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Parameter s Estimate of Autoregressive Moving
Average and Autoregressive Integrated Moving Average
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Abstract: In this study the ability of Autoregressive Movidyerage (ARMA) and Autoregressive
Integrated Moving Average (ARIMA) models in foretiag the monthly inflow of Dez dam reservoir
located in Teleh Zang station in Dez dam upstreamestimated. ARIMA model has found a
widespread application in many practical sciendesaddition, dam reservoir inflow forecasting is
done by some methods such as ordinary linear reigresARMA and artificial neural networks. On
the other hand, application of both ARMA and ARIMAodels simultaneously in order to compare
their ability in autoregressive forecast of monthiffow of dam reservoir has not been carried out i
previous researches. Therefore, this paper attetoptsrecast the inflow of Dez dam reservoir by
using ARMA and ARIMA models while increasing themmiper of parameters in order to increase the
forecast accuracy to four parameters and compatiegn. In ARMA and ARIMA models, the
polynomial was derived respectively with four amdgarameters to forecast the inflow. By comparing
root mean square error of the model, it was deteththat ARIMA model can forecast inflow to the
Dez reservoir from 12 months ago with lower ertart the ARMA model.
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INTRODUCTION Baarehet al. (2006) used the artificial neural
network and Auto-Regression (AR) models to therrive
More accurate estimation of the monthly inflow to flow forecasting problem. A comparative study oftbo
the reservoir is significantly important in water ANN and the AR conventional model networks
resources management due to the importance ofndicated that the artificial neural networks penfied
management and operation of reservoirs, hydroéectr petter than the AR model. They showed that ANN
energy generation and structures designed to doliiro  models can be used to train and forecast the tlails
this study, the monthly inflow to the reservoir ilen  of the Black Water River near Dendron in Virginiada
forecast by two models of ARMA and ARIMA. After the Gila River near Clifton in Arizona. Xiong and
publishing the paper of Box and Jenkins (1976), O'connor (2002) used four different error-forecast
ARIMA and ARMA models or Box-Jenkins models updating models, Autoregressive (AR),
became one general time series model of hydrolbgica Autoregressive-Threshold (AR-TS), Fuzzy
forecasting. An ARIMA model is a generalizationasf ~ Autoregressive-Threshold (FU-AR-TS) and Artificial
ARMA model. Access to basic information requires Neural Network (ANN) to the real-time river flow
integration from the series (for a continuous sgrier forecasting. They found that all of these four ujpup
calculating all of differences the series (for atomious  models are very successful in improving the flow
series). Since the constant of integration in @own or  forecast accuracy. Chenowethal. (2000) estimated
differences deleted, the probability of using th@s®unt  the ARMA model parameters using neural networks.
or middle amount in this process is not possible. Their results showed that the ability of neurawurks
Therefore, ARIMA models are non-static and canmot b to accurately identify the order of an ARMA model
used to reconstruct the missing data. However,etheswas much lower than reported by previous reseascher
models are very useful for forecasting changes in aand is especially low for time series with fewearth
process (Karamouz and Araghinejad, 2012). Models 0f100 observations. Using forecasting of hydrologitet
time series analysis (ARMA and ARIMA) in various series with ridge regression in feature space, Nai a
fields of hydrology are widely applied, which soroe  Liong (2007) showed that the training speed in data
them will be described in the following. mining method was very much faster than ARIMA
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model. See and Abrahat (2001) used of data fusion f MATERIALSAND METHODS
hydrological forecasting. Their results showed that
using of data fusion methodologies for ANN, fuzzy Dez basin encompasses some part of the middle

logic and ARMA models accuracy of forecasting peaks of Zagros. The basin ranges between 32tp35'
would increase. Using hybrid approaches, Srinivas a 34°, 07’ North latitude and 48°, 20’ to 50°, 20'sea
Srinivasan (2000) improved the accuracy of AR modellongitude and is located in southwestern Iran. Dez
parameters for annual streamflows. Using the Fourie basin is limited from west to Karkheh basin, froorth
coefficients, Ludlow and Enders (2000) estimategl th to Ghareh Chay basin and from east and south torkar
ARMA model parameters with a relatively good basin. In this research due to the characteristic o
accuracy. Chenowettet al. (2004) estimated the autocorrelation of ARMA and ARIMA models for
ARMA  model parameters using the Hilbert forecasting irrigation of entrance station in Dez
coefficients. Their results showed that the Hilbert reservoir, Taleh Zang station data is used. In rotoe
coefficients are considered a useful tool for eating forecast the goal station discharge (Taleh Zantipsta
ARMA model parameters. Balagueral. (2008) used  at the entrance to the Dez reservoir) at the mpnthl
the method of Time Delay Neural Network (TDNN) scale, the station's monthly discharge period from
and ARMA model to forecast asking for help in \ater year 1960-1961 water year 2006-2007 has been
support centers for crisis management. The obtainedg|ected. Actually, the used data involved 564 tizaa
correlation results for TDNN model and ARMA were began from October 1960 and end in September 2007.
0.88 qnc_i 0.97, respectively. This study confirmiee t In this study ARMA and ARIMA models for
superiority of ARMA model to the TDNN. Totét al. forecasting monthly flow of Teleh Zang station
(2000) used the artificial neural network and ARMA individually were used. ARMA and ARIMA models
models to forecast rainfall. The results show the gpaineg from a combination of autoregressive and
success of both short-term rainfall-forecasting eied moving average models. For modeling seasonal time
for forecast floods in real time. Eslardi al. (2005) series beside non-seasonal series, ARIMA (p, dPg)

forecast Karaj reservoir inflow using data of nradti L
show and artificial neural network and ARMA methods D Q)@ model known as multlpl|cat|ve ARIMA model
is defined as follows Eq. 1:

and regression analysis. 60% of inflow in dam hagpe
between Aprils until June, so forecasting the inflio . oo
this season is very important for dam’s performance (1-®,B° - 0,8 ..~ D B*)(1-¢,B - .9, B)
The highest inflows were in the spring due to thevs (1-B°)°(@-B)'z = (1-6,B°-0,B* - .0 B®) ()
melt caused by draining in threshold winter. Theuhes (1-6,8°-..0 B'%
showed that artificial neural network has lower z o
significant errors as compared with other methods. ) _ ) o
Mohammadiet al. (2006) in other research estimated Where g is the random variabley is the periodic term,
parameters of an ARMA model for river flow B is the difference operator as B)Z Z, (1-B“)° s
forecasting using goal programming. Their results the D-th seasonal difference measured = (1-BJ is
showed that the goal programming is a precise andhe d-th non-seasonal difference, p is the order of
effective method for estimating ARMA model nonseasonal utoregressive model, q is the order of
parameters for forecasting inflow. nonseasonal moving average model, P is the order of

Therefore, considering the above mentioned seasonal autoregressive model, Q is the order of
performed researches, we can know the efficacy ofseasonal moving average modgls the parameter of
ARMA and ARIMA in forecasting field and hydrologic non-seasonal autoregressive mo@eis the parameter
sampling as compared with another statistic modelsof non-seasonal moving average moddl, is the
such as wusual linear and nonlinear regression.parameter of seasonal autoregressive model@nig
However, in forecasting inflow to the reservoir, by the seasonal moving average model (Karamouz and
ARMA and ARIMA methods the maximum number Araghinejad, 2012). It should be noted that, inagun
of parameters was two. Furthermore, concurrent usg1) when d = D = 0, ARIMA model becomes ARMA
of ARMA and ARIMA models has not been done in model. The next stage is determining the number of
previous research to compare them. This study aimsARMA and ARIMA models parameters that perform
to forecast inflow to Dez reservoir using ARMA and by PACF and ACF curves (Cryer and Kung-Sik,
ARIMA models, by increasing the number of 2008; Mohammadit al., 2006). These curves are
parameters to evaluate the accuracy of forecast talepicted in the Fig. 1 and 2 which the axis line
four parameters, according to discharge of Talehshows the delay time and the vertical axis showed
Zang station located on the Dez dam upstream. the amounts of ACF and PACF, respectively.
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Fig. 1: ACF diagram for the inflow to the Dez regsr in Taleh Zang station

Partial autocorrelation

Fig. 2: PACF diagram for the inflow to the Dez nesédr in Taleh Zang station

Determination of the
parameters p. d and q

4

Entry training and Is model ination of th Determination of the
forecasting data to s;asonal o Determination ofthe | | rasence or absence of a
ARIMA model : parameters p, q. P, Q,d. Do constant term in model
End Selecting the best structure Forecasting the amount of
+ based on RMSE index [€—|  monthly discharge by
ARIMA model

Fig. 3: A flowchart of calculated steps by ARIMA ol

These curves show that the amounts of ACF andmaximum one or two (Karamouz and Araghinejad,
PACF in the delays 1 and 2 are high. So choosingup 2012). Due to the number of possible scenariostfer
two autoregressive parameters and two moving ageragparameters, p = P = q = Q = {0, 1, 2, 3, 4} and
parameters are sufficient (Karamouz and Araghinejad considering two cases for the presence or absenge o
2012), but in order to investigate the effect of constant term in the models, number of ARMA
increasing the number of parameters in forecastingstructures used to forecast the inflow to Dez dam i
accurately in this study, up to 4 autoregressive equal to 1250. Also, considering the three modesld
parameters and also up to 4 moving average paresneteD = 0, d =0, D =1 and d = D = 1, the number of
were used. The next parameters that should beARIMA structures is equal tox3250 = 3750. If we
determined are d and D, which defined for ARIMA proceed to determine the effects of seasonal trends
models. These parameters are considered in practicbetween the data in ARMA and ARIMA models, the
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parameter of the periodic trend must be speciftegd- (calibration) period contain data 445 to 504 and is
symbol - and given that discharge data is monthly andequal to 335.7 ffs and for the forecasting period

input data to the model is 504, it is determinefbbews: contain data 505 to 564 and is equal to 199°6.nN
addition, to determine the time error and the hiest

w=AnB (2 of the forecasting, three following criteria werged:

where, A is the divisors set of 504 and B is the E =1Q-Q |/Q (4)

multiples of 12. Thereforep = {12, 24, 36, 72, 84,
126, 186, 252, 504}. To determine the best value fo N

this parameter, the annual discharge data wadfeass F = Z E /i (5)
separately for different months and given as input =

the ARMA and ARIMA models. The results to

determine the parameters p, q, P, Q, d and D were. _| |& = -

computed using MINITAB software and are given in C = ;(Ei E/n)|/E ©6)

Tables 1-5. Figure 3 shows a flowchart of calcaolati
steps by the_ARIMA ’T‘Ode': . where, E is the relative error in month i,; ks the

As specified in Fig. 3 initially, data related ttoe ) . . o
calibration and forecasting stages are entered toverage of cumulatwt_a relative error in the mor,l_Eh_ls
ARIMA model. Then it is determined that whether the the average of relative error and G the variation
model is seasonal or non-seasonal. Since bothrsalaso Ccoefficient of relative error.
and non-seasonal models are used in this studylyfir
the non-seasonal and then seasonal models were RESULTS
chosen. If chosen model is non-seasonal, it is not
necessary to determine the period and otherwise tha  Results from forecasting the annual discharge is
must be determined. Next step is determining thegiven in Table 1 for every water month. In Table 1,
parameters p, q, P, Q, d and D. Then presence ofOI' example, ARIMA (2, 1, 2)42 indicate an ARIMA
absence of constant term in the model is investijat Model structure with two seasonal autoregressive
In this study, all the ARIMA constructs with and Parameters (P), 2 seasonal moving average
without constant term were performed. In the neaps ~ Parameter (Q), D = 1 and = 42.
the monthly discharge is forecast. Finally, thetbes
structure is selected based on the root mean square DISCUSSION
error. The algorithm of calculation steps by theMyR

model is similar to ARIMA model, except that itrist Since 504 monthly data are relevant to 42 years,
required to determine two parameters d and D in Obtalnlng(x) = 42 for the most of months indicates that

parameter determination step. once in a 42 years a logical trend between the idata
established, i.e., it is 42 years that there is no
Criterion to select the best structure of ARMA and significant relationship between data. For examfle,
ARIMA models: In order to select the best structure I the annual discharge fore_cast_mg= 2, tben In
between ARMA and ARIMA the root mean square MOnthly discharge forecastiag = 2x12 = 24.

error and the mean bias error were used as follows: H_owever, It can b_e seen m_TabIe 1 that in annual
discharge forecastingo = 1, i.e., each year has a

relationship just with itself; therefore, periodiend
RMSE = Z”:(ch_ Q7 /n 3) for forecasting monthly discharge in models ARMA
E= and ARIMA is equal to 12. The best value of
parameters in the ARMA and ARIMA models ared
where, RMSE is the root mean square error, MBE isShown in Table 2. . _ _
the mean square error, i is the number of montgssQ . According to Table 2 it is determined b_y increase
the computational discharge in month i, the, Q " number of autoregressive and the moving average

observational discharge in month i and n is the @fim parameters, error rate is reduced. Thus, as is frtem
data. Finally, for being comparable the resultshwit Table 1 the best ARMA model has three seasonal

- . — : autoregressive parameters and four seasonal moving
other similar studiesRMSE /Q, error index are used, 5yerage parameters. The best ARIMA model has four
where Q, is the average of observational discharge. autoregressive parameters, one moving average
— L parameter, one seasonal autoregressive parameter an
Remarkably, the amount ofQ, for calibration  qhe geasonal moving average parameter and d = 1.
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Fig. 4: Compare the best structures of used madetss study in calibration period

1500
1400 4
1300 < —— Observed — #— - ARIMA = =ce—-- ARMA
1200
1100
1000
200

800
700

Discharge (CMS)

Time (month)

Fig. 5: Compare the best structures of used madetss study in forecasting period
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Fig. 6: Comparison of observed data and ARMA maaébrecasting period regardless occurrence time
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Table 1: Results from forecasting the annual disghéor every water month

Month Best structure (ARMA) Best structure (ARIMA) Month Best structure (ARMA) Best structure (ARIMA)
October ARMA(1,0), ARIMA(2,1,0)s2 April ARMA(2,0)42 ARIMA(2,1,2)s,
November ARMA(2,0), ARIMA(2,1,2)s, May ARMA(2,0), ARIMA (2,1,2),
December ARMA(2,0) ARIMA(2,1,2)s, June ARMA(4,0) ARIMA(2,1,2)s,
January ARMA(2,0p ARIMA(2,1,2)s, July ARMA(4,0) ARIMA(2,1,2)s,
February ARMA(4,0) ARIMA(2,1,0)(2,0,1); August ARMA(2,0), ARIMA(2,1,2)s,
March ARMA(2,0), ARIMA(2,1,2)s, September ARMA(2,Q) ARIMA(2,1,2)s,

Table 2: Increasing the accuracy of the increasimgber of parameters in the ARMA and ARIMA models

Best structure in Best structure in

considering ACF and PACF  RMSEQ, RMSEQ, current research (increase RMSEQ), RMSEQ,
Model (such as previous research) (calibration)  reffasting) the number of parameters) (calibration) (forecasting)
ARMA ARMA (1,0)(2,1) 0.5468 0.8077 ARMA(0,4)(3,®) 0.5603 0.7981
ARIMA  ARIMA(1,1,0)(1,1,2), 0.5514 0.7873 ARIMA(4,1,1)(1,0,1) 0.5589 0.7148

Table 3: Obtained coefficients for the ARMA model
Constant term 0. 0, 0; 0, ®, @, [OJN X2 DF
71.3400 -0.5526 -0.4807 -0.2369 -0.1194 0.3602 1BO07 0.2899 53.5345 41

Table 4: Obtained coefficients for the ARIMA model
d1 02 [0} O d, 0, (Ch X2 DF
0.2575 0.1056 -0.0979 -0.0061 1.0010 0.6394 0.9522 56.0309 41

Table 5: The minimum of E and F indexes and mohthcourrence them in forecasting period

Model Enin Month E Fonin Month G
ARMA (0,4)(3,0). 0.0296 Fifth June 1.0611 0.566 First Oct. 0.8746
ARIMA (4,1,1)(1,0,1), 0.0028 Third Nov. 0.5207 0.2433 First July 0.8054

It is not possible to mention all relevant resafshe gives a better forecasting not only of the initi@nths,
5000 structure used to ARMA and ARIMA models in but also of peak points and other months than the
this study, therefore, only results related to Hwest ARMA. It should also be noted that in forecasting
structures is presented in Table 2. Benchmark erroperiod, the ARMA chart locates often over
index RMSEQ, for the forecasting model Observational data, but the ARIMA chart oftendvel
ARIMA(1,1,0)(1,1,2)12 data is equal to 0.7148 and i observational data, due to the effect of differnti
was chosen as the best model to forecast inflothéo ~ Operator and making time series stationary (of seur
Dez reservoir in Taleh Zang station, from the all With lower error than ARMA model into the
models between ARMA and ARIMA. Table 3 and 4 ©Observational data). The noncompliance of peaktpoin
also show obtained coefficients for the ARMA and €an be considered as a reason for reducing ARIMA
ARIMA models, respectively. model accuracy. . .
According to Table 3 and 4 the obtained values for ~ Disadvantage of used models is forecasting error
the ARMA and ARIMA models with degrees of Of peak flows. Figure 6 and 7 show comparison of
freedom 41, is lower than its critical value (5&@0%  observed data with ARMA and ARIMA in forecasting
(Wei, 1990). Therefore, it can be concluded theseperiod regardless of occurrence time.
structures used to predict correctly. It shouldnbged Comparing Fig. 5-7 indicates that the ARMA
that, degrees of freedom was 41, with a minus ef th model has forecasted more than the actual amount
number of parameters used in each model (except for almost all of discharges less than 260 CMS and less
andD in ARIMA model) from the maximum lag which than the actual amount other discharges. But ARIMA
is visible in Fig. 2 and 3 (48). Figure 4 and 5 are model due to making of discharge data series
compared the ability of the superior structures ARM stationary, not only establish equality between the
and ARIMA models, used in the calibration and number of more and less than forecasted data,dwut c
forecasting. By comparing Fig. 4 and 5 it will bear also forecast data less than 100 CMS with a good
that although the ARMA model better forecast the accuracy. In order to study the time changes of
initial months and also better simulate the peaktpo forecasting by using the equations (4), (5) and &
in calibration period than ARIMA, situation in best forecasting time for the models was obtained.
forecasting period has changed and ARIMA model Table 5 shows the minimum E and F indexes, the
336
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month of occurrence of these values and thén@ex
for forecasting period. As from Table 5 is cledre t
amount of E,, index andE and F,, indexes in the

CONCLUSION

In this study, ability of ARMA and ARIMA

ARIMA model has been decreased more than 90% angngdels is compared in forecasting Dez reservoiomf

nearly 50%, respectively, compared to the ARMA
model. This isa significant reduction in the forecast
error inARIMA model compared to the ARMA model.
For a better comparison ofE and F indexes in
forecasting period, Fig. 8 and 9 could be used,
respectively. Figure 8 and 9 will show that relativ
error and cumulative relative error indexes areelow
for ARIMA model in most months during the
forecasting time and they have a lesser fluctuatioar
time. Therefore, the ARIMA model is entitled to reor
reliability. By comparing the Fig. 8, 9 and Table 5
lower values E and F indexes for ARIMA are observed

at the Taleh Zang stations. Monthly discharge data
a period of 42 years were collected from Taleh Zang
hydrometrical station and used for calibration nisde
Then, the accuracy of forecasting models were
investigated by 5 years data. To summarize, itccbel
concluded that:

The accuracy of both models ARMA and ARIMA
increased compared to previous studies, due teaser
in the number of autoregressive and moving average
parameters in these models.

The ARIMA model has a better performance than

compared to the ARMA model and drastic changes inARMA model because it makes time series stationary,

the relative cumulative error in ARIMA are not seen
In other words, the ARIMA model has reached a kind
of stagnation in error. Also lower value of the med
relative error and coefficient of variation of riNa
error for ARIMA model indicate the lower error
variation for the ARIMA than ARMA model and it
implies that ARIMA is superior to ARMA model.
According to Table 5, the lowest rate gfFndex
has happened in the first month forecastich it also
is clear in Fig. 9. Meanwhile thacreasing trend of F
index is visible in the ARMAmModel as well as in Fig.
9. The amount of f, index is not only happen in the
tenth month forecasin ARIMA model, but also
according to Fig. 9 () arva- < (Frin)arma- It is an
important resulto compare the errors in ARMA and
ARIMA models. It means that the maximum average
cumulative relative error in the ARIMA model is $¢es
than the minimum average cumulative relative eimor
the ARMA model. In other words, the amount of F
index in ARIMA model has never reached the amount
of F index in the model ARMA, which it shows again
the superiority of ARIMA model to ARMA model. By
studying obtained diagrams for the ARIMA modelsit i
specified that this model gives a better answen tha
ARMA model for short-term forecasts. Figure 5 shows
that ARIMA model has the best forecasting for tinst f

4 months. The reason of the better performance of

ARIMA model for the short-term forecasting is reldt

to the nature of the hydrological data used in this
model. In this model, since the 504 data is fedhts
model as a lump sum, the relationship between #tee d
is established only as one monthly. It means thateh

considers the once-a-month communications between

discharges in order to forecast the new month

discharges. Thus, the best forecasting horizon doiego

beyond a year. According to Fig. 8, 9 and Table

be said that the monthly inflow could be forecagt b

ARIMA model about a year ago with a good accuracy.
337

in both calibration and forecasting phases.

Changes in relative error, cumulative mean regativ
error and variation coefficient of relative erron i
ARIMA model was less than ARMA model; this
indicates the superiority of ARIMA model to ARMA
model. By investigating these changes, it will leac
that the ARIMA model could be used for forecasting
an appropriate monthly inflow for the next 12 manth
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