0309 41 

 
Table 5: The minimum of E and F indexes and month of occurrence them in forecasting period 

Model Emin Month E  Fmin Month Cv 
ARMA (0,4)(3,0)12 0.0296 Fifth June 1.0611 0.566 First Oct. 0.8746 
ARIMA (4,1,1)(1,0,1)12 0.0028 Third Nov. 0.5207 0.2433 First July 0.8054 

 
It is not possible to mention all relevant results of the 
5000 structure used to ARMA and ARIMA models in 
this study, therefore, only results related to the best 
structures is presented in Table 2. Benchmark error 
index oiRMSEQ  for the forecasting model 
ARIMA(1,1,0)(1,1,2)12 data is equal to 0.7148 and it 
was chosen as the best model to forecast inflow to the 
Dez reservoir in Taleh Zang station, from the all 
models between ARMA and ARIMA. Table 3 and 4 
also show obtained coefficients for the ARMA and 
ARIMA models, respectively. 
 According to Table 3 and 4 the obtained values for 
the ARMA and ARIMA models with degrees of 
freedom 41, is lower than its critical value (56.9420) 
(Wei, 1990). Therefore, it can be concluded these 
structures used to predict correctly. It should be noted 
that, degrees of freedom was 41, with a minus of the 
number of parameters used in each model (except for d 
and D in ARIMA model) from the maximum lag which 
is visible in Fig. 2 and 3 (48). Figure 4 and 5 are 
compared the ability of the superior structures ARMA 
and ARIMA models, used in the calibration and 
forecasting. By comparing Fig. 4 and 5 it will be clear 
that although the ARMA model better forecast the 
initial months and also better simulate the peak points 
in calibration period than ARIMA, situation in 
forecasting period has changed and ARIMA model 

gives a better forecasting not only of the initial months, 
but also of peak points and other months than the 
ARMA. It should also be noted that in forecasting 
period, the ARMA chart locates often over 
observational data, but the ARIMA chart   often below 
observational data, due to the effect of differential 
operator and making time series stationary (of course 
with lower error than ARMA model into the 
observational data). The noncompliance of peak points 
can be considered as a reason for reducing ARIMA 
model accuracy. 
 Disadvantage of used models is forecasting error 
of peak flows. Figure 6 and 7 show comparison of 
observed data with ARMA and ARIMA in forecasting 
period regardless of occurrence time. 
 Comparing Fig. 5-7 indicates that the ARMA 
model has forecasted more than the actual amount 
almost all of discharges less than 260 CMS and less 
than the actual amount other discharges. But ARIMA 
model due to making of discharge data series 
stationary, not only establish equality between the 
number of more and less than forecasted data, but can 
also forecast data less than 100 CMS with a good 
accuracy. In order to study the time changes of 
forecasting by using the equations (4), (5) and (6), the 
best forecasting time for the models was obtained. 
Table 5 shows the minimum E and F indexes, the 
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month of occurrence of these values and the Cv index 
for forecasting period. As from Table 5 is clear, the 
amount of Emin index and E  and Fmin indexes in the 
ARIMA model has been decreased more than 90% and 
nearly 50%, respectively, compared to the ARMA 
model. This is a significant reduction in the forecast 
error in ARIMA model compared to the ARMA model. 
For a better comparison of E and F indexes in 
forecasting period, Fig. 8 and 9 could be used, 
respectively. Figure 8 and 9 will show that relative 
error and cumulative relative error indexes are lower 
for ARIMA model in most months during the 
forecasting time and they have a lesser fluctuation over 
time. Therefore, the ARIMA model is entitled to more 
reliability. By comparing the Fig. 8, 9 and Table 5 
lower values E and F indexes for ARIMA are observed 
compared to the ARMA model and drastic changes in 
the relative cumulative error in ARIMA are not seen. 
In other words, the ARIMA model has reached a kind 
of stagnation in error. Also lower value of the mean of 
relative error and coefficient of variation of relative 
error for ARIMA model indicate the lower error 
variation for the ARIMA than ARMA model and it 
implies that ARIMA is superior to ARMA model. 
 According to Table 5, the lowest rate of Fmin index 
has happened in the first month forecast, which it also 
is clear in Fig. 9. Meanwhile the increasing trend of F 
index is visible in the ARMA model as well as in Fig. 
9. The amount of Fmin index is not only happen in the 
tenth month forecast in ARIMA model, but also 
according to Fig. 9 (Fmax) ARIMA . < (Fmin)ARMA. It is an 
important result to compare the errors in ARMA and 
ARIMA  models. It means that the maximum average 
cumulative relative error in the ARIMA model is less 
than the minimum average cumulative relative error in 
the ARMA model. In other words, the amount of F 
index in ARIMA model has never reached the amount 
of F index in the model ARMA, which it shows again 
the superiority of ARIMA model to ARMA model. By 
studying obtained diagrams for the ARIMA model it is 
specified that this model gives a better answer than the 
ARMA model for short-term forecasts. Figure 5 shows 
that ARIMA model has the best forecasting for the first 
4 months. The reason of the better performance of 
ARIMA model for the short-term forecasting is related 
to the nature of the hydrological data used in this 
model. In this model, since the 504 data is fed to this 
model as a lump sum, the relationship between the data 
is established only as one monthly. It means that model 
considers the once-a-month communications between 
discharges in order to forecast the new month 
discharges. Thus, the best forecasting horizon does not go 
beyond a year. According to Fig. 8, 9 and Table 5 it can 
be said that the monthly inflow could be forecast by 
ARIMA model about a year ago with a good accuracy. 

CONCLUSION 
 
 In this study, ability of ARMA and ARIMA 
models is compared in forecasting Dez reservoir inflow 
at the Taleh Zang stations. Monthly discharge data for 
a period of 42 years were collected from Taleh Zang 
hydrometrical station and used for calibration models. 
Then, the accuracy of forecasting models were 
investigated by 5 years data. To summarize, it could be 
concluded that:  
 The accuracy of both models ARMA and ARIMA 
increased compared to previous studies, due to increase 
in the number of autoregressive and moving average 
parameters in these models.  
 The ARIMA model has a better performance than 
ARMA model because it makes time series stationary, 
in both calibration and forecasting phases. 
 Changes in relative error, cumulative mean relative 
error and variation coefficient of relative error in 
ARIMA model was less than ARMA model; this 
indicates the superiority of ARIMA model to ARMA 
model. By investigating these changes, it will be clear 
that the ARIMA model could be used for forecasting 
an appropriate monthly inflow for the next 12 months. 
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