
Journal of Mathematics and Statistics 8 (1): 57-63, 2012 
ISSN 1549-3644 
© 2012 Science Publications 

Corresponding Author: Teh Sin Yin, School of Mathematical Sciences, University Sains Malaysia, 11800 Minden, Penang, Malaysia 
57 

 
A Study on the Effects of Non-Normality on the 

 Performances of Max-DEWMA Versus SS-DEWMA Charts 
 

Teh Sin Yin and Michael Khoo Boon Chong 
School of Mathematical Sciences, University Sains Malaysia, 

11800 Minden, Penang, Malaysia 
 

Abstract: Problem statement: The called the Sum of Squares Double Exponentially Weighted 
Moving Average (SS-DEWMA) chart which is effective in detecting shifts in the mean and/or 
variance is compared with the Max-DEWMA (called the maximum double exponentially weighted 
moving average) chart. The comparison is based on the assumption that the distribution of the quality 
characteristic of the process is normal or approximately normally distributed. In many real world 
situations, this assumption may be violated. This study compares the effects of various forms of non-
normality on the Max-DEWMA and SS-DEWMA control charts. Approach: A Monte Carlo 
simulation using the Statistical Analysis Software (SAS) is conducted to compare the performances of 
the two charts for the case of skewed distributions, such as the Weibull, lognormal and gamma 
distributions. Results: The overall results show that the Max-DEWMA chart has in-control Average 
Run Lengths (ARLs) closer to the specified value, as compared to that of the SS-DEWMA chart, for 
all levels of skewnesses considered. Conclusion/Recommendation: Practitioners are advised to use 
the Max-DEWMA chart for a joint monitoring of the process mean and/or variance, when the 
underlying distribution is non-normal. 
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INTRODUCTION 

 
 An effective method of process monitoring is by 
means of using control charts (Oakland, 2003). A 
control chart is the most powerful tool in Statistical 
Process Control (SPC) that is extensively used by 
practitioners to control a variety of industrial processes. 
The Exponentially Weighted Moving Average 
(EWMA) chart, introduced by Roberts (1959), for 
instance, is often used to monitor the location and 
spread of a process. The EWMA-type control charts are 
formulated based on the properties of the normal 
distribution (Duncan, 1986). The normal distribution is 
described by its parameters, mean (µ) and standard 
deviation (σ). Since 1930, information gathered from 
most industries indicates that control limits, based on 
the 3 standard deviations width provide an economical 
balance between the costs resulting from the Type I and 
Type II errors (Umble and Umble, 2000). Unless there 
are strong practical reasons for using control limits with 
wider or narrower widths, otherwise the 3σ limits 
should be applied for a normal distribution. As such, 
99.73% of the population points will fall in the interval 
(µ±3σ) i.e. within the lower and upper control limits. 
This means that almost all the population values will 

fall within the (µ±3σ) limits if the process is free from 
any assignable cause, i.e. when no action is needed. In 
other words, the false alarm rate or size of the Type I error 
is as low as 1 in every 370 (0.27%) random samples 
(Besterfield, 2009; Gupta and Walker, 2007). 
 Recently, the single Max-DEWMA (called the 
Maximum Double Exponentially Weighted Moving 
Average) chart proposed by Khoo et al. (2010), which 
simultaneously detects shifts in the process mean and/or 
variability was shown to outperform the Max-EWMA 
chart, proposed by Chen et al. (2001), for small and 
moderate shifts. More recently, Teh et al. (2010a) 
proposed the single SS-DEWMA (called the Sum of 
Squares Double Exponentially Weighted Moving 
Average) chart which outperforms the SS-EWMA chart 
proposed by Xie, (1999), in detecting shifts of all sizes 
in the mean and/or variance. Teh et al. (2010b) 
conducted a comparative study of the performances of 
the SS-DEWMA and the Max-DEWMA charts, for 
monitoring the process mean and/or variance of a 
normally distributed process. Under the normality 
assumption, their findings indicated that the SS-
DEWMA chart is superior to the Max-DEWMA chart, 
in terms of the out-of-control detection speed and 
diagnostic abilities. 
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 A fundamental assumption that underlies the 
designs of the Max-DEWMA and SS-DEWMA charts 
is that the quality characteristic is normally distributed. 
However, in many situations, the validity of this 
assumption is doubted, not easy to justify and is often 
inappropriate. In many industrial processes, the 
normality assumption of the underlying distribution 
does not hold. Montgomery  (2008) discussed 
difficulties in the application of statistical control 
charting techniques to some real data in industries. For 
example, for a semiconductor laser, the lifetime of a 
product that degrades over time is often modeled by a 
lognormal random variable. In reliability engineering, 
the lifetime and failure rate data for electrical and 
mechanical components and system follow a Weibull 
distribution. The failure rate of a product is divided into 
three phases. The failure rate is high at the beginning 
(early failure) and at the end (wear out period) of the 
product cycle. Random or spontaneous failures occur in 
between the product cycle and this forms a bathtub 
curve for the failure rate function. Therefore, the 
Weibull distribution has been used in situations 
involving electronic devices, such as memory elements; 
mechanical components like bearings; and structural 
elements in aircrafts and automobiles. 
 Hai-Yu and Ji-Chao, (2007) noted that the 
consequence of applying EWMA charts when the 
underlying population is skewed is that the Type-I error 
or false alarm rate (the probability of signaling an out-
of-control when the process is actually in-control) will 
increase as the skewness level increases. This is due to 
the inconsistency between the variability pattern of an 
asymmetric distribution and the normality assumption 
in constructing control charts. When this happens, 
unnecessary process adjustments and loss of confidence 
in the use of control charts as a monitoring tool will 
arise. Many studies have recently been made on control 
charts for skewed populations (Amhemad, 2009; Khoo 
and Kassim, 2008; Hai-Yu and Ji-Chao, (2007).  
 In this study, the effect of departures from 
normality on both the Max-DEWMA and SS-DEWMA 
charts is of interest. Here, the effect of skewness of the 
underlying distribution on the performances of the 
Max-DEWMA and SS-DEWMA charts are compared. 
Various types of data ranging from nearly symmetric to 
highly skewed, representing a wide variety of shapes 
are generated. This study uses the Weibull, lognormal 
and gamma distributions to assess the robustness of the 
Max-DEWMA and SS-DEWMA control charts. A 
Monte Carlo simulation is performed herein to study 
the in-control Average Run Length (ARL0) properties 
of the charts for various non-normal distributions. 

 The remainder of this study is organized as follows:  
first reviews the Max-DEWMA and SS-DEWMA 
control charts. Some statistical properties and design 
strategies are presented. A simulation study is 
conducted to compare the performances of the Max-
DEWMA versus SS-DEWMA charts. Finally, 
concluding remarks are summarized . 
 
The Max-DEWMA and SS-DEWMA control charts: 
Khoo et al. (2010) developed a single EWMA-type 
control chart, called the Max-DEWMA chart. Assume 
that a series of random observations, 

( )2 2
ijX ~ N µ+ aσ,b σ , for i = 1, 2, 3, … and j = 1, 2, 3, 

…, in , where a and b are constants and b ≥ 1. The 

process is in-control when a = 0 and b = 1; otherwise 
the process has shifted. Let Eq. 1 and 2:  
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 Note that in Eq. 3 and Eq. 4, ( )Φ   − ⋅1  denotes the 

inverse standard normal distribution function and H (w; 
v) the chi-square distribution function with v degrees of 
freedom. When the process is in-control, both Ui and Vi 
in Eq. 3 and Eq. 4, respectively, are independent 
statistics having a common standard normal 
distribution. The two EWMA statistics computed from 
Ui and Vi are defined as follows: 
 

(1- ) for = 1,2,…i i -1 iY = λ Y + λU ,   i   (5) 

 
and 
 

(1- ) for = 1, 2,…i i -1 iZ = λ Z + λV ,   i  .   (6) 
 Here, 0 < λ 1≤  is the smoothing constant, while Y0 

= Z0 = 0 are the starting values of Yi and Zi, respectively. 
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From the two EWMA statistics of Yi and Zi, given in 
Eq. 5-6, respectively, two corresponding DEWMA 
statistics can be computed as follows: 
 

(1- ) for = 1,2,…i i -1 iW = λ W + λY ,   i   (7) 

 
And: 
 

(1- ) for = 1, 2,…i i -1 iQ = λ Q + λZ ,   i   (8) 

 
 Here, W0 and Q0 ( )0 0= = 0W Q  are the starting 

values of iW  and iQ , respectively. Khoo et al. (2010) 

uses the simple approach of setting the smoothing 
constants the same for Yi, Zi, iW  and iQ , in Eq. 5, Eq. 6, 

Eq. 7 and Eq. 8, respectively. Then the two DEWMA 
statistics in Eq. 7 and Eq.8 are combined into the 
following single statistic for the proposed Max-
DEWMA chart: 

 

{ }i i iM = max W , Q  (9) 

 
 Because the proposed chart is based on Mi, i.e., the 
maximum of iW and iQ , it is called the Max-DEWMA 

chart. If the process mean has shifted away from its 
target value and/or the variance has increased or 
decreased, the statistic Mi, will be large. If both the 
process mean and variance stay close to their respective 
target values, then Mi will be small. Note that Mi is the 
maximum of the absolute values of the two DEWMA 
statistics and it is non-negative. Therefore, the Max-
DEWMA chart needs only an Upper Control Limit 
(UCLMD), which is given in Khoo et al. (2010). 
 

MD i MD iUCL = E(M )+ K V(M )    

( )
( )

( ) ( )
( ) ( ) ( ) ( )

4

 32

2 2

2 2 22

= 1.128379 + 0.602810 
1- 1-

1+ 1- 2 +1

1- 2 2 -1 1-

 
  

 
 ×  
  

MD

i i+ 2i+42

λ
K

λ

 λ - i + i

λ + i + i λ - i 1 - λ

   (10) 

 
 For i = 1, 2,…, where E(Mi) and V(Mi) are the 
mean and variance of Mi, respectively, when the 
process is in-control, while KMD is a multiplier that 
controls the width of UCLMD.  
 More recently, instead of taking the maximum of 

iW  and iQ , Teh et al. (2010a) also explored the idea 
of using the sum of squares of Wi and Qi in Eq. 7 and 

Eq. 8. They introduced the following single statistic for 
the proposed SS-DEWMA chart Eq. 9-11:  
 

2 2
i i iL =W +Q  (11) 

 
 Similar to the Max-DEWMA chart, the values of 

iL  will be large if the mean and/or variance has shifted 

from their target values. However, iL will be small if 

both the mean and variance stay close to their 
respective target values.  
 Since iL is non-negative, the SS-DEWMA 

chart only has an upper control limit, given by: 
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4
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 For i = 1, 2, …, where E(Li) and Var (Li) are the in-
control mean and variance of Li, respectively. Note that 
KSD is a constant controlling the width of UCLSD. Eq. 
12 enables a quick computation of UCLSD for the 
zero state SS-DEWMA chart, based on desired λ and 
KSD values. 
 The derivation of UCLSD is shown in Teh et al. 
(2010b). As a rule of thumb, λ in the interval 0.05 ≤ λ ≤ 
0.30 is usually considered for a quick detection of small 
and moderate shifts in the mean and/or variance. Teh et 
al. (2010a) show that the SS-DEWMA chart performs 
better than the Max-DEWMA control chart in detecting 
shifts of all sizes in the mean and/or variance when the 
underlying distribution is normally distributed. 

 
Statistical properties and design strategies: 
Skewness is a measure of the degree of asymmetry for a 
distribution. A distribution (or a data set) is symmetric 
if the median divides the left side and the right side into 
two identical regions. The sample skewness is 
measured with the following Eq. 13 (Kenney and 
Keeping, 1956): 
 

Skewness = 
3

=1
3

( )

( -1)
∑

n

ii
X - X

n S
  (13) 

 
 where n is the number of data points and S the 
sample standard deviation. The skewness for a 
symmetric distribution has a value of zero. Negative 
values indicate data that are skewed to the left (left tail 
is longer relative to the right tail) and positive values 
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indicate data that are skewed to the right (right tail is 
longer relative to the left tail).  
 The Weibull, lognormal and gamma distributions 
are considered in this study because these distributions 
are very flexible and by appropriate selection of the 
parameters, they can represent a wide variety of shapes, 
ranging from nearly symmetric to highly skewed. For 
convenience, a scale parameter of one is selected for 
both the Weibull and gamma distributions while a 
location parameter of zero is chosen for the lognormal 
distribution. This is because the skewness does not 
depend on the parameters of these distributions. 
 For a Weibull distribution, with a location parameter 
zero and scale parameter one, its cumulative distribution 
function (cdf) is given as Eq. 14:  
 

-( )( ) = 1- for ≥
β

ωy  F y e ,   y 0 (14) 

 
Where, ω >0 is the scale parameter and β >0 the shape 
parameter. Note that when β  = 1, the Weibull 
distribution reduces to the exponential distribution with 
mean ω . Letting ω  = 1 and ( )≤YP = Pr Y µ , where µ  is 
the target mean value of Y, we have: 
 

1
1- 1+ for 0

     ≥   
    

β

YP = exp - Γ ,   y
β

  (15) 

 
 For a lognormal distribution, its cdf is given as 
(Aitchison and Brown, 1969) Eq. 16: 
 

for > 0
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 where θ  is the location parameter and LNσ  the scale 

parameter. Letting θ  = 0 and ≤YP = Pr(Y µ) , we have 
 

LN

2
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YP =Φ  (17) 

  
The values of β and LNσ  satisfying a given PY in Eq. 15 

and Eq. 17, respectively, can be obtained uniquely 
using a numerical method.  
 For a gamma distribution with a location parameter 
zero and scale parameter one, its cdf is given as 
(Johnson et al., 1994) Eq. 18: 
 

( )
( ) for 0, 0

( )
≥ ≥YΓ α

F y = ,   y α
Γ α

 (18) 

 

where -1

0
( ) ∫

y
α -m

YΓ α = m e dm and -1

0
( )

∞

∫
α -mΓ α = m e dm. 

Then for this case Eq. 19: 

( )YP = F α   (19) 

 
 Since µ= α . Here, α denotes the shape parameter 
of the gamma distribution. Similar to the Weibull 
distribution, when α = 1, the gamma distribution 
reduces to the exponential distribution with mean 1. 
For the sake of comparison, besides the Weibull, 
lognormal and gamma distributions, the normal 
distribution is also considered. Note that the skewness 
coefficient, γ  , is unique for a given value of β, LNσ  or 
α . The shape parameters, β for the Weibull 
distribution, LNσ  for the lognormal distribution and α 
for the gamma distribution, are determined so that the 
skewness coefficient, γ  = 0.5(0.5)3. A skewness 
coefficient of zero indicates that the distribution is 
symmetry. The skewness coefficient, γ = 0.5 and 1.0 
represent low levels of skewness; γ= 1.5 and 2.0 
represent moderate levels of skewness; and γ = 2.5 and 
3.0 represent high levels of skewness. A shift in the 
mean is represented by ,1 ,0 ,0Y Y Yµ = µ + δσ , where δ > 0 is 
the magnitude of a shift, in terms of the number of 
standard deviation units, while ,0Yµ  and ,0Yσ  represent 
the in-control mean and in-control standard deviation, 
respectively. Note that we only consider the in-control 
process, i.e., when δ  = 0. For a random variable, Y, 
from the Weibull, lognormal and gamma distributions, 
their in-control means are Eq. 20-22: 
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and 
 

,0Yµ = α  (22)  

 
 Respectively, while their in-control standard 
deviations are Eq. 23-25: 
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and 
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 Respectively (Khoo et al., 2008).  
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Table 1: In-control average run lengths for the Max-DEWMA and SS-DEWMA charts when n = 5 and ARL0 = 250 

     0.05                               0.10                                 0.20 
   --------------------------- ---------------------------------- -------------------------------- 
   KMD KSD KMD KSD KMD KSD 
   1.655 1.677 2.082 2.348 2.528 3.113 
Parameter Distribution  γ M-D S-D M-D S-D M-D S-D 
 Normal  250.10 249.90 249.50 250.00 250.80 249.90 
 Weibull 
β 3.6286 0.0 277.96 276.90 280.00 278.45 281.96 211.36 
 2.2266 0.5 269.66 246.60 262.92 234.96 257.63 168.87 
 1.5688 1.0 166.20 141.62 167.07 130.87 158.58 92.63 
 1.2123 1.5 65.39 61.29 70.03 62.01 69.47 48.30 
 0.9987 2.0 30.55 30.31 32.67 32.16 32.49 26.87 
 0.8598 2.5 17.47 17.55 19.10 19.49 19.00 17.07 
 0.7637 3.0 11.67 11.79 12.70 13.05 12.81 11.88 
 Lognormal 
σLN 0.001 0.0 263.24 244.85 380.80 190.17 251.75 249.78 
 0.1656 0.5 232.15 206.07 331.36 156.93 212.02 187.44 
 0.317 1.0 138.66 119.34 192.09 97.17 137.07 105.77 
 0.4484 1.5 67.26 61.41 90.73 54.14 71.96 59.56 
 0.5593 2.0 36.93 35.18 47.86 32.88 39.81 36.83 
 0.6525 2.5 23.08 22.10 29.28 21.87 24.99 24.36 
 0.7315 3.0 15.98 15.76 20.45 15.84 17.37 17.79 
 Gamma 
α 38000 0.0 257.19 252.99 255.28 254.15 253.52 249.80 
 15.4 0.5 234.58 217.16 227.50 209.39 225.31 192.83 
 3.913 1.0 148.18 129.16 149.25 124.91 145.58 110.18 
 1.788 1.5 67.38 62.72 71.38 64.44 71.87 58.54 
 0.983 2.0 30.86 30.21 32.31 31.86 32.18 30.46 
 0.648 2.5 16.60 16.86 18.16 18.25 18.00 18.01 
 0.442 3.0 9.90 9.98 10.77 11.10 10.84 11.18 

 
Table 1: Countinuous 

   0.30 0.50 0.80 1.00 
  --------------------------- --------------------------- --------------------------- ----------------------------- 
  KMD KSD KMD KSD KMD KSD KMD KSD 
  2.799 3.585 3.090 4.188 3.246 4.492 3.250 4.528 
Parameter Distribution M-D S-D M-D S-D M-D S-D M-D S-D 
 Normal 250.10 249.90 249.90 249.90 249.70 249.90 250.10 250.00 
 Weibull 
β 3.6286 296.24 291.55 305.55320.12 339.29 344.62 346.49 354.03 
 2.2266 263.68 203.77 255.63 191.28 237.78 168.50 225.11 164.91 
 1.5688 156.48 100.42 138.95 85.52 105.97 67.39 92.59 61.26 
 1.2123 69.43 50.82 63.96 43.30 51.07 34.61 44.97 32.16 
 0.9987 32.09 28.22 30.29 24.86 28.37 21.58 27.66 21.34 
 0.8598 18.74 17.88 17.69 16.03 17.54 14.94 18.79 15.81 
 0.7637 12.40 12.49 11.70 11.36 11.82 10.97 13.42 12.32 
 Lognormal 
σLN 0.001 255.21 249.95 251.08 250.55 252.67 249.78 250.81 249.92 
 0.1656 211.75 175.21 194.31 159.11 160.66 125.65 147.75 115.50 
 0.317 132.58 95.91 116.69 81.47 83.19 59.30 70.51 53.62 
 0.4484 72.13 55.65 67.95 49.21 50.78 37.23 44.10 33.85 
 0.5593 40.34 34.07 40.38 31.70 35.54 27.36 32.70 26.21 
 0.6525 24.91 23.09 25.73 22.64 26.53 21.50 26.67 21.93 
 0.7315 17.34 17.18 17.88 16.86 20.43 17.62 22.71 19.33 
 Gamma 
α 38000 258.45 250.78 253.41 254.86 253.69 254.92 249.89 257.14 
 15.4 220.82 180.38 202.76 161.12 169.00 131.42 153.30 119.90 
 3.913 143.46 98.30 125.55 82.53 90.31 61.19 77.90 55.17 
 1.788 70.96 52.36 65.06 44.67 50.92 35.50 45.20 32.81 
 0.983 31.76 27.95 30.04 24.29 27.60 21.06 27.31 21.03 
 0.648 17.44 16.81 16.25 15.06 15.61 13.54 16.61 14.16 
 0.442 10.53 10.74 9.69 9.65 9.10 8.76 9.91 9.44 
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A comparison of the performances of the max-dewma 
versus ss-dewma charts: The effectiveness of a control 
chart in detecting a process change is measured by the 
Average Run Length (ARL), which is the expected 
number of samples plotted on a chart until the first out-
of-control signal is given (Montgomery, 2008). In other 
words, ARL is a measure of the speed of a control chart 
in detecting the occurrence of assignable causes (Zhang 
and Chen, 2005). The performances of the Max-
DEWMA and SS-DEWMA charts are compared by 
designing charts with a common in-control ARL, ARL0 

= 250 and a sample size of n = 5. As expected, other 
ARL0s and sample sizes will also give similar results. A 
chart with an ARL0 value closer or equal to 250 for 
most of the cases is considered as the best chart. The 
normal, Weibull, lognormal and gamma distributions 
are considered in the computation of the ARL0s of the 
Max-DEWMA and SS-EDWMA charts. The smoothing 
constant, λ ∈ {0.05, 0.10, 0.20, 0.30, 0.50, 0.80, 1.00} 
is considered for both the Max-DEWMA and SS-
DEWMA charts. The various combinations of ( , )SDλ K  

for the Max-DEWMA chart and ( , )SDλ K  for the SS-

DEWMA chart were obtained from Khoo et al. (2010) 
and Teh et al. (2010b), respectively. Here, the exact 
limits of both charts are considered.  
 Table 1 gives the ARL0s for the Max-DEWMA 
and SS-DEWMA charts when n = 5 and ARL0 = 250. 
Overall, the Max-DEWMA chart gives ARL0 values 
closer or equal to 250 compared to its SS-DEWMA 
counterpart in most of the cases, when the underlying 
population is skewed. For both the Max-DEWMA and 
SS-DEWMA control charts, when the level of positive 
skewness, y, increases, the probability of a sample point 
exceeding the control limit increases, hence the ARL0 
decreases (or the Type I error rate increases).  
 This is true for all the three skewed distributions 
considered. For the normal population, the ARL0s of 
both charts are close to 250. When the skewness level, γ 
equals to zero, the distribution of the data is symmetric, 
therefore, the ARL0s for the Weibull, lognormal and 
gamma distributions approach the ARL0 value of a 
normal distribution, i.e., 250. 
 

CONCLUSION 
 
Concluding remarks: In most cases of skewed 
populations, irrespective of the skewness, γ, smoothing 
constant, λ  and type of skewed distribution, the Max-
DEWMA chart produces ARL0 values that are closer or 
equal to 250 than the SS-DEWMA chart.  
 Although Teh et al. (2010a) showed that the SS-
DEWMA chart outperforms the Max-DEWMA chart, 
in terms of the out-of-control detection speed and 

diagnostic abilities, when the underlying distribution is 
normal; this conclusion is no longer true when the 
underlying distribution is skewed. This is indicated by 
the results in the “A Comparison Of The Performances 
Of The Max-DEWMA Versus SS-DEWMA Charts” 
section. Therefore, the SS-DEWMA chart can act as a 
favorable substitute to the existing single EWMA charts 
for a joint monitoring of the mean and/or variance only 
if the distribution of the data is normally distributed. 
Practitioners are advised to employ the Max-DEWMA 
chart for a joint monitoring of the mean and/or variance, 
when the underlying distribution is non-normal: 
 
• Among the potential future works on this topic that 

are worth pursuing are as follows 
• To compare the performances of the SS-DEWMA 

and Max-DEWMA charts for skewed populations, 
in terms of the Median Run Length (MRL), 
Standard Deviation of the Run Length (SDRL) and 
percentage points of the run length distribution  

• To investigate the performances of the SS-
DEWMA and Max-DEWMA charts for the steady 
state mode process, as we only consider the zero 
state mode process in this study 

• To measure the performances of the SS-DEWMA 
and Max-DEWMA charts when their smoothing 
constants, λ’s, have different weights 

• To study the performances of the SS-DEWMA and 
Max-DEWMA charts, based on an autocorrelated 
process, i.e., when the independence assumption is 
violated 

• To evaluate the performances of the SS-DEWMA 
and Max-DEWMA charts, based on heavy tailed 
distributions, such as the Student-t or Cauchy 
distributions 
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