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ABSTRACT 

Boolean-equation solving permeates many diverse areas of modern science. To solve a system of Boolean 
equations, one usually combines them into an equivalent single Boolean equation {f (X) 0}=

�

whose set of 
solutions is exactly the same as that of the original system of equations. One of the general classes of 
solutions for Boolean equations is the subsumptive general solution, in which each variable is expressed as 
an interval decided by a double inequality in terms of the succeeding variables. The solution validity 
depends on the satisfaction of a required consistency condition. In this study, we introduce a novel method 
(henceforth called the CS method) for producing subsumptive Boolean-equation solutions based on deriving 
the complete sum(CS(f (X))

��

of the pertinent Boolean functionf (X)
�

. The complete sum CS(f (X))
�

 is a 

disjunction of all prime implicants of f (X)
��

 and nothing else. It explicitly shows all information about f (X)
�

 

in the most compact form. We demonstrate the proposed CS solutions in terms of four examples, covering 
Boolean algebras of different sizes and using two prominent methods for deriving CS(f (X))

�

. Occasionally, 

the consistency condition results in a collapse of the underlying Boolean algebra into a smaller subalgebra. 
We also illustrate how an expansion tree (typically reduced to an acyclic graph) can be used to deduce a 
complete list of all particular solutions from the subsumptive solution. The present CS method yields 
correct solutions, since it fits into the frame of the most general subsumptive solution. Among competing 
subsumptive methods, the CS method strikes a reasonable tradeoff between the conflicting requirements of 
less computational cost and more compact form for the solution obtained. In fact, it is the second best 
known method from both criteria of efficiency and compactness of solution. 
  
Keywords:  Boolean Equations, Subsumptive General Solutions, Complete Sum, Blake Canonical Form, 

Consensus Generation, Absorption, Multiplication 

1. INTRODUCTION 

Boolean-equation solving permeates many diverse 
areas of modern science such as biology, grammars, 
chemistry, law, medicine, spectrography and graph 
theory. It is also an indispensable tool in operations 
research, the cryptanalysis and breaking of ciphers, 
Boolean function decomposition, Boolean Satisfiability 

(SAT) problem solving, the synthesis, simulation, testing 
and diagnosis of digital networks and VLSI systems, 
output encoding and state assignments of finite state 
machines, automatic test-pattern generation and many 
other subareas of logical design.  

To solve a system of Boolean equations, the 
equations are usually combined into an equivalent single 
Boolean equation {f (X) 0}=

�

 whose set of solutions is 
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exactly the same as that of the original system of 
equations. This is conceptually simpler and 
computationally more efficient than obtaining the set of 
solutions for each equation and then forming the 
intersection of such sets to obtain the set of solutions of 
the overall system. Typically, either general subsumptive 
solutions or general parametric solutions are sought, from 
which an exhaustive enumeration of all particular solutions 
can be readily chieved (Rudeanu, 1974; 2001; 2003; 2010; 
Brown, 1990; Levchenkov, 2000a; 2000b; Tucker and 
Tapia, 1992; Rushdi, 2001b; 2004; 2012; Rushdi and 
Amashah, 2010; 2011; 2012; Rushdi and Albarakati, 
2013a). In this study, we are interested in deriving a 
subsumptive general solution of the Boolean equation: 
 
f (X) 0=
�

 (1) 
 
where, n T

1 2 nf (X) : B B,X [X ,X ,...,X ]→ =
� �

 and B is a 

general finite Boolean algebra of 2q elements (q = 
1,2,3,…) In a subsumptive general solution, each of the 
variables Xj is expressed as an interval determined by the 
double inequality: 
 

j j 1 j 2 n j j j 1, j 2 nu (X , X ,....,X ) X v (X X ,...,X )

( j 1,2,..,n)

+ + + +≤ ≤

=
 (2) 

 
i.e., each variable Xj is a partially- defined function of 

the succeeding (n-j) variables. In particular, the last 
variable Xn is determined as an interval {un≤Xn≤vn} 
where un and vn are elements of B. The subsumptive 
solutions (2) are usually obtained subject to a certain 
consistency condition. 

Typically, the lower bound uj and the upper bound vj 
for Xj in (2) are determined in terms of successive 
conjunctive or disjunctive eliminants of the original 
function f  (Rudeanu, 1974; Brown, 1990; Tucker and 
Tapia, 1992; Rushdi, 2001b; 2004). In this study, we 
introduce a novel class of subsumptive Boolean-equation 
solutions based on deriving the Complete Sum (CS(f)) or 
Blake Canonical Form (BCF(f)) (Blake, 1937; Tison, 
1967; Rudeanu, 1974; 2001; Reusch, 1975; Muroga, 
1979; Cutler et al., 1979; Brown and Rudeanu, 1988; 
Brown, 1990; Kean and Tsiknis, 1990; Gregg, 1998; 
Rushdi, 2001a; Rushdi and Al-Yahya, 2000; 2001a; 
2002) of the pertinent Boolean function f (X)

��

.This class 
of solutions fits into the frame of the most general form 
of the subsumptive general solution since it satisfies the 
necessary and sufficient conditions set in (Rudeanu, 
2010) for such a form. The CS solution obtained herein 

has two minor advantages over other known methods of 
subsumptive solutions, namely, (a) it explicitly casts the 
consistency condition in CS form and hence provides 
immediate complete information about it and (b) it 
allows nesting the subsumptions in (2) according to any 
desirable permutation of the set of integers {1,2,…,n} 

2. MATERIALS AND METHODS 

We briefly review essential concepts of the complete 
sum of a switching function, outline two prominent 
algorithms for its derivation, present the mathematics of 
Boolean-function solution via complete sum derivation and 
demonstrate the proposed method with four illustrative 
examples. In these examples, we show how the original 
equation (1) is converted into the equivalent equation: 
 

)(( )CS f X 0=
�

 
(3) 

 
We also demonstrate how to convert (3) into a 

subsumptive solution (2) together with a consistency 
condition. Occasionally, the consistency condition 
results in a collapse of the underlying Boolean algebra B 
into a smaller subalgebra. In each example, we illustrate 
how an expansion tree (typically reduced to an acyclic 
graph) can be used to deduce a complete list of all 
particular solutions from the subsumptive solution. 

3. COMPLETE SUM OF A BOOLEAN 
FUNCTION 

The complete sum of a Boolean function f, to be 
denoted by CS(f) is the all-prime-implicant disjunction 
that expresses f, i.e., it is a sum-of products (s-o-p) 
formula whose products are all the prime implicants of f. 
The complete sum is called the “Blake Canonical Form” 
by Brown (1990) in honor of A. Blake who was the first 
author to initiate and develop this concept in his Ph.D. 
dissertation (Blake, 1937). Since all the prime implicants 
of f are present in CS(f) it is obviously unique and hence 
stands for a canonical representation of the Boolean 
function. The complete sum for an Incompletely-Specified 
Boolean Function (ISBF) f = g v d(h) is that of the 
associated Completely-Specified Boolean Function 
(CSBF) F  = g ν h. This means that a study of the 
complete sum always involves a CSBF and does not really 
involve an ISBF. Henceforth, when we refer to a Boolean 
function f, we understand it is a CSBF. 

The concept of the complete sum of a Boolean 
function f is closely related to that of a syllogistic 
formula for f (Brown, 1990; Rushdi and Al-Yahya, 
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2001a). However, while CS(f) is unique and canonical, 
there are infinitely many syllogistic formulas for f A 
syllogistic formula of f can be defined as an s-o-p 
formula whose terms include, but are not necessarily 
excluded to, all the prime implicants of f, i.e., it is the 
complete sum of f disjuncted (possibly) with terms each 
of which subsumes some prime implicant of f. Other 
definitions and properties of a syllogistic formula is 
given by Brown (1990). Each of the following formulas 
are syllogistic formulas (Brown, 1990):  

• A complete-sum formula 
• An alterm (a disjunction of single literals) 
• An s-o-p formula of monoform literals only 
• An s-o-p formula such that no two terms in it have a 

consensus that does not appear in the formula. 

If we compare the definition of a syllogistic formula 
for f to that of its complete sum CS(f) we note that CS(f) 
is minimal within the class of syllogistic formulas for f, 
i.e., the set of terms in any syllogistic formula for f is a 
superset of the set of terms in CS(f) (Brown, 1990). 
Hence CS(f) can be denoted by ABS(F), where F is any 
syllogistic formula for f and ABS(F) denotes an 
equivalent absorptive formula of F, i.e., a formula 
obtained from F by successive deletion of terms 
absorbed in other terms of F (Brown, 1990). 

In view of our definition of CS(f) as ABS(F), it is 
obvious that CS(f) may be generated by the following 
two-step procedure: (a) Find a syllogistic formula F for f 
and (b) Delete absorbed terms to obtain ABS(F). Many 
techniques exist in the literature for carrying out step (a). 
These are categorized (Brown, 1990) into the three 
basic approaches of exhaustion of implicants, iterative 
cconsensus and multiplication. In the examples solved 
herein we employed two prominent algorithms for 
complete-sum derivation, namely, Tison algorithm 
and an algorithm utilizing the Variable-Entered 
Karnaugh Map (VEKM), which is succinctly labeled 
as VEKM folding. 

3.1. Tison Algorithm 

Tison method for obtaining all the prime implicants 
of a switching function F (i.e., obtainig) CS(f) is a 
systematic streamlined version of the iterative-consensus 
technique. The original study of Tison appeared in 
(Tison, 1967), but a more readable exposition can be 
found in (Cutler et al., 1979) or in (Muroga, 1979). The 
method is sometimes called “Tison method” for short, 
though its lengthier name serves to differentiate it from 
another Tison method, namely, that for the derivation of 

all irredundant disjunctive forms (Muroga, 1979). The 
essence of the present Tison method is summarized in 
Theorem 1. This theorem is adapted from (Cutler et al., 
1979) to use the complete sum in the sense used by 
(Brown and Rudeanu, 1988), which is applicable to big 
Boolean algebras. In this theorem, the biform variables 
Y1,Y2,…, Ym include the biform variables among the 
input variables X

�

 and any biform generator among the 
algebra generators a,b,c,…  

Theorem 1: 

 Start with a set of n0 products 
0

(0) (0) (0)
0 1 2 n

s {T ,T ,...,T }=  

with m  biform variables Y1, Y2, …, Ym and a Boolean 
function f that is expressed by disjunction of the products 
in s0. For 1≤i≤m repeat the following 2-part step that 
replaces a set of products si-1 by an updated one si. 

First, for 1 ≤j<k≤ n(i-1) if Y i appears complemented in 
one of the two products (i 1) (i 1)

j kT ,T− −  and appears un-
complemented in the other such that the two products 
have no other opposition, then they have a consensus 
with respect toYi. Form that consensus and add it to si-1. 
Finally, si-1 is replaced by a superset r(i-1) of p(i-1) 
elements, where p(i-1) is greater than or equal to n(i-1). 

Next, consider every pair ( ){ }(i 1) (i 1)
j kT ,T , ., j k− − … ≠ of (so 

far remaining) products in r(i-1). If (i 1)
jT − subsumes (i 1)

kT − , 

then delete (i 1)
jT − . Otherwise, if (i 1)

jT − is subsumed by 
(i 1)
kT − then delete (i 1)

kT − . Whenever all subsumptions (and 

subsequent deletions) are exhausted, let the remaining set be 
(i) (i ) (i)

i 1 2 ni
s {T ,T ,...,T }= . The disjunction of products in any of 

the sets si, 0≤ i≤ m is an expression of f and the final set sm 
consists of all prime implicants of f. 

3.2. VEKM Folding 

 The variable-entered Karnaugh map (VEKM) is a 
useful tool that has a variable-handling capability better 
than that of the conventional Karnaugh map and that 
naturally handles general or big Boolean algebras 
(Rushdi, 1987; 1996; 2001a; 2001b; 2004;  2012; Rushdi 
and Amashah, 2011; Rushdi and Albarakati, 2013a; 
2013b; Rushdi and Al-Yahya, 2000; 2001a; 2001b; 
2002). In VEKM folding, a VEKM is used to represent 
the Boolean function and entries of the VEKM are 
converted into complete-sum entries via algebraic 
methods employing consensus generation and absorption 
(e.g., Tison method). In Fig. 1a, the function f (X)

��

 is 
therefore assumed to have subfunctions or restrictions 
with respect to Xi which are already in CS form.  
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Fig. 1. The typical step of VEKM folding used in the derivation of CS(f) (a) f (X)

��

with CS subfuncitons F0 and F1 (b) f (X)
��

in CS 

form (c) f (X)
��

with CS subfuncitons (GνH0) and (GνH1) (d) f (X)
��

in CS formf (X)
��

 
 
Figures 1a and 1b demonstrate the basic step in VEKM 
folding which converts a map variable Xi into an entered 
variable, while retaining CS entries in the new VEKM 
representation of the pertinent function. In Fig. 1b, we 
use ABS(F) to denote an equivalent absorptive formula 
of F, i.e., a formula obtained from F by successive 
deletion of terms absorbed in other terms of F. The 
formula in Fig. 1b uses ANDing (multiplication) of CS 
formulas as an alternative for consensus generation. This 
multiplication is implemented via a multiplication matrix 
which allows an easy tracking of absorptions because of 
the fact that if a term is to be ever absorbed, then one of 
its absorbing terms will belong to either its row or to its 
column (Rushdi and Al-Yahya, 2001a). If the 
subfunctions F0 and F1 have some terms in common, i.e., 
if they can be written as F0 = G ν H0 and F1= G ν H1 as 
shown in Fig. 1c where G is a disjunction of common 
terms, then “intelligent multiplication” ((Brown, 1990; 
Rushdi and Al-Yahya, 2001a) replaces ABS 

( ) ( )( )0 i 1 iF X F X∨ ∧ ∨ in Fig. 1b by ABS 

0 i 1 i(G (H X )(H X )∨ ∨ ∨  in Fig. 1d.  

4. COMPLETE-SUM SOLUTIONS 

We now introduce a novel class of subsumptive 
general solutions based on the derivation of the 
complete sum F = CS(f) of the underlying function f 
in (1). This class produces a sequence of equations Fj 

= 0, (j = 1,2,…,n+1) where F1 is the complete sum of 
the original function f in (1) and Fj = Fj(X j, Xj+1,…,Xn) 
is expanded as: 
 

j j j j j jF P X Q X R 0= ν ν =   (4) 
 

Again with each of the coefficients Pj, Qj and Rj being 
a function of (Xj+1,Xj+2,…,Xn) and the final coefficients 
Pn+1, Qn+1 and Rn+1 being elements of the underlying 
Boolean algebra B. The subsumptive solution for the 
variable Xj(j = 1,2, …,n) is expressed by:  
 

j j jQ X P≤ ≤
 

(5) 

 
Provided the following consistency condition is 

satisfied: 
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j 1 jF R 0+ = =
 

(6) 

 
The subsumptive solution is obtained by imposing 

the final consistency condition:  
 

n 1 nF R 0+ = =
 

(7) 

 
and working in reverse order (j = n, (n-1),…,1) to 

solve (4) via (5) subject to (6). Note that in (6), we do 
not write Fj+1 as (Pj Qj ν Rj) in analogy with the Rudeanu 
algorithm in (Rudeanu, 2003), since (Pj Qj≤Rj) as will be 
explained shortly. In fact, with F = F1 being in complete-
sum form, each Fj(j = 1,2,…,n+1) will be also in 
complete-sum form, i.e., each Fj will be a disjunction of 
all of its prime implicants (and nothing else). The Prime 
Implicants (PIs) of the complete sum formula Fj are of 
three types (Reusch, 1975; Thayse, 1978; Rushdi, 2001a). 

The first type are PIs that have the un-complemented 
literal Xj. The disjunction of these PIs is PjX j where: 

 

( )( )j j jP CS F 1=
 

(8) 

 
where Fj (1j) is the subfunction or restriction of Fj(X j, 
X j+1,…,Xn) with Xj set to 1, i.e., Fj(1j) = (1, Xj+1,…,Xn). 

The second type are PIs that have the complemented  
literal jX . Their disjunction is j jQ X  where: 

 

( )( )j j jQ CS F 0=
 

(9) 

 
where Fj (0j) is the subfunction or restriction of Fj(X j, 
X j+1,..,Xn) with Xj set to 0, i.e., Fj (0j) = (0, Xj+1, …,Xn). 

The third type are PIs that are independent of the 
variable Xj (and hence have neither the literal Xj nor the 
literal jX ). Their disjunction is Rj, where: 
 

( ) ( )( )j j j j jR CS F 0 F 1=
 

(10) 

 
where  the product Fj(0j)Fj(1j) is called the conjunctive 
eliminant of Fj with respect to {Xj} (Brown, 1990), or 
the meet derivative of Fj  with respect to Xj (Thayse, 
1978). Equations 8-10 clearly relate the PIs of Fj to those 
of its subfunctions or restrictions Fj (0j) and Fj (1j) and 
were first noted in (Reusch, 1975). These equations 
confirm our earlier assertions that Pj Qj≤Rj and that each 
Fj+1 = Rj is in a complete-sum form. 

In actual implementation of (4), we directly arrange 
CS (f) in the form:  

1 1 1 1 1 2

1 1 1 1 2 2 3

n
j 1 j j j j n 1

2 2

CS(f ) F P X Q X F

P X Q X P X Q X F

V 1(P X Q X ) F= +

= = ∨ ∨

= ∨ ∨ ∨ ∨

= = ∨ ∨

 (4a) 

 
and hence write the subsumptive solution (5) and the 

final consistency condition (7) simply by inspection. The 
order followed in the summation (ORing) in (4a) is not 
necessarily the natural order {1,2,..,n}, but could be any 
permutation of it. 

5. RESULTS 

The present method of CS sub sumptive solution of 
Boolean equations utilizes a canonical representation that 
explicitly shows complete information about the pertinent 
Boolean function f (X)

�

 in the most compact form. It is 

typically more efficient than the don’t-care techniques in 
(Rushdi, 2001b; 2004), but while the CS solution obtains a 
rather compact solution that is not necessarily minimal, 
the don't-care techniques seek the most compact solution 
by using Boolean minimization methods. 

The CS method is comparable in efficiency and 
compactness of solution to the Rudeanu method in 
(Rudeanu, 2003). Finally, the CS method might need 
slightly more effort than the conventional method based 
on constructing eliminants, but this extra effort pays off, 
since it results in a more compact solution and hence in 
easier generation of the tree (or acyclic graph) of 
particular solutions. The following examples 
demonstrate particular implementation details of the CS 
method and typical results obtained with it. 

 5.1. Example 1: 

Let the function f (X)
��

 in (1) be f(X1, X2, X3): 
3
4 4B B→ where 4B FB(a) {0,a,a,1}= = and: 

 

( )1 2 3 2 3 1 1 3f X ,X ,X aX X aX X X X= ν ν 2  (11) 

 
This function is already in CS form. It is an 

absorptive syllogistic formula in which the variable X1 
and the generator a are monoform, while the two biform 
variables X2 and X3 generate no consensi since the only 
two terms involving them 2 3 1 2 3(aX X and X X X ) have 

double opposition. We arrange the CS formula (11) as: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 1 2

3 2 3 3

CS f 0 X a X X X 0 X

aX X 0 X 0 X 0

= ν ν ν ν

ν ν ν
  (12) 



A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014 

 
160 Science Publications

 
JMSS 

And hence obtain the subsumptive solution: 
 

( )

3

3 2

2 3 1

0 0

0 X 1

aX X 1

a X X X 1

=
≤ ≤

≤ ≤

∨ ≤ ≤

  (13) 

 
The availability of CS formula (11) allows us to 

choose any appropriate nesting of variables. For 
example, instead of (12) we may write: 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 3 2 3 2 1

1

CS f X X X aX X 0 X 0 X

a X 0

= ν ∨ ν ν

ν
  (14) 

 
And hence obtain the alternative subsumptive 

solution: 
 

( )

1

2

2 3 1 2

0 0

a X 1

0 X 1

aX X X X

=
≤ ≤

≤ ≤

≤ ≤ ∨
 

 (15) 

 
A list of all particular solutions is neither compact nor 

insightful as a general solution. Such a list is produced via 
expansion trees from the general solutions. Figure 2 shows 
the expansion tree used in producing all 21 particular 
solutions for f = 0 from the general subsumptive solution 
(13). To save space, we combined common nodes in the 
tree, thereby reducing it to an acyclic graph. 

5.2. Example 2: 

The function (X1, X2, X3): 3
16 16B B→  which satisfies 

{f = 0} is given by: 
 

( )1 2 3 3 1 2 2 3 1 2

2 3 2 3 1 2

f X ,X ,X bX bX X bX X aX X

aX X aX X abX X

= ν ν ν ν

ν ν
 

 (16) 

 
Here the underlying Boolean algebra B16 = FB (a, b) 

is the free Boolean algebra generated by the two 
generators a and b. This algebra has 16 elements that are 
exactly the binary switching functions of a and b. These 
elements constitute a complemented distributive lattice 
in the form of a four dimensional hypercube. Figure 3 
shows the hypercube lattice of B16 and indicates partial 
ordering among its 16 elements. Notable among these 
16 elements are the 0 and 1 elements and also the four 
elements ab, ab, ab and abwhich are the minterms of a 

switching function of two variables, or the atoms of 
the atomic algebra B16, or the dimensions of its 
hypercube representation. 

Figure 4-7 demonstrate the derivation of CS(f) for 
the function f in (16) via VEKM folding. Initially, we 
represent f in Fig. 4 by its natural map, which is a 
VEKM of map variables X1, X2 and X3 and entries that 
are functions of the generators a and b. These entries are 
written in CS forms. The VEKM in Fig. 4 is now folded 
(according to the rules of Fig. 1), first with respect to X1 
(Fig. 5), then with respect to X2 (Fig. 6) and finally with 
respect to X3 (Fig. 7), while retaining CS entries during 
each folding. Figure 7 is simply an ANDing table 
(multiplication table) for the two entries in Fig. 6. Every 
absorbed term is encircled with an arrow pointing to the 
absorbing term (which happens to be on the same row or 
the same column). The remaining terms, which are PIs 
of f, are not circled and are stressed in bold. Their 
disjunction is CS(f) given by: 
 

3 2 3 1 2 3 2 3 2 3

1 2 1 2 1 3 1 2

CS(f ) bX aX X aX X X aX X bX X

abX X bX X aX X aX X ab

= ν ν ν ν

ν ν ν ν ν
 (17) 

 
Now, we rearrange the CS formula (17) so as to 

express X1 in terms of X2 and X3 and to express X2 in 
terms of X1: 
 

( ) ( ) ( )
( ) ( ) ( ) ( )

2 3 2 2 1 3 2 1

3 3 2 3 2 3 3

CS f aX X abX bX X aX aX X

aX bX X aX X b X 0 X ab

= ν ν ν ν

ν ν ν ν ν ν
 (18) 

 
Now, some complementation is needed as follows: 

 

( )( )( )
( )( )

( )

1 2 3 2 2

1 2 3 2 2

2 3 2

2 2 2 3

2 3

2 3

P aX X abX bX

P a X X a b X b X

a X bX b X

ab aX bX bX X

P a b X

P ab X

= ν ν

= ν ν ν ν ν

= ν ν ν

= ν ν ν

= ν

= ν
 

 
Hence, the subsumptive solution is: 

 

( )
( ) ( )

3

3 2 3

3 2 1 2 2 2 3

ab 0

0 X b

aX X ab X

aX aX X ab aX bX bX X

=

≤ ≤

≤ ≤ ν

ν ≤ ≤ ≤ ν ν ν

 

 (19) 
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Fig. 2. Expansion tree (reduced to an acyclic graph) for obtaining all particular solutions of Example 1 from the general subsumptive 

solution (13). For clarity a  is written as b 
 

The consistency condition (ab 0)=  will force the 
lattice in Fig. 3 to lose one atom or one dimension and 
hence to collapse to the three dimensional cube in Fig. 8. 
The subsumptive solution (19) can be used, if necessary, 
to develop all particular solutions of f = 0. Figure 9 
shows part of the expansion tree that can be used for this 
purpose. A complete listing of all 45 particular solutions 
(albeit with X1 interchanged with X3) is available in 
(Rushdi, 2004; Rushdi and Amashah, 2011).  

5.3. Example 3 

The function f = (X1, X2, X3): 3
16 16B B→  which 

satisfies (f = 0) is given by: 

( )1 2 3 1 1 3

1 2 1 1 2 1 3

f X ,X ,X ab abX aX X

bX X abX aX X bX X

= ν ν

ν ν ν ν  

(20) 

 
The complete sum of this function is: 

 
( ) 1 1 2

1 2 1 2 3

CS f ab v aX vbX v abX

v bX X v aX X vX

=
 (21) 

 
This CS formula is now arranged to give: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
2 1 2

1 2 2 3 3

CS f a bX X b aX

X ab X 0 X 1 X 0 X ab

= ν ν ν

ν ν ν ν ν
 

(22) 
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Fig. 3. A hypercube lattice indicating the partial ordering among the 16 elements of the atomic algebra B16. Notable among these 

elements are the four atoms ab, ab, ab and ab 

 

 
 

Fig. 4. A VEKM representa8on for f(X
�

)with CS entries 
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Fig. 5. The VEKM in Fig. 4 folded w.r.t. X1 and still having CS entries 
 

 
 

Fig. 6. The VEKM in Fig. 5 folded w.r.t. X2 and still having CS entries 
 

 
 
Fig. 7. ANDing table for the two entries in Fig. 6, producing a VEKM of 0 map variable or an algebraic expression of f in CS form 
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Fig. 8. The lattice in Fig. 3 when collapsed under the condition ab 0=  

 

 
 

Fig. 9. Expansion tree for obtaining all the particular solutions of Example 2 from the general subsumptive solution (19) 
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Fig. 10. The lattice in Fig. 3 when collapsed under the condition ab=0 
 

 
 
Fig. 11. Expansion tree for obtaining all the particular solutions of Example 2 from the general subsumptive solution (23) 

The final subsumptive solution is: 
 

( )
( ) ( )

3

2

2 1 2

ab 0

0 X 0

0 X a b

b aX X ab aX

=

≤ ≤

≤ ≤ ν

ν ≤ ≤ ν

 (23) 

 
Figure 10 illustrates the acyclic-graph production of 

all 8 particular solutions from the general solution (23). 
Here, the consistency condition (ab = 0) made the 
underlying Boolean algebra collapse from the hypercube 
lattice of B16 in Fig. 3 to the cubic lattice of B8 in Fig. 11. 

 5.4. Example 4 

Consider the Boolean equation: 
 

( )f X bX aX ac bc 0= ν ν ν =
 

(24) 

 
where, f(X) = B→B and B = FB (a, b, c) is a Boolean 
algebra of  2**(2**3) = 256 elements constituting all the 
switching (bivalent Boolean) functions of three 
arguments a, b and c. In the following, we update f(X) 
gradually into CS form using Tison algorithm, by adding 
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consensi with respect to the biform variable X and the 
three biform generators a, b, c respectively. Of course, 
there will be some need herein for absorbing subsuming 
terms whenever such terms emerge: 
 

( ) ( )
( )
( )
( )

( )

f X bX aX ac bc ab

bX aX ac bc ab cX bc

bX aX ac bc ab cX bc cX ac

bX aX ac bc ab cX bc cX a c

ab bX aX aX bX ab

= ν ν ν ν

= ν ν ν ν ν ν

= ν ν ν ν ν ν ν ν

= ν ν ν ν ν ν ν ν ν

ν ν ν ν ν

  (25) 

 
The last line of equation (25) has three terms 

enclosed in parentheses which are absorbed in other 
terms. This equation represents CS(f) when these terms 
are omitted and can be rearranged as: 
 

( ) ( )CS f PX QX R= ν ν  (26a) 

 
Where: 
 
R a b c= ν ν  (26b) 

 
Q a b c= ν ν  (26c) 

 
Q ac bc ab bc a c ab= ν ν ν ν ν  (26d) 

 
from which one obtains: 

 
( )a b c X abcν ν ≤ ≤

 
(27a) 

 
Subject to the consistency condition: 

 

( )ac bc ab bc a c ab 0ν ν ν ν ν =  (27b) 

 
The terms in parentheses in (27b) are the only terms 

that would appear in consistency conditions by the 
eliminants method (Rudeanu, 1974; Brown, 1990), the 
don't-care method (Rushdi, 2001b; 2004) or the Rudeanu 
method (Rudeanu, 2003). Other terms in (27b) are 
generalized consensi of the earlier terms. The condition 
(27b) indicates that six out of the eight atoms of the 
underlying Boolean algebra are nullified. These are the 
atoms abc, abc, abc, abc, abc and abc. Hence B retains 
the two (now complementary) atoms abc and abc and 
hence it reduces into a 4-element Boolean algebra: 

{B 0, , , 1}= α α
 

(28) 

 
where, abc and abcα = α = . The two bounds in (27a) are 

both equal to α  and hence X has a single particular 
solution X = α  

6. DISCUSSION 

The present method of CS subsumptive solution of 
Boolean equations utilizes a canonical representation 
that explicitly shows complete information about the 
pertinent Boolean function f (X)

��

 in the most compact 
form. It is typically more efficient than the don't-care 
techniques in (Rushdi, 2001b; 2004), but while the CS 
solution obtains a rather compact solution that is not 
necessarily minimal, the don't-care techniques seek 
the most compact solution by using Boolean 
minimization methods. 

The CS method is comparable in efficiency and 
compactness of solution to the Rudeanu method in 
(Rudeanu, 2003). The CS method might need slightly 
more effort than the conventional method based on 
constructing eliminants, but this extra effort pays off, 
since it results in a more compact solution and hence in 
easier generation of the tree (or acyclic graph) of 
particular solutions. The CS solution obtained herein has 
two minor advantages over other known methods of 
subsumptive solutions, namely, (a) it explicitly casts the 
consistency condition in CS form and hence provides 
immediate complete information about it and (b) it 
allows nesting the subsumptions in (2) according to any 
desirable permutation of the set of integers {1,2,…,n}. 

The CS method easily detects if a Boolean equation 
f (X) 0=
��

 is inconsistent, for then it produces 

CS(f (X)) 1=
��

, which leads to the inconsistency {1 = 0}, 

or in other words, leads to a consistency condition {1= 
0} which is not satisfiable. In this case, all atoms of B are 
nullified, B collapses to a single element  and the 
solution set is empty. 

7. CONCLUSION 

A novel method for obtaining the general 
subsumptive solution of a general Boolean equation is 
introduced. The method is based on the derivation of the 
complete sum CS(f) of the pertinent Boolean function. 
Prominent methods for such a derivation are briefly 
outlined and utilized in four demonstrative examples, 
covering Boolean algebras of various sizes. 
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Occasionally, the consistency conditions result in 
collapse of the underling Boolean algebra into a 
smaller subalgebra. An expansion tree (typically 
reduced to an acyclic graph) is used to deduce a 
complete list of all particular solutions from the 
subsumptive solution. The present CS method is 
guaranteed to produce correct solutions, thanks to the 
fact that it fits into the frame of the most general 
subsumptive solution. Among competing subsumptive 
methods, the CS method is relatively good (albeit not 
necessarily the best) from both criteria of 
computational efficiency and compactness of 
solutions obtained. The CS method also enjoys the 
advantages of casting its consistency condition in a 
complete (but compact) form and of allowing the 
nesting of subsumptions in any possible permutation. 

The CS method for solving Boolean equations can be 
classified as an application of the Modern Syllogistic 
Method (MSM) (Blake, 1937; Brown, 1990; Gregg, 
1998; Rushdi and Al-Shehri, 2002; Rushdi and Baz, 
2007; Rushdi and Ba-Rukab, 2007; 2008a; 2008b; 2009; 
2014). In this perspective, the equation f (X) 0=

��

 can be 

viewed as a set of premises in a logic-deduction process, 
while the equation CS(f (X))

��

 is thought of as a set of 

consequents in this deduction. 
An interesting topic for further research is whether 

a linear (Reed-Muller) representation of the pertinent 
Boolean function (see, e.g., Rushdi and Ghaleb, 2013; 
Rushdi and Alsogati, 2013) could provide a new 
alternative for solving the corresponding Boolean 
equation. 
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