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ABSTRACT 

In this note, a simple approximation for the maximum likelihood estimates of infection and removal 
parameters used in the Susceptible-Infectious-Removed (SIR) epidemic model is presented. This 
approximation can be applied when the numbers of susceptible and infected individuals are observable only 
at discrete points in time. Since, in such cases, a closed form of the likelihood function is generally too 
complicated to obtain, the proposed approximation method represents an important advance. Simulation 
results show that the method yields approximations quite close to the maximum likelihood estimates 
obtained under continuous observation. 
 
Keywords: Approximate Maximum Likelihood, Discrete Sampling Scheme, Infection and Removal Rate, 
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1. INTRODUCTION 

Over the last century, mathematical modeling of 
epidemiological phenomena has been used to 
understand, predict and control the spread of infectious 
diseases. Almost all mathematical models of diseases 
start from the same basic premise: that the population 
can be subdivided into a set of distinct classes, 
according to individual relations to the given disease. In 
the widely studied Susceptible-Infectious-Removed 
(SIR) model, individuals can be classified as (1) 
susceptible to a disease, (2) infected by it and (3) either 
removed from the population or rendered immune. 
When all instances of infection and removal are observed 
over a given time interval, the likelihood of SIR estimates 
for infection and removal can be maximized, as shown by 
Becker and Britton (1999); however, when observations 
occur only at discrete points in time, maximum likelihood 
is difficult to achieve, since no closed-form expression for 
the likelihood function can be obtained. 

The SIR model can be regarded as a simple birth and 
death process in which being born is equivalent to 
becoming infected. For the birth and death process, a 
number of studies have focused on the problem of 
generating estimates based on observations at discrete 
time points. Under the equidistant discrete sampling 

scheme in which two adjacent observation time points 
have the same distance, Kendall (1949) and Keiding 
(1974) explored the maximum likelihood estimation of 
the birth rate for the Yule process. Similarly, for a linear 
growth birth and death process, Keiding (1975) presented 
a maximum likelihood estimate for the so-called 
Malthusian parameter. Further, McNeil and Weiss (1977) 
provided diffusion approximation estimates of the sum of 
birth and death rates and the Malthusian parameter. 

For the discrete sampling scheme (not necessarily 
using the equidistant constraint), several studies have 
investigated the approximation of maximum likelihood 
estimates for the infection rate of the simple stochastic 
epidemic model (Hill and Severo, 1969; Kryscio, 1972; 
Choi and Severo, 1988). Oh et al. (1991) presented 
approximations of the maximum likelihood estimate for 
the birth rate in a class of birth processes. Cronie and Yu 
(2010) studied several problems with maximum 
likelihood estimation in the immigration-death process. 
Chen and Hyrien (2011) considered quasi- and pseudo-
likelihood estimation for a class of continuous-time 
multi-type Markov branching processes. Crawford et al. 
(2011) suggested estimation of parameters using the EM 
algorithm for a class of birth-death processes when a 
process is observed only at two time points (the 
beginning and the end of a given time interval) but did 
not consider the SIR model.  
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Under the SIR model, data augmentation 
techniques (Tanner and Wong, 1987) cannot be 
applied directly because of the difficulties in obtaining 
conditional expectations of the numbers of subjects in 
each of the three classes. To avoid such difficulties, 
Cauchemez and Ferguson (2008) approximated the 
SIR model with a diffusion process, but their approach 
assumed a large population size and would not be suitable 
for data collected in small communities or households. 
Following Oh et al. (1991), a simple method of 
approximating maximum likelihood estimates for the SIR 
model under continuous observation over a given time 
interval is presented. Unlike Cauchemez and Ferguson 
(2008), a large population size is not assumed, so our 
method should apply well to data from small communities. 

This note is organized as follows. The SIR model is 
presented in Section 2, along with description of the 
methods of approximation. Section 3 considers numerical 
examples and provides simulation results. The final section 
includes a discussion and concluding remarks.  

1.1. Approximation 

Let X(t), Y(t) and R(t) denote, respectively, the 
number of susceptible, infected and immune or removed 
individuals at time t≥0 of the SIR epidemic model with 
infection parameter β and removal parameter γ in a 
closed population of size N, that is, a Markovian process 
with infinitesimal transition probabilities:  
 
 { }h hP X(t h) = x ,Y(t h) = y | X(t) = x,Y(t) = y+ +  
 

[ ]

h h

h h

h h

( / N)xyh o(h), (x ,y ) = (x 1, y 1),

yh o(h), (x ,y ) = (x, y 1),
=

1 ( / N)xy y h o(h), (x ,y ) = (x, y),

o(h), otherwise

β + − +
γ + −
 − β + γ +


 

 
for x = n, n-1,…,0 and y = 1,2… where X(t)+Y(t)+R(t) = 
N, X(0) = n, Y(0) a>0, R(0) = 0 and N = n+a. It is 
assumed that there are no latent periods and that once an 
individual is infected, (s) he becomes infectious. Only two 
of the random variables are independent. Consider the 
problem of estimating β, γ and R0 = β/γ when the process 
is observed only at a discrete set of time points, 0 = 
t0<t1<…<tk = T, where T is a fixed time point. The 
discrete sampling scheme gives data in the form: 
 

0 0 0 1 1 1

k k k

D = {(t ,x , y ) = (0,n,a),(t , x , y ), ,

(t , x , y ) = (T,n b,a b d)}− + −
⋯

 (1) 

 
where, xi and yi are the observed numbers of susceptible 
and infectious cases at time ti, respectively and b and d are 
the number of infections and removals in (0,T], 

respectively, with n-b≥0 and a+b-d≥0. The corresponding 
likelihood function is the product of transition probabilities, 
which, in this case, are quite entangled; thus, it appears 
impossible to find explicit expressions for the maximum 
likelihood estimates of β and γ based on D. 

Following Oh et al. (1991), simple approximations of 
the maximum likelihood estimates are presented that 
provide straightforwardly calculated initial values for an 
iterative procedure, yet achieve good accuracy and 
precision so long as the observation times t1,…tn are 
sufficiently close together, such that (ti, xi, yi) do not 
vary significantly between successive pairs. 

To derive the approximations, it is first assumed that 
the process is observed continuously over the fixed time 
interval (0,T], i.e., all infection and removal times that 
have occurred until T are observed. Furthermore, it is 
assumed that r infection or removal “events” have 
occurred and Zj(j = 1,…,r+1) is the time between the (j-
1)th and jth events; then, Z1,…,Zr+1 are independent, 
exponentially distributed random variables with 
respective rate parameters. From this continuous 
sampling scheme, we have data of the form (Z1,V1) = 
(z1,v1),…,(Zr,Vr) = (zr,vr) and Zr+1>T-(z1+…+zr) ≡ zr+1 if 
r≥1 and z1>T if r = 0, where vj = 1 or 0 depending on 
whether infection or removal occurred at z1+…+zj for j = 
1,…,r, respectively. The corresponding log likelihood 
function becomes equal, when r≥1: 
 

XY Ylog ( , ) b log d log s sβ γ ∝ β + γ − β − γℓ  (2) 
 
Where: 
 

r r 1 r 1
1 e e e

j XY j 1 j 1 j Y j 1 j
j=1 j=1 j=1

b = v ,d = r b,s = N x y z ,s = y z
+ +

−
− − −−∑ ∑ ∑  

 
and for j = 0,1,…,r, e

jx  and e
jy  are the numbers of 

susceptibles and infections at time z0+…+zj, respectively, 
with z0 = 0. By differentiating Equation 2 with respect to β 
and γ, we can obtain the maximum likelihood estimates of 
β and γ under continuous observation:  
 

XY Y

b dˆ ˆ= , = .
s s∞ ∞β γ  (3) 

 
Corresponding to the results of Becker and Britton 

(1999), R0 can be estimated by: 
 

0
ˆˆ ˆR = /∞ ∞ ∞β γ  (4) 

 
 When the process is observed only at a discrete set 
of time points and the sample is in the form of D, the 
likelihood function is: 
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i, i, i 1 i 1
i=0

L( , ) = l( , | x y x , y )
−

+ +β γ β γ∏  (5) 

 
Where: 
 

{ }
i, i, i 1 i 1

i 1 i 1 i 1 i 1 i i i i

l( , | x y x , y )

= P X(t ) = x ,Y(t ) = y | X(t ) = x ,Y(t ) = y

+ +

+ + + +

β γ
 

 
the probability generating function for which is given 
in Daley and Gani (1999). Note, however, that 
obtaining the maximum likelihood estimates of β and γ 
using Equation 5 seems infeasible. Under the discrete 
sampling scheme D, b and d are known but not their 
respective denominators sXY  and sY in Equation 3. sXY  
and sY have been approximated using the method of 
Choi and Severo (1988) and Oh et al. (1991). In those 
studies, only one parameter (infection or birth rate) had 
to be estimated, whereas two parameters have to be 
estimated simultaneously here. For notational 
convenience, sXY  and sY are denoted by: 
 

k k

XY i Y ii=1 i=1
s = U and s = V∑ ∑  

 
Where: 
 

t ti i1
i it ti 1 i 1

U = N x(t)y(t)dt and V = y(t)dt−

− −
∫ ∫  

 
for i = 1,…,k. As Ui and Vi are not known under this 
sampling scheme, their trapezoidal approximations (ti-ti-
1)(xiyi+xi-1yi-1)(2/N) and (ti-ti-1)(yi+yi-1)/2, respectively, 
are employed. These approximations yield the estimators 

kβ̂  and kγ̂ , as follows: 
 

k k

i i 1 i i i 1 i 1
i=1

2bNˆ =
(t t )(x y x y )− − −

β
− +∑

 (6) 

 

k k

i i 1 i i 1
i=1

2d
ˆ =

(t t )(y y )− −

γ
− +∑

 (7) 

 
As is the case under continuous observation, R0 can 

be estimated by: 
 

0k k k
ˆˆ ˆR = /β γ  (8) 

 
The expressions kβ̂ , kγ̂  and 0kR̂  provide simple 

approximations for ̂∞β , ˆ∞γ  and 0R̂ ∞ , respectively. When 

k → ∞ in such a way that ti-ti-1→0 for all 1≤i≤k so that 
ktk

i i 1 i i 1i 1 0
(t t )(y y ) y(t)dt− −=

− + →∑ ∫  and 

ktk

i i 1 i i i 1 i 1i 1 0
(t t )(x y x y ) x(t)y(t)dt− − −=

− + →∑ ∫ , we have 

k k
ˆ ˆ ˆ ˆ∞ ∞β → β → γ → γ  and 0k 0

ˆ ˆR R ∞→ , respectively. 
 
1.2. Numerical Examples and Monte Carlo 

Experiments 

Table 1 shows the behavior of approximations for the 
SIR process when β = 0.2 and 0.15, γ = 0.1, n = 180, a = 20 
and T = 100. Ten simulation results are reported, five for β 
= 0.2 and five for β = 0.15. For example, in the first 
realization generated using β = 0.2, there are 39 susceptibles 
and zero infected at the last observation time T0 = 67.44, 
when no infected individuals remained. As a result, there 
are 141 infections and 161 removals from the beginning of 
the observation up to T0 and thus up to T. After T0, when 
the epidemic is over, there are no more changes in the 
number of susceptibles and infected. In each realization, 
discrete observations are obtained under the equidistant 
sampling scheme with k = 14, so that ti = i×7.14 for i = 
1,…,14. The length of each interval is therefore 
approximately 7. Values of (x1,y1),…,(xk,xk) are then 
chosen to correspond to the given sampling scheme 
yielding data in the form of D given in Equation 1. For each 
simulation, we obtain values of ˆ ˆ,∞ ∞β γ  and 0R̂ ∞  using 

Equation 3 and 4 and k k
ˆ ˆ,β γ and 0kR̂  using Equation 6, 7 

and 8 with k = 14, as shown in Table 1. When β = 0.2, the 
relative percentage errors of kβ̂  when compared with ̂∞β  

are less than or equal to 2.6%, the relative percentage 
errors of kγ̂  when compared with ̂∞γ  are less than or 

equal to 3.0% and the relative percentage errors of 0kR̂  

when compared with 0R̂ ∞  are less than or equal to 2.2%. 

When β = 0.15, these values are 4.0, 4.8 and 0.8%, 
respectively. The preceding observation was corroborated 
by simulation of 10,000 replications of the SIR epidemic 
process for each combination of β = 0.2 and 0.15, γ = 0.1, 
T = 100, a = 20 and n = 180. The value for T is chosen to 
be close to 2×(1/γ)log(a+n), two times the average 
duration for a major outbreak of the epidemic when n→∞ 
(Bailey, 1975). Furthermore, when k k

ˆ ˆ,β γ and 0kR̂  were 

computed for each realization in each combination, the 
means and standard deviations for the 10000 absolute 
deviations of the approximation for each of k = 14, 25, 50 
and ∞ were also calculated, as shown in Table 2. For T = 
100, the values of k = 14, 25, 50 and ∞ correspond to 7, 
3.5, 2 and 1 days, respectively. These findings 
demonstrate the accuracy and precision of our 
approximations for the SIR process.  
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Table 1. Values of the last observation time T0, 0 k k 0k
ˆ ˆˆ ˆˆ ˆ, ,R , , ,R∞ ∞ ∞β γ β γ  and errors for 10 realizations of the SIR epidemic for β = 0.2 

and 0.15, γ = 0.1, T = 100, n = 180, a = 20. In each realization, discrete observations are obtained under the equidistant 
sampling scheme with k = 14, about one week 

β T0 X(T0) Y(T0) ˆ
∞β  ˆ∞γ  0R̂ ∞  kβ̂  kγ̂  0kR̂  k

ˆe( )β  kˆe( )γ  ( )0
ˆe R ∞  

.2 67.44 39 0 0. 220  0.107  2.045  0.223  0.108  2.072  0.018  0.005  0.013  
 100 26 1 0.204  0.100  2.032  0.200  0.098  2.048  0.016  0.024  0.008  
 100 29 1 0.210  0.101  2.067  0.210  0.103  2.045  0.003  0.013  0.011  
 88.37 32 0 0.197  0.097  2.045  0.192  0.094  2.052  0.026  0.030  0.004  
 74.75 42 0 0.198  0.100  1.982  0.199  0.102  1.938  0.001  0.023  0.022  
.15 81.62 66 0 0.145  0.097  1.488  0.150  0.102  1.476  0.040  0.048  0.008  
 77.79 98 0 0.150  0.120  1.251  0.153  0.123  1.241  0.018  0.026  0.008  
 100 52 2 0.153  0.093  1.643  0.158  0.095  1.663  0.030  0.018  0.012  
 91.38 90 0 0.130  0.101  1.295  0.130  0.101  1.295  0.001  0.001  0.001  
 100 107 1 0.109  0.095  1.155  0.111  0.095  1.163  0.012  0.005  0.007  

( ) ( ) ( )k k k k 0 0 0k 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆe | | / e | | / e R | R R | /R∞ ∞ ∞ ∞ ∞ ∞ ∞β = β − β β γ = γ − γ γ −  

 
Table 2. Means and standard deviations in parenthesis of 

10000 absolute deviations of k k
ˆ ˆ,β γ and 0kR̂  from 

ˆ ˆ,∞ ∞β γ  and 0R̂ ∞ , respectively, for SIR with β = 0.2 

and 0.15, γ = 0.1, T = 100, n = 180 and a = 20 and k = 
14, 25 and 50 under the equidistant sampling scheme 

β k kβ̂  kγ̂  0kR̂  

.20 14 0.004  0.002 0.018 
  (0.003) (0.002) (0.015) 
 25 0.002  0.001 0.010 
  (0.002) (0.001) (0.008) 
 50 0.001 0.001 0.005 
  (0.001) (0.000) (0.004) 
.15 14 0.003 0.002 0.008 
  (0.002)  (0. 002) (0.007) 
 25 0.002 0.001 0.005 
  (0.001) (0. 001) (0.004) 
 50 0.001 0.001 0.002 
  (0.001) (0.001) (0.002) 

 
Table 3. Estimates of β, γ and R0 using smallpox data 

k kβ̂  kγ̂  0kR̂  

13 0.1642 0.1346 1.2199 
22 0.1610 0.1324 1.2160 
83(∞) 0.1633 0.1343 1.2159 

 
Table 3 shows the estimates of β, γ and R0 using a 

widely studied dataset from a smallpox epidemic in 
Abakaliki, Nigeria (Bailey, 1975). There are 83 daily 
observations, which, for practical purposes, can be 
reregarded as continuous. Based on this data, the 
discretely observed data for time intervals d = 7, 4 and 1 
can be obtained and the corresponding values for 

k k
ˆ ˆ,β γ and 0kR̂  for k = 13, 22 and 83, respectively, can be 

evaluated. The length of the last time interval of 
observation varies according to the remainder of the 83 
days recorded. Thus, for k = 13, 22 and 83, the lengths of 
the last time interval are 5, 2 and 1, respectively. Note 
that the estimates for β are quite close for all values of d 
= 7, 4 and 1, as are the estimates for γ and R0. 

2. CONCLUSION 

In practical application, we must typically estimate 
the infection and removal rates for the SIR model under 
conditions of discrete-time observations. In this note, a 
very simple technique to approximate the maximum 
likelihood estimates of infection and removal rates and 
thus the reproduction number for continuously observed 
data, was proposed and used.  

It is shown that as the number of time points of 
observation is increased, so that all adjacent times got 
closer, the approximations converged on the maximum 
likelihood estimates obtained from continuous 
observation. In the simulation results shown in Table 2, 
the means and standard deviations of the absolute 
deviations decreased as the number of observation time 
points increased. In simulations and for the Akabakili 
smallpox data, the estimates of Cauchemez and Ferguson 
(2008), which must assume a large population size, have 
not been compared to those of the proposed technique. 

This technique might also apply to more complicated 
settings, including situations in which only the number 
of infections can be observed at each time interval and 
the number of initial susceptibles remains unknown. 



Changhyuck Oh /Journal of Mathematics and Statistics 9 (1): 38-42, 2013 

 
42 Science Publications

 
JMSS 

3. ACKNOWLEDGEMENT 

This work was supported by the 2012 Yeungnam 
University Research Grant. 

4. REFERENCES 

Bailey, N.T.J., 1975. The Mathematical Theory of 
Infectious Diseases and its Applications. 2nd Edn., 
Griffin, London. ISBN-10: 0852642318, pp: 413. 

Becker, N.G. and T. Britton, 1999. Statistical studies of 
infectious disease incidence. J. R. Statist. Soc., 61: 
287-307. DOI: 10.1111/1467-9868.00177 

Cauchemez, S. and N.M. Ferguson, 2008. Likelihood-
based estimation of continuous-time epidemic 
models from time-series data: Application to 
measles transmission in London. J. R. Soc. 
Interface, 5: 885-897. DOI: 10.1098/rsif.2007.1292 

Chen, R. and O. Hyrien, 2011. Quasi- and pseudo-
maximum likelihood estimators for discretely 
observed continuous-time Markov branching 
processes. J. Stat. Plan. Inference, 141: 2209-2227. 
PMID: 21552356 

Choi, Y.J. and N.C. Severo, 1988. An approximation for 
the maximum likelihood estimator of the infection 
rate in the simple stochastic epidemic. Biometrika, 
75: 392-94. DOI: 10.1093/biomet/75.2.392 

Crawford, F.W., V.N. Minin and M.A. Suchard, 2011. 
Estimation for general birth-death processes. Cornell 
University Library.  

Cronie, O. and J. Yu, 2010. Maximum Likelihood 
Estimation in a Discretely Observed Immigration-
Death Process. 1st Edn., Department of 
Mathematical Sciences, Goteborg, pp: 21.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Daley, D.J. and J.M. Gani, 1999. Epidemic Modelling: 
An Introduction. 1st Edn., Cambridge University 
Press, Cambridge, ISBN-10: 0521640792, pp: 213. 

Hill, R.T. and N.C. Severo, 1969. The simple stochastic 
epidemic for small populations with one or more 
initial infectives. Biometrika, 56: 183-96. DOI: 
10.1093/biomet/56.1.183 

Keiding, N., 1974. Estimation in the birth process. 
Biometrika, 61: 71-80. DOI: 
10.1093/biomet/61.1.71 

Keiding, N., 1975. Maximum likelihood estimation in 
the birth-and-death process. Ann. Statist., 3: 363-72. 
DOI: 10.1214/aos/1176343062 

Kendall, D.G., 1949. Stochastic processes and 
population growth. J. R. Statist. Soc., 11: 230-82.  

Kryscio, R.J., 1972. On estimating the infection rate of 
the simple stochastic epidemic. Biometrika, 59: 213-
214. DOI: 10.1093/biomet/59.1.213  

McNeil, D.R. and G.H. Weiss, 1977. A large population 
approach to estimation of parameters in Markov 
population models. Biometrika, 64: 553-558. DOI: 
10.1093/biomet/64.3.553 

Oh, C., N.C. Severo and J. Slivka, 1991. Approximation 
to the maximum likelihood estimate in some pure 
birth process. Biometrika, 78: 295-299. DOI: 
10.1093/biomet/78.2.295  

Tanner, M.A. and W.H. Wong, 1987. The calculation of 
posterior distributions by data augmentation. J. Am. 
Statist. Assoc., 82: 528-540. DOI: 
10.1080/01621459.1987.10478458 


