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ABSTRACT 

Global warming is an important issue related to the climate and weather forecast. It is shown by 
significantly increasing the atmospheric temperature level. Hence, improving the forecast accuracy of 
temperature is an important issue. The forecast is commonly done by performing a deterministic forecast 
meaning that the system will generate a point forecast without taking into account the uncertainty induced 
by model specification as well as the nature behavior. Ensemble forecast has been introduced to overcome 
this problem and it has been implemented in many Ensemble Prediction Systems (EPS) over the world. A 
problem arises in some developing countries that unable to develop such EPS due to the system restrictions. 
This paper discusses the performance of combined forecasts generated from a class of time series model as 
an alternative of EPS. The models are calibrated using Bayesian Model Averaging (BMA) where the 
parameters are estimated by Markov Chain Monte Carlo (MCMC). The results show that the proposed 
procedure is capable to increase the reliability of the forecast. 
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1. INTRODUCTION 

Global Warming is an important issue related to 
climate and weather change. Global warming has 
increased the intensity of extreme events towards weather 
variables leading to climate change. Climate change is 
defined as the gradually change of air temperature, 
humidity, atmospheric air pressure, sun and rain intensity 
as well as wind speed within fifty to hundred years. 
Therefore, temperature as one of the climate change 
indicators is important to be forecasted.  

There are two kinds of forecasts with regards to the 
output i.e., deterministic forecast and probabilistic 
forecast. By deterministic forecast, the system will 
generate a point forecast, while probabilistic forecast 
generates an interval forecast representing some degrees 
of uncertainty. It is well known that future projection of 
nature behavior such as temperature is highly affected by 
uncertainty and hence, implementing probabilistic forecast 

is expected to produce more reliable forecast than 
deterministic one. Some researches applying deterministic 
approach for temperature prediction are (Tektas, 2010; 
Hippert et al., 2000; Prybutok et al., 2000; Saima et al., 
2011; Soe et al., 2012) among others. Indonesia is one of 
the countries that currently still implements deterministic 
forecast to some climate variables. 

The probabilistic forecast is a result of using several 
model outputs for the forecast, that is known as ensemble 
forecast (Gneiting, 2008; Gneiting et al., 2005; Murphy, 
1998; Ustaoglu et al., 2008; Sloughter et al., 2013). The 
idea of the ensemble forecast is to model the uncertainty 
induced by several factors such as model specification, 
nature behavior, initialization and the others. Zhu (2005) 
discusses the sources of uncertainty comprehensively.  
In fact, ensemble forecast has been applied in many 
Ensemble Prediction System (EPS) of developed 
countries such as National Centers for Environmental 
Prediction in US, the European Centre for Medium-
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Range Weather Forecasts (ECMWF), the Met-Office 
UK, Meteo-France, Environment Canada, the Japanese 
Meteorological Agency, the Bureau of Meteorology 
Australia, the Korea Meteorological Administration and 
many others. Forecasting by ensemble has been proven 
to be able to generate reliable forecast compared to 
deterministic forecast from a single model. 

The model outputs used in the ensemble forecast of 
EPS involves of numerical processes with relatively high 
degree of complexity. This leads to a problem in 
implementation of EPS, in particular for developing 
countries due to unavailability of resources such as 
supercomputers. This paper proposes an alternative of 
numerical ensemble forecast using outputs of several time 
series models as the ensemble. The ensemble forecast has 
characteristic of being underdispersive (Raftery et al., 
2005) and hence it has to be calibrated to remove the bias 
and match the distribution of observation with forecasts. 
Several calibration methods have been introduced in many 
previous researches such as Bayesian Model Averaging 
(BMA) of (Raftery et al., 2005; Wilson et al., 2007; 
Sloughter et al., 2013), Dressing kernel of (Wang and 
Bishop, 2005), Model Output Statistic of (Gneiting and 
Raftery, 2007; Soe et al., 2012) and many others. The 
BMA method is the most widely used method in the EPS. 
There are two common procedures used to estimate the 
parameters of the BMA i.e., Expectation Maximization 
and Markov Chain Monte Carlo (MCMC), referred 
hereafter to as BMA_EM and BMA_MCMC respectively. 
The BMA_MCMC was firstly introduced by (Vrugt et al., 
2008). The paper showed that the MCMC procedure 
works well in predicting the wind speed and offers some 
flexibility in the application. They also pointed out several 
advantages of using MCMC compared to EM algorithm. 

In this study, the BMA_MCMC is applied to 
ensemble temperature forecast where the outputs are 
generated from several time series models instead of 
generated from numerical process. This approach can be 
considered as an extension of forecast combination 
proposed by (Granger, 1989), where the forecast is 
combined and calibrated in this study. In this case, we 
intend to model uncertainty induced by the model 
specification. The performance of the proposed 
methodology is compared to the results of BMA_EM 
documented in (Kuswanto, 2011). 

1.1. Literature Review 

1.1.1. Bayesian Model Averaging  

Bayesian Model Averaging (BMA) is one of the 
statistical methods for calibration that combine some 

information from several model outputs. The BMA for 
dynamic ensemble forecast can be written as:  
 

K

1 k k k kk 1
p(y f ...f ) w g ( | f )

=
= ∆∑  (1) 

 
where, wk is the positive posterior probability of k-th 
forecast with sum of one and K is the number of 
ensemble members.  

Equation (1) requires a specification about the prior 
distribution of the underlying climate variable (e.g., 
temperature) which is approximated by normal 
distribution such that: 
 

2
k k k ky | f N(a b f , )+ σ∼  

 
where, ak and bk are the bias correctors derived from simple 
linear regression of y to fk for every ensemble member. 
The mean of the BMA forecast is given by Equation (2): 
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while the variance of the BMA at period t is: 
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1.2. Markov Chain Monte Carlo (MCMC) 

The BMA parameters i.e., variance and weight are 
estimated using Sampling of MCMC. The MCMC 
simulation allow us to estimate parameters of a 
complex posterior distribution with high 
dimensionality. Granger (1989) proposes an algorithm 
called as Differential Evolution Adaptive Metropolis 
(DREAM) where N different Markov chains are run 
simultaneously in parallel. If the state of a single chain is 
given by a vector θ with dimension of d, thus each 
generation of N in DREAM defines a population Ω with 
dimension N×d.  The jump of every chain is generated 
by randomly taking the difference among several other 
chains of Ω (without replacement) such as:  
 

i i r( j) r (n)

j 1 n 1

( ) ( ) e
δ δ

= =
ϑ = θ + γ δ θ − γ δ θ +∑ ∑  

 
where, δ represents the number of pairs used to produce 
the candidates. The ratio metropolis is used as the criteria 
to decide whether to accept or reject the candidate. 
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1.3. Continuous Ranked Probability Score 
(CRPS) 

The CRPS measures how reliable the calibration 
result of probabilistic forecast. The formula for 
calculating the CRPS is given by: 
 

K
f 0 2
i i

i 1

x

x

1
CRPS (F (x) F (x)) dx

K =

=∞

=−∞
= −∑∫  

 
where, f

iF (x)  is cumulative density function (cdf) of the i-

th forecast, while 0
iF (x)  is the cdf of true observation and 

K is the number of ensemble member. Small value of 
CRPS indicates that the forecast is reliable (Gneiting and 
Raftery, 2007). 

2. MATERIALS AND METHODS 

2.1. Data 

This study analyzes daily mean temperature 
observed at climatological Station Juanda-Indonesia 
spanning from 2008-2009. The data is divided into 
two parts i.e., training and testing. The training data is 
used to generate build the time series model for 
generating the ensemble, while the testing data is used 
for evaluation of the forecast performance. We use 
different sizes of training windows to implement the 
BMA i.e., 10, 15, 20 and 25. 

2.2. Steps of the Analysis 

The steps of the analysis that is carried out in this 
study are described as follows: 

• Plot ensemble for verification of the generated 
outputs 

• Correct the bias of the mean by performing  regression 
between true observation with each forecast, where the 
length of data equals to the training window 

• Estimate the parameters of BMA by MCMC using 
DREAM algorithm. The parameter estimation is 
carried by following procedures: 
• Determine the training windows 
• Use sampling of 50000 for the parameter space 
• Determine the number of Markov chain 
• Omit the outlier chain using Inter Quartile 

Range (IQR) 
• Estimate the parameters by Maximum likelihood 

• Construct the mixture distribution 

• Calculate the calibrated mean and variance 
• Generate 1000 data following the mixture 

distribution as the predictive distribution 
• Evaluate the calibration results and compare it to the 

raw ensemble 

3. RESULTS AND DISCUSSION 

The mean daily temperature observed at 
meteorological station Juanda Indonesia is 27,63 
degree with the maximum reached 32.6 degree and 
minimum of 24.2 degree. The distribution of the data 
is approximately normal shown by the skewness of 
0.32. It validates the previous assumption that the 
temperature in this case is approximated by normal 
distribution as prior distribution. In this study four 
time series models are constructed and the forecasts 
generated from these models will be combined or 
calibrated using BMA. The models belong to the class 
of ARIMA. The selected models are ARMA(2,1), 
ARIMA(1,1,1), ARIMA(1,1,2), IMA(0,1,3) denoted 
hereafter to as M1, M2, M3 and M4 respectively. 
These models are the best models chosen among 
several candidate models by considering some rules in 
the ARIMA modeling.  

Figure 1 and 2 shows the time series plots of the 1 
day and 7 day lead forecasts. 

It is clear that the spread of the forecasts is 
underdispersive meaning that the have a low spread 
and tend to generate similar values for all models. The 
7 day forecast yield on more bias than 1 day forecast. 
It is therefore necessary to calibrate the forecasts and 
we apply BMA_MCMC as the calibration method. 
The illustration of the bias correction as the result of 
regression between ensemble member and observation 
is given in Table 1. The mean in the last column 
shows the deterministic forecast for each member that 
will be combined with some degrees of model 
performace represented by a weight for each. 
Meanwhile Table 2 illustrates the bias correction for 
forecast on 26th December 2009. 

Note that the observation on 29th December is 28 
degree which means that bias correction on that date is 
capable to generate forecast with low bias. The 
parameters estimated by MCMC procedure using 
different training windows are shown in Table 2.  

The BMA combines M1 to M4 with respects to its 
performance (represented by the weight) and yields on 
the following probabilistic forecast. We perform the 
corresponding CRPS for each training window. 
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From Table 3, we know that the minimum CRPS is 
0.2494 obtained using 10 days training window and this 
is the optimum setting. Figure 3 depicts the predictive 
distribution of the calibrated forecast using training 
window of 15 days. 

The predictive distribution in Fig. 3 clearly shows the 
performance of each model in the forecast. Higher 
weight represents better the performance of the model in 
the system. We replicate the similar procedure to 
calibrate the 7 day forecast for the forecast on 6th 
December 2009. Table 4-6 show the parameters of the 
BMA i.e., bias correction, BMA parameters and the 
predictive distributions respectively. 

We observe different result of the predictive 
distribution in term of the optimum training window. 
However, the bias as well as the interval of the forecast 
are nearly the same as 1 day forecast. The optimum 
setting is obtained using 20 day training window.  

The performance of the calibrated ensemble forecast 
is evaluated from the system. It means that the choice of 
the optimum training window is based on the 
performance of each setting for the whole periods of 
validation. The criteria of the assessment is CRPS. The 
CRPS value reflects the reliability of the forecast. The 
analysis shows that 1 day forecast has the best 
performance under 25 days training window while for 
the best performance for 7 day forecast is shown by 15 
training window. The summary of the value is given by 

Table 7. Indeed, CRPS measure the reliability with 
respect to the bias and compactness of the forecast. 
 

 
 
Fig. 1. Plot ensemble for 1 day lead forecast 

 

 
 
Fig. 2. Plot ensemble for 7 day lead forecast 

 

 
 

Fig. 3. Predictive distribution for 26th December 2009 using 15 days training window 
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Table 1. Parameters of bias correction for 1 day forecast 
m Model a b f Mean (ak+bkfk) 
10 M1 44,027 -0,558 28,03 28,399 
 M2 45,901 -0,624 27,98 28,434 
 M3 41,51 -0,466 28,17 28,380 
 M4 37,248 -0,317 28,31 28,276 
15 M1 6,681 0,761 28,030 27,999 
 M2 6,980 0,751 27,980 27,988 
 M3 6,977 0,746 28,170 27,988 
 M4 4,365 0,836 28,310 28,045 
20 M1 16,983 0,405 28,030 28,343 
 M2 16,312 0,429 27,980 28,310 
 M3 17,721 0,378 28,170 28,359 
 M4 17,202 0,396 28,310 28,400 
25 M1 9,531 0,672 28,030 28,367 
 M2 8,808 0,697 27,980 28,320 
 M3 10,921 0,621 28,170 28,406 
 M4 10,429 0,638 28,310 28,479 
 
Table 2. Parameters generated from BMA_MCMC 
  M 
  ----------------------------------------------------------------------------------------------- 
Parameter Model 10 15 20 25 
Corrected mean M1 28,399 27,999 28,343 28,367 
 M2 28,434 27,988 28,310 28,320 
 M3 28,380 27,988 28,359 28,406 
 M4 28,276 28,045 28,400 28,479 
Variance M1 0,608 0,661 0,812 0,917 
 M2 0,608 0,661 0,812 0,917 
 M3 0,608 0,661 0,812 0,917 
 M4 0,608 0,661 0,812 0,917 
Weight M1 0,044 0,010 0,013 0,022 
 M2 0,925 0,062 0,919 0,936 
 M3 0,008 0,036 0,003 0,039 
 M4 0,024 0,892 0,065 0,004 
 
Table 3. Parameters and CRPS comparison for different training lengths (1 day) 

m Mean Varians Batas Bawah  Batas Atas  CRPS 
10 28,42843 0,608308 26,89974 29,95711 0,2494 
15 28,03868 0,613548 26,50342 29,57393 0,3737 
20 28,31596 0,60553 26,73508 29,89683 1,498 
25 28,32492 0,628511 26,77105 29,87878 0,3437 
 
Table 4. Parameters of bias correction for 7 day forecast  

M Model a b f Mean (ax +bx fx) 
10 M1 -11,610 1,384 28,290 27,549 
 M2 -9,489 1,314  28,220 27,584 
 M3 -11,258 1,352 28, 660 27,482 
 M4 6,374 0,746 28,890 27,927 
15 M1 -27,970 1,959 28,290 27,456 
 M2 -25,491 1,877 28,220 27,472 
 M3 -23,657 1,784 28,660 27,481 
 M4 14,307 0,485 28,890 28,331 
20 M1 -11,490 1,396 28,290 27,989 
 M2 -14,842 1,514 28,220 27,892 
 M3 4,498 0,829 28,660 28,255 
 M4 33,900 -0,180 28,890 28,710 
25 M1 41,517 -0,439 28,290 29,108 
 M 37,083 -0,285 28,220 29,054 
 M3 48,979 -0,690 28,660 29,204 
 M4 66,518 -1,294 28,890 29,137 
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Table 5. Parameters generated from BMA_MCMC 

  m 
  ----------------------------------------------------------------------------------------------- 
Parameter Model 10 15 20 25 
Mean terkoreksi M1 27,549 27,456 27,989 29,108 
 M2 27,584 27,472 27,892 29,054 
 M3 27,482 27,481 28,255 29,204 
 M4 27,927 28,331 28,710 29,137 
Varians M1 0,535 0,567 0,754 0,903 
 M2 0,535 0,567 0,754 0,903 
 M3 0,535 0,567 0,754 0,903 
 M4 0,535 0,567 0,754 0,903 
Bobot (Weight) M1 0,041 0,005 0,037 0,022 
 M2 0,942 0,967 0,926 0,033 
 M3 0,015 0,011 0,003 0,005 
 M4 0,001 0,017 0,033 0,940 
 
Table 6. Parameters and CRPS comparison for different training length (7 day) 
m Mean Varians Batas Bawah  Batas Atas CRPS 
10 27,58131 0,694269 25,94818 29,21444 0,3125 
15 27,48735 0,680943 25,86997 29,10473 0,4068 
20 27,9236 0,618088 26,38268 29,46452 0,1827 
25 29,13424 0,616912 27,59478 30,67369 0,5072 
 
Table 7. CRPS comparison between uncalibrated and calibrated forecast 
 m (Training window) 
 ---------------------------------------------------------------------------------------------------------------------------------------- 
Lead Ensemble m = 10 m = 15 m = 20 m = 25 
1 Uncalibrated 0,6723 0,6814 0,6794 0,6967 
 Calibrated 0,5296 0,5579 0,5332 0,5143 
7 uncalibrated 0,8948 0,9012 0,9285 0,9501 
 calibrated 0,5509 0,5290 0,5544 0,5714 
Lead Method m = 10 m = 15 m = 20 m = 25 
1 BMA-MCMC 0,5296 0,5579 0,5332 0,5143 
 BMA-EM 0,535 0,566 0,529 0,510 
7 BMA-MCMC 0,5509 0,5290 0,5544 0,5714 
 BMA-EM 0,495 0,529 0,544 0,584 
 

In term of the proportion of observation captured by 
the produced interval, it can be seen in Fig. 4 and 5. 

From the figures, it can be seen that using 1 day 
forecast 91% of the observations can be covered by the 
produced interval, while 7 day forecast is able to capture 
the observations with the proportion of 92%. It is rational 
to have this as the widht of interval forecast becomes 
wider for longer lead time. 

The table indicates that the calibration using 
BMA_MCMC is capable to generate more reliable forecast 
than the uncalibrated one. It is shown by the lower value of 
CRPS of calibrated forecast. It means that the calibration 
will generate more reliable probabilistic forecast.  

Having compared the performance of the 
BMA_MCMC with the unclaibrated forecast, we will 
compare the performance of BMA_MCMC with 

BMA_EM. As previously mentioned, the parameters of the 
BMA can be esimated using those two algorithms. We 
directly compare the BMA_MCMC with the performance 
of BAM_EM documented in (Kuswanto, 2011). The study 
discusses the performance of BMA_EM using the same 
dataset and ARIMA models as used in this study.  

For the optimum training length, both BMA 
algorithms yield on the same suggestion i.e., using 25 
day training window for 1 day ahead forecast. However, 
different results are observed for lead time of 7 day 
forecast. BMA_MCMC suggests to use 15 training 
window while BMA_EM found 10 day as th eoptimum 
one. Nevertheless, the performance of both algorithms is 
the same in particular short term forecast. For long lead 
time forecast, we suggest to use 10 day training window 
to generate more reliable forecast. 
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Fig. 4. Proportion of observations captured by the predictive 

pdf for 1 day lead forecast 
 

 
 
Fig. 5. Proportion of observations captured by the predictive 

pdf for 7 day lead forecast 
 

4.  CONCLUSION 

Calibration of the temperature forecast is done by 
generating four simple time series models which is 
treated as ensemble members as commonly used in any 
Ensemble Prediction System. The forecasts are under 
dispersive and hence it has to be calibrated. By 
calibration, the bias of the mean forecast is removed and 
it is expected that the generated probabilistic forecast 
yields on reliable forecast. Applying BMA_MCMC to 
calibrate the ensemble forecasts generated from four 
ARIMA models is capable to produce more reliable 
forecasts than the uncalibrated forecast. It has been 
shown also that using the proposed simple procedure 
works well for short and modest lead time forecasts. 
Different setting of training windows has been 
investigated during the implementation of the procedure 
in order to find the optimum one. Compared to the 
performance of another BMA algorithm, the 

BMA_MCMC is unable to outperform BMA_EM. 
However, both have similar performance and there is 
gain in using these approaches. Further investigation 
is necessarily to do in order to study the performance 
of the BMA applied to models from different classes 
of time series models such as Transfer function, 
ANFIS. Moreover, applying BMA to other climate 
variables generated by similar procedure as applied in 
this study is worthy to be carried out. Overall, we 
have shown that using combination of time series 
models can be a proxy of ensemble forecasts 
generated from numerical ensemble prediction system. 
It is very simple and easy to be implemented. 
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