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ABSTRACT 

Analysis of Variance (ANOVA) techniques which is based on classical Least Squares (LS) method requires 
several assumptions, such as normality, constant variances and independency. Those assumptions can be 
violated due to several causes, such as the presence of an outlying observation. There are many evident in 
literatures that the LS estimate is easily affected by outliers. To remedy this problem, a robust procedure 
that provides estimation, inference and testing that are not influenced by outlying observations is put 
forward. A well-known approach to handle dataset with outliers is the M-estimation. In this study, both 
classical and robust procedures are employed to data of a factorial experiment. The results signify that the 
classical method of least squares estimates instead of robust methods lead to misleading conclusion of the 
analysis in factorial designs. 
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1. INTRODUCTION 

In statistics, conducting an experiment is one way to 
obtain the data. Related to the data obtained, there are 
important things we need to consider, namely the 
presence of one or more outliers in the data. This 
problem has been dealt with in great detail in linear 
regression problems but may not get much attention in 
the context of experimental design. The decision to 
retain or discard outliers depends on the purpose of the 
study. Many studies have been done when we considered 
to keep the outlier in the data. Gentleman and Wilk 
(1975) and John and Drapper (1978) studied about 
outliers design of experiment in a two-way anova 
through residual analysis. Few years later, John (1978) 
incorporated his previous study to discuss the problems 
that arise in detecting the presence of one and two 
outliers in factorial experiments.  

The presence of outlier, especially in experimental 
data is responsible for misinterpretation of experimental 
data which indicate that no abnormalities in the results 
where in fact it is not. The consequences of the presence 
of outliers are well known. Nelder (1971) noted that 1% 
gross error in such an experiment can result in a false 
inference, while 1 to 10% gross errors are rather rule 
than exceptions in reality. Bhar and Gupta (2001) 
pointed out that even a single outlier may alter the 
inference to be drawn from the experiment.  

Our goal in this study is to show that outlier has an 
effect on the factorial designs, which may give 
missleading results. Then, a robust technique is put 
forward to deal with the presence of outlier in design of 
experiment. We will show the the performance of a 
robust technique of M estimator in comparison with the 
classical Least Squares method. The comparison of both 
methods will be presented using an empirical dataset. 
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1.1. Outliers in Design of Experiments 

Many literatures discussed about outliers including 
how to identify outliers and how to deal with the 
presence of outliers. Cook (1977) introduced a statistic to 
indicate the influence of an observation with respect to a 
particular model. Related to experimental designs, 
Daniel (1960) had discussed how to locate outliers in an 
experimental design. He defined that an outlier in a 
factorial experiment is an observation whose value is not 
in the pattern of values produced by the rest of the data. 
A year after, Bross (1961) had studied a strategic 
appraisal analysis of the problem of outliers in patterned 
experiments. Recent articles by Seheult and Tukey 
(2001) introduced a method of outlier detection and 
robust analysis in a factorial experimental design. 

Bhar and Gupta (2001) proposed a new criterion of 
detecting outlier in experimental designs which is based 
on average Cook-statistic. Meanwhile, Zhou and Julie 
(2003) realized the fact that in practice, experiments may 
yield unusual observations (outliers). In the presence of 
outliers in a data, estimation methods such as ANOVA, 
truncated ANOVA, Maximum Likelihood (ML) and 
modified ML do not perform well, since these estimates 
are greatly influenced by outlier. Zhou and Julie (2003) 
verified that with robust designs, one can get efficient and 
reliable estimates for variance components regardless of 
outliers which may happen in an experiment. Their work 
is then followed by Goupy (2006) who described how to 
discover an outlier and estimate its true value. The method 
is based on the use of a dynamic variable and the “small 
effects” of the Daniel’s diagram. 

1.2. Linear Model of a Factorial Experiment 

Usual general linear model of an experimental design 
is written as follows Equation (1): 
 
Y Xθ ε= +  (1) 
 
where, Yn×1 is a vector of response variable, Xn×p is the 
design matrix of nonstochastic constant, θp×1 is vector of 
parameters to be estimated and εn×1 is vector of errors with 
zero expectation, E(ε) = 0 and covariance matrix V(ε) = 
σ

2I. In standard ANOVA, the underlying regression 
estimator is the least squares estimator, where parameters 
are chosen to minimize the regression sum of squares. 

1.3. The use of Cook’s Distance 

There are many articles in the literatures that discuss 
outlier detections. In this article, we consider to employ 

Cook’s Distance which was developed by Cook (1977). 
Cook’s Distance is one of the important methods in 
statistics to identify outlier or influential observation. It 
is used for assessing influence in regression models. 
Cook’s Distance usually denoted by Di, identifies cases 
with unusual values that have considerable influence on 
a numerical analysis. Cook distance of the i-th 
observation is based on the differences between the 
predicted responses from the model constructed from 
all of the data and the predicted responses if the i-th 
observation is eliminated. Fox (1997) suggested a cut-
off value of 4/(n-k-l) for detecting influential cases 
where n is the number of observations and k is the 
number of predictor (factor). 

In linear regression model, Cook’s distance, Di is 
defined as: 
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But since our model here is based on linear model in 

a design of experiment, we can simplify the Equation (2) 
above become: 
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where, H = X(X’X)-1X’, h i = xi’(X’X)x i and p = number 
of predictors in model plus one. 

It can be seen from the Equation (3) that Di is 
calculated using leverage values and standardized 
residuals. It considers whether an observation is 
influential with respect to all fitted values. The 
template is used to format your paper and style the 
text. All margins, column widths, line spaces and text 
fonts are prescribed; please do not alter them. Your 
paper is one part of the entire proceedings, not an 
independent document. Please do not revise any of the 
current designations. 

1.4. Robust M Approach 

Robust linear models are useful for filtering linear 
relationships when the random variation in the data is not 
normal or when the data contain significant outliers. The 
main purpose of robust regression is to provide resistant 
(stable) results in the presence of outliers.  

Many robust methods have been developed to rectify 
the problem of outliers. In this study we employ the M 
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estimators and incorporate this method in linear model 
two-way experimental designs. It is well known that the 
least squares estimation method optimize the fit of the 
model by minimizing the sum of the squared deviations 
between the actual and predicted Y values, Σ(y-ŷ)2. The 
method can be represented as Equation (4):  
 

n
2
i

i 1

min
=

ε∑  (4) 

 
Huber (1973) and Huber (1981) developed a robust 

estimator called M-estimator, which are based on the 
idea of replacing the squared residuals, 2

iε , with another 

function of the residuals, given by Equation (5):  
 

( )
k

i
i 1

min
=

ρ ε∑  (5) 

 
where, ρ is a symmetric function with a unique minimum 
at zero. In general, a sensible ρ-function should have the 
following properties: 
 

( ) 0ρ ε ≥ , 

( )0 0ρ = , 

( ) ( )ρ ε ≥ ρ −ε  and 

( ) ( )'
i iρ ε ≥ ρ ε  for '

i iε > ε  

 
Two procedures commonly used to solve the non-

linear normal equations for the M-estimates are the 
Newton-Raphson and the Iteratively Re-weighted Least 
Squares (IRLS). Practically, the most widely used 
procedure is the IRLS. In IRLS, the initial fit is 
calculated and then a new set of weights is calculated 
based on the results of the initial fit. The iterations are 
continued until a convergence criterion is met. 

ROBUSTREG procedure in SAS provides two linear 
tests to asses a particular effect. The first test is a robust 
version of the F test, which is named to as the ρ (rho) test 
(SASI, 2008). Under H0, 2 2

n qS ~λ χ , where λ is the 

standardization factor, which is equal to: 
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Meanwhile, according to (SASI, 2008), 2nS  can be 

written as: 

[ ]2
n 1 0

2
S Q Q

a
= −  

And: 
 

( )( ) ( ){ }0 0
ˆQ Q 0 min Q |= θ = θ θ∈ Ω , 

 

( )( ) ( ){ }1 1
ˆQ Q 1 min Q |= θ = θ θ∈ Ω , 

 
where, Ф is cummulative distribution function obtained 
from standard normal distribution. 

The second linear test is a robust version of the Wald 
test, which is named to as 2nR  test. It uses a test statistic of: 

 

( ) ( ) T
2 1
n i1 i2 iq 22 i1 i2 iq

ˆ ˆ ˆ ˆ ˆ ˆR n , , , H , , ,−= θ θ θ θ θ θ… …  

 
where, 1

22n H  is the q×q block, corresponds to 

( )i1 i2 iq
ˆ ˆ ˆ, , ,θ θ θ… , of the asymptotic covariance matrix of 

the M estimate Mθ̂ of θ in p-parameter linear model 

(SASI, 2008). In design of experiment, null hypothesis 
both ρ and 2

nR  tests specify no significant contribution of 

a particular effect on response variable. When H0 of no 
effects is correct, the2

nR  has chi-squares distribution with 

q degrees of freedom2
qχ . 

1.5. Empirical Results 

To illustrate the comparisons between classical and 
robust approach in dealing with outlier in factorial 
experiments, we provide an empirical example. In this 
example we consider a famous dataset discussed by 
Daniel (1960) Table 1. The analysis is conducted by 
SAS release 9.2. For data without any outliers (clean 
data), we employ PROC GLM, meanwhile the 
contaminated data will be analyzed using PROC 
PROBUSTREG.  

We now apply the classical Least Square (LS) 
approach to the clean data since we knew that the LS is 
always better in dealing with ‘clean’ observations. From 
Table 2 and 3, it is clear that a single outlier has 
nullified the main effect of chemical B to the response 
variable. In addition, the presence of an outlier has also 
reduced the usual goodness-of-fit measurement of R2. 
When there is no outlier in the data, both chemical A and 
B account for about 88.61% of the variability of the 
response variable. But, it is reduced to 71.14% when 
there is an outlier in the data. 
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Table 1. Hypothetical two-way experimental data as 
mentioned in Daniel (1960) 

 B 
 ------------------------------------------------------------ 
A b1 b2 b3 b4 
a1 35 32 40 37 
a2 29 29 36 34 
a3 25 29 40 (20) 30 
a4 29 25 35 25 
a5 22 20 29 29 
 
Table 2. ANOVA table of the clean data 
Source df SS MS F p 
A 4 328 82.00 12.00 0.000 
B 3 310 103.33 15.12 0.000 
Error 12 82 6.83 
Total 19 720 
 
Table 3. ANOVA table of the modified data 
Source df SS MS F p 
A 4 368 92.00 5.47 0.010 
B 3 130 43.33 2.57 0.103 
Error 12 202 16.83 
Total 19 700 
 
Table 4. Cook’s distance for clean and modified data 
   Cook’s distance 
   --------------------------------- 
Index A B Clean Modified 
1 a1 b1 0.183 0.033 
2 a1 b2 0.020 0.033 
3 a1 b3 0.081 0.008 
4 a1 b4 0.000 0.008 
5 a2 b1 0.020 0.000 
6 a2 b2 0.000 0.008 
7 a2 b3 0.081 0.008 
8 a2 b4 0.020 0.000 
9 a3 b1 0.081 0.033 
10 a3 b2 0.020 0.206 
11 a3 b3 0.183 0.668 
12 a3 b4 0.081 0.033 
13 a4 b1 0.183 0.132 
14 a4 b2 0.081 0.008 
15 a4 b3 0.183 0.297 
16 a4 b4 0.081 0.074 
17 a5 b1 0.020 0.000 
18 a5 b2 0.081 0.074 
19 a5 b3 0.081 0.008 
20 a5 b4 0.183 0.033 

 
Table 5. Robust linear test for the A effect 
Test Test statistic λ df χ2  p 
ρ  10.747 0.7977 4 13.47 0.0092 

2
nR  39.321  4 39.32 <0.0001 

Table 6. Robust linear test for the B effect 
Test Test statistic λ df χ2 p 
ρ  10.7636 0.7977 3 13.49 0.0037 

2
nR  24.8532  3 24.85 <0.0001 

 
To verify that the observation of third row and third 

column of the modified data is an outlier, we employ the 
Cook’s distance approach. The result is displayed in 
Table 4. The presence of a single outlier in the data 
inflates the Cook’s distance from 0.183 of the clean data 
to 0.668. The Cook’s distances indicate that cases 11 are 
an influential observation. The presence of this outlier 
has made the effect of chemical B insignificant. This 
result has huge impact in the analysis and as a result in 
applied science, especially in industry. 

We used PROC ROBUSTREG of SAS Release 9.2 
and employ the robust M to rectify this problem. In 
comparison with the classical LS, the M estimator 
produces better results in dealing with the outlier. 

By using the M estimator, as we can see in Table 5 
and 6, we discovered that both chemicals A and B 
significantly contribute to the response variable with p 
values of the test statistics are equal to 0.0092 and 
0.0037, respectively. From the results we can conclude 
that the robust M estimator has proven to reduce the 
effects of outlier on the analysis and lead to significant 
conclusion of the chemical B and the response.  

2. CONCLUSION 

In this study we enlightened the importance of 
employing a robust method in the experimental 
designs, especially for the factorial experiments to 
reduce the effects of outliers on the analysis. The 
numerical example indicates that in the presence of 
even a single outlier has large effect on the LS 
procedures. However, the M procedure is less affected 
by outlier. It can improve the analysis and nullify the 
effects of outlier. The results of the analysis clearly 
show that robust approach correctly identifies the 
significant factors in the presence of outlier. 
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