
Journal of Mathematics and Statistics 10 (2): 155-168, 2014
ISSN: 1549-3644
© 2014 Science Publications
doi:10.3844/jmssp.2014.155.168 Published Online 10 (2) 2014 (http://www.thescipub.com/jmss.toc)

Corresponding author: Ali Muhammad Ali Rushdi, Department of Electrical and Computer Engineering, Faculty of Engineering,
King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia

155 Science Publications

JMSS

CONSTRUCTION OF GENERAL
SUBSUMPTIVE SOLUTIONS OF BOOLEAN

EQUATIONS VIA COMPLETE-SUM DERIVATION

Ali Muhammad Ali Rushdi and Hussain Mobarak Albarakati

Department of Electrical and Computer Engineering, Faculty of Engineering,
King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia

Received 2013-04-12; Revised 2013-07-16; Accepted 2014-02-15

ABSTRACT

Boolean-equation solving permeates many diverse areas of modern science. To solve a system of Boolean
equations, one usually combines them into an equivalent single Boolean equation {f (X) 0}=

�

whose set of
solutions is exactly the same as that of the original system of equations. One of the general classes of
solutions for Boolean equations is the subsumptive general solution, in which each variable is expressed as
an interval decided by a double inequality in terms of the succeeding variables. The solution validity
depends on the satisfaction of a required consistency condition. In this study, we introduce a novel method
(henceforth called the CS method) for producing subsumptive Boolean-equation solutions based on deriving
the complete sum(CS(f (X))

��

of the pertinent Boolean functionf (X)
�

. The complete sum CS(f (X))
�

 is a

disjunction of all prime implicants of f (X)
��

 and nothing else. It explicitly shows all information about f (X)
�

in the most compact form. We demonstrate the proposed CS solutions in terms of four examples, covering
Boolean algebras of different sizes and using two prominent methods for deriving CS(f (X))

�

. Occasionally,

the consistency condition results in a collapse of the underlying Boolean algebra into a smaller subalgebra.
We also illustrate how an expansion tree (typically reduced to an acyclic graph) can be used to deduce a
complete list of all particular solutions from the subsumptive solution. The present CS method yields
correct solutions, since it fits into the frame of the most general subsumptive solution. Among competing
subsumptive methods, the CS method strikes a reasonable tradeoff between the conflicting requirements of
less computational cost and more compact form for the solution obtained. In fact, it is the second best
known method from both criteria of efficiency and compactness of solution.

Keywords: Boolean Equations, Subsumptive General Solutions, Complete Sum, Blake Canonical Form,

Consensus Generation, Absorption, Multiplication

1. INTRODUCTION

Boolean-equation solving permeates many diverse
areas of modern science such as biology, grammars,
chemistry, law, medicine, spectrography and graph
theory. It is also an indispensable tool in operations
research, the cryptanalysis and breaking of ciphers,
Boolean function decomposition, Boolean Satisfiability

(SAT) problem solving, the synthesis, simulation, testing
and diagnosis of digital networks and VLSI systems,
output encoding and state assignments of finite state
machines, automatic test-pattern generation and many
other subareas of logical design.

To solve a system of Boolean equations, the
equations are usually combined into an equivalent single
Boolean equation {f (X) 0}=

�

 whose set of solutions is

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

156 Science Publications

JMSS

exactly the same as that of the original system of
equations. This is conceptually simpler and
computationally more efficient than obtaining the set of
solutions for each equation and then forming the
intersection of such sets to obtain the set of solutions of
the overall system. Typically, either general subsumptive
solutions or general parametric solutions are sought, from
which an exhaustive enumeration of all particular solutions
can be readily chieved (Rudeanu, 1974; 2001; 2003; 2010;
Brown, 1990; Levchenkov, 2000a; 2000b; Tucker and
Tapia, 1992; Rushdi, 2001b; 2004; 2012; Rushdi and
Amashah, 2010; 2011; 2012; Rushdi and Albarakati,
2013a). In this study, we are interested in deriving a
subsumptive general solution of the Boolean equation:

f (X) 0=
�

 (1)

where, n T

1 2 nf (X) : B B,X [X ,X ,...,X]→ =
� �

 and B is a

general finite Boolean algebra of 2q elements (q =
1,2,3,…) In a subsumptive general solution, each of the
variables Xj is expressed as an interval determined by the
double inequality:

j j 1 j 2 n j j j 1, j 2 nu (X , X ,....,X) X v (X X ,...,X)

(j 1,2,..,n)

+ + + +≤ ≤

=
 (2)

i.e., each variable Xj is a partially- defined function of

the succeeding (n-j) variables. In particular, the last
variable Xn is determined as an interval {un≤Xn≤vn}
where un and vn are elements of B. The subsumptive
solutions (2) are usually obtained subject to a certain
consistency condition.

Typically, the lower bound uj and the upper bound vj
for Xj in (2) are determined in terms of successive
conjunctive or disjunctive eliminants of the original
function f (Rudeanu, 1974; Brown, 1990; Tucker and
Tapia, 1992; Rushdi, 2001b; 2004). In this study, we
introduce a novel class of subsumptive Boolean-equation
solutions based on deriving the Complete Sum (CS(f)) or
Blake Canonical Form (BCF(f)) (Blake, 1937; Tison,
1967; Rudeanu, 1974; 2001; Reusch, 1975; Muroga,
1979; Cutler et al., 1979; Brown and Rudeanu, 1988;
Brown, 1990; Kean and Tsiknis, 1990; Gregg, 1998;
Rushdi, 2001a; Rushdi and Al-Yahya, 2000; 2001a;
2002) of the pertinent Boolean function f (X)

��

.This class
of solutions fits into the frame of the most general form
of the subsumptive general solution since it satisfies the
necessary and sufficient conditions set in (Rudeanu,
2010) for such a form. The CS solution obtained herein

has two minor advantages over other known methods of
subsumptive solutions, namely, (a) it explicitly casts the
consistency condition in CS form and hence provides
immediate complete information about it and (b) it
allows nesting the subsumptions in (2) according to any
desirable permutation of the set of integers {1,2,…,n}

2. MATERIALS AND METHODS

We briefly review essential concepts of the complete
sum of a switching function, outline two prominent
algorithms for its derivation, present the mathematics of
Boolean-function solution via complete sum derivation and
demonstrate the proposed method with four illustrative
examples. In these examples, we show how the original
equation (1) is converted into the equivalent equation:

)(()CS f X 0=
�

(3)

We also demonstrate how to convert (3) into a

subsumptive solution (2) together with a consistency
condition. Occasionally, the consistency condition
results in a collapse of the underlying Boolean algebra B
into a smaller subalgebra. In each example, we illustrate
how an expansion tree (typically reduced to an acyclic
graph) can be used to deduce a complete list of all
particular solutions from the subsumptive solution.

3. COMPLETE SUM OF A BOOLEAN
FUNCTION

The complete sum of a Boolean function f, to be
denoted by CS(f) is the all-prime-implicant disjunction
that expresses f, i.e., it is a sum-of products (s-o-p)
formula whose products are all the prime implicants of f.
The complete sum is called the “Blake Canonical Form”
by Brown (1990) in honor of A. Blake who was the first
author to initiate and develop this concept in his Ph.D.
dissertation (Blake, 1937). Since all the prime implicants
of f are present in CS(f) it is obviously unique and hence
stands for a canonical representation of the Boolean
function. The complete sum for an Incompletely-Specified
Boolean Function (ISBF) f = g v d(h) is that of the
associated Completely-Specified Boolean Function
(CSBF) F = g ν h. This means that a study of the
complete sum always involves a CSBF and does not really
involve an ISBF. Henceforth, when we refer to a Boolean
function f, we understand it is a CSBF.

The concept of the complete sum of a Boolean
function f is closely related to that of a syllogistic
formula for f (Brown, 1990; Rushdi and Al-Yahya,

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

157 Science Publications

JMSS

2001a). However, while CS(f) is unique and canonical,
there are infinitely many syllogistic formulas for f A
syllogistic formula of f can be defined as an s-o-p
formula whose terms include, but are not necessarily
excluded to, all the prime implicants of f, i.e., it is the
complete sum of f disjuncted (possibly) with terms each
of which subsumes some prime implicant of f. Other
definitions and properties of a syllogistic formula is
given by Brown (1990). Each of the following formulas
are syllogistic formulas (Brown, 1990):

• A complete-sum formula
• An alterm (a disjunction of single literals)
• An s-o-p formula of monoform literals only
• An s-o-p formula such that no two terms in it have a

consensus that does not appear in the formula.

If we compare the definition of a syllogistic formula
for f to that of its complete sum CS(f) we note that CS(f)
is minimal within the class of syllogistic formulas for f,
i.e., the set of terms in any syllogistic formula for f is a
superset of the set of terms in CS(f) (Brown, 1990).
Hence CS(f) can be denoted by ABS(F), where F is any
syllogistic formula for f and ABS(F) denotes an
equivalent absorptive formula of F, i.e., a formula
obtained from F by successive deletion of terms
absorbed in other terms of F (Brown, 1990).

In view of our definition of CS(f) as ABS(F), it is
obvious that CS(f) may be generated by the following
two-step procedure: (a) Find a syllogistic formula F for f
and (b) Delete absorbed terms to obtain ABS(F). Many
techniques exist in the literature for carrying out step (a).
These are categorized (Brown, 1990) into the three
basic approaches of exhaustion of implicants, iterative
cconsensus and multiplication. In the examples solved
herein we employed two prominent algorithms for
complete-sum derivation, namely, Tison algorithm
and an algorithm utilizing the Variable-Entered
Karnaugh Map (VEKM), which is succinctly labeled
as VEKM folding.

3.1. Tison Algorithm

Tison method for obtaining all the prime implicants
of a switching function F (i.e., obtainig) CS(f) is a
systematic streamlined version of the iterative-consensus
technique. The original study of Tison appeared in
(Tison, 1967), but a more readable exposition can be
found in (Cutler et al., 1979) or in (Muroga, 1979). The
method is sometimes called “Tison method” for short,
though its lengthier name serves to differentiate it from
another Tison method, namely, that for the derivation of

all irredundant disjunctive forms (Muroga, 1979). The
essence of the present Tison method is summarized in
Theorem 1. This theorem is adapted from (Cutler et al.,
1979) to use the complete sum in the sense used by
(Brown and Rudeanu, 1988), which is applicable to big
Boolean algebras. In this theorem, the biform variables
Y1,Y2,…, Ym include the biform variables among the
input variables X

�

 and any biform generator among the
algebra generators a,b,c,…

Theorem 1:

 Start with a set of n0 products
0

(0) (0) (0)
0 1 2 n

s {T ,T ,...,T }=

with m biform variables Y1, Y2, …, Ym and a Boolean
function f that is expressed by disjunction of the products
in s0. For 1≤i≤m repeat the following 2-part step that
replaces a set of products si-1 by an updated one si.

First, for 1 ≤j<k≤ n(i-1) if Y i appears complemented in
one of the two products (i 1) (i 1)

j kT ,T− − and appears un-
complemented in the other such that the two products
have no other opposition, then they have a consensus
with respect toYi. Form that consensus and add it to si-1.
Finally, si-1 is replaced by a superset r(i-1) of p(i-1)
elements, where p(i-1) is greater than or equal to n(i-1).

Next, consider every pair (){ }(i 1) (i 1)
j kT ,T , ., j k− − … ≠ of (so

far remaining) products in r(i-1). If (i 1)
jT − subsumes (i 1)

kT − ,

then delete (i 1)
jT − . Otherwise, if (i 1)

jT − is subsumed by
(i 1)
kT − then delete (i 1)

kT − . Whenever all subsumptions (and

subsequent deletions) are exhausted, let the remaining set be
(i) (i) (i)

i 1 2 ni
s {T ,T ,...,T }= . The disjunction of products in any of

the sets si, 0≤ i≤ m is an expression of f and the final set sm
consists of all prime implicants of f.

3.2. VEKM Folding

 The variable-entered Karnaugh map (VEKM) is a
useful tool that has a variable-handling capability better
than that of the conventional Karnaugh map and that
naturally handles general or big Boolean algebras
(Rushdi, 1987; 1996; 2001a; 2001b; 2004; 2012; Rushdi
and Amashah, 2011; Rushdi and Albarakati, 2013a;
2013b; Rushdi and Al-Yahya, 2000; 2001a; 2001b;
2002). In VEKM folding, a VEKM is used to represent
the Boolean function and entries of the VEKM are
converted into complete-sum entries via algebraic
methods employing consensus generation and absorption
(e.g., Tison method). In Fig. 1a, the function f (X)

��

 is
therefore assumed to have subfunctions or restrictions
with respect to Xi which are already in CS form.

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

158 Science Publications

JMSS

Fig. 1. The typical step of VEKM folding used in the derivation of CS(f) (a) f (X)

��

with CS subfuncitons F0 and F1 (b) f (X)
��

in CS

form (c) f (X)
��

with CS subfuncitons (GνH0) and (GνH1) (d) f (X)
��

in CS formf (X)
��

Figures 1a and 1b demonstrate the basic step in VEKM
folding which converts a map variable Xi into an entered
variable, while retaining CS entries in the new VEKM
representation of the pertinent function. In Fig. 1b, we
use ABS(F) to denote an equivalent absorptive formula
of F, i.e., a formula obtained from F by successive
deletion of terms absorbed in other terms of F. The
formula in Fig. 1b uses ANDing (multiplication) of CS
formulas as an alternative for consensus generation. This
multiplication is implemented via a multiplication matrix
which allows an easy tracking of absorptions because of
the fact that if a term is to be ever absorbed, then one of
its absorbing terms will belong to either its row or to its
column (Rushdi and Al-Yahya, 2001a). If the
subfunctions F0 and F1 have some terms in common, i.e.,
if they can be written as F0 = G ν H0 and F1= G ν H1 as
shown in Fig. 1c where G is a disjunction of common
terms, then “intelligent multiplication” ((Brown, 1990;
Rushdi and Al-Yahya, 2001a) replaces ABS

() ()()0 i 1 iF X F X∨ ∧ ∨ in Fig. 1b by ABS

0 i 1 i(G (H X)(H X)∨ ∨ ∨ in Fig. 1d.

4. COMPLETE-SUM SOLUTIONS

We now introduce a novel class of subsumptive
general solutions based on the derivation of the
complete sum F = CS(f) of the underlying function f
in (1). This class produces a sequence of equations Fj

= 0, (j = 1,2,…,n+1) where F1 is the complete sum of
the original function f in (1) and Fj = Fj(X j, Xj+1,…,Xn)
is expanded as:

j j j j j jF P X Q X R 0= ν ν = (4)

Again with each of the coefficients Pj, Qj and Rj being
a function of (Xj+1,Xj+2,…,Xn) and the final coefficients
Pn+1, Qn+1 and Rn+1 being elements of the underlying
Boolean algebra B. The subsumptive solution for the
variable Xj(j = 1,2, …,n) is expressed by:

j j jQ X P≤ ≤

(5)

Provided the following consistency condition is

satisfied:

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

159 Science Publications

JMSS

j 1 jF R 0+ = =

(6)

The subsumptive solution is obtained by imposing

the final consistency condition:

n 1 nF R 0+ = =

(7)

and working in reverse order (j = n, (n-1),…,1) to

solve (4) via (5) subject to (6). Note that in (6), we do
not write Fj+1 as (Pj Qj ν Rj) in analogy with the Rudeanu
algorithm in (Rudeanu, 2003), since (Pj Qj≤Rj) as will be
explained shortly. In fact, with F = F1 being in complete-
sum form, each Fj(j = 1,2,…,n+1) will be also in
complete-sum form, i.e., each Fj will be a disjunction of
all of its prime implicants (and nothing else). The Prime
Implicants (PIs) of the complete sum formula Fj are of
three types (Reusch, 1975; Thayse, 1978; Rushdi, 2001a).

The first type are PIs that have the un-complemented
literal Xj. The disjunction of these PIs is PjX j where:

()()j j jP CS F 1=

(8)

where Fj (1j) is the subfunction or restriction of Fj(X j,
X j+1,…,Xn) with Xj set to 1, i.e., Fj(1j) = (1, Xj+1,…,Xn).

The second type are PIs that have the complemented
literal jX . Their disjunction is j jQ X where:

()()j j jQ CS F 0=

(9)

where Fj (0j) is the subfunction or restriction of Fj(X j,
X j+1,..,Xn) with Xj set to 0, i.e., Fj (0j) = (0, Xj+1, …,Xn).

The third type are PIs that are independent of the
variable Xj (and hence have neither the literal Xj nor the
literal jX). Their disjunction is Rj, where:

() ()()j j j j jR CS F 0 F 1=

(10)

where the product Fj(0j)Fj(1j) is called the conjunctive
eliminant of Fj with respect to {Xj} (Brown, 1990), or
the meet derivative of Fj with respect to Xj (Thayse,
1978). Equations 8-10 clearly relate the PIs of Fj to those
of its subfunctions or restrictions Fj (0j) and Fj (1j) and
were first noted in (Reusch, 1975). These equations
confirm our earlier assertions that Pj Qj≤Rj and that each
Fj+1 = Rj is in a complete-sum form.

In actual implementation of (4), we directly arrange
CS (f) in the form:

1 1 1 1 1 2

1 1 1 1 2 2 3

n
j 1 j j j j n 1

2 2

CS(f) F P X Q X F

P X Q X P X Q X F

V 1(P X Q X) F= +

= = ∨ ∨

= ∨ ∨ ∨ ∨

= = ∨ ∨

 (4a)

and hence write the subsumptive solution (5) and the

final consistency condition (7) simply by inspection. The
order followed in the summation (ORing) in (4a) is not
necessarily the natural order {1,2,..,n}, but could be any
permutation of it.

5. RESULTS

The present method of CS sub sumptive solution of
Boolean equations utilizes a canonical representation that
explicitly shows complete information about the pertinent
Boolean function f (X)

�

 in the most compact form. It is

typically more efficient than the don’t-care techniques in
(Rushdi, 2001b; 2004), but while the CS solution obtains a
rather compact solution that is not necessarily minimal,
the don't-care techniques seek the most compact solution
by using Boolean minimization methods.

The CS method is comparable in efficiency and
compactness of solution to the Rudeanu method in
(Rudeanu, 2003). Finally, the CS method might need
slightly more effort than the conventional method based
on constructing eliminants, but this extra effort pays off,
since it results in a more compact solution and hence in
easier generation of the tree (or acyclic graph) of
particular solutions. The following examples
demonstrate particular implementation details of the CS
method and typical results obtained with it.

 5.1. Example 1:

Let the function f (X)
��

 in (1) be f(X1, X2, X3):
3
4 4B B→ where 4B FB(a) {0,a,a,1}= = and:

()1 2 3 2 3 1 1 3f X ,X ,X aX X aX X X X= ν ν 2 (11)

This function is already in CS form. It is an

absorptive syllogistic formula in which the variable X1
and the generator a are monoform, while the two biform
variables X2 and X3 generate no consensi since the only
two terms involving them 2 3 1 2 3(aX X and X X X) have

double opposition. We arrange the CS formula (11) as:

() () () ()
() () () ()

1 2 3 1 2

3 2 3 3

CS f 0 X a X X X 0 X

aX X 0 X 0 X 0

= ν ν ν ν

ν ν ν
 (12)

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

160 Science Publications

JMSS

And hence obtain the subsumptive solution:

()

3

3 2

2 3 1

0 0

0 X 1

aX X 1

a X X X 1

=
≤ ≤

≤ ≤

∨ ≤ ≤

 (13)

The availability of CS formula (11) allows us to

choose any appropriate nesting of variables. For
example, instead of (12) we may write:

() () () () ()
() ()

1 2 3 2 3 2 1

1

CS f X X X aX X 0 X 0 X

a X 0

= ν ∨ ν ν

ν
 (14)

And hence obtain the alternative subsumptive

solution:

()

1

2

2 3 1 2

0 0

a X 1

0 X 1

aX X X X

=
≤ ≤

≤ ≤

≤ ≤ ∨

 (15)

A list of all particular solutions is neither compact nor

insightful as a general solution. Such a list is produced via
expansion trees from the general solutions. Figure 2 shows
the expansion tree used in producing all 21 particular
solutions for f = 0 from the general subsumptive solution
(13). To save space, we combined common nodes in the
tree, thereby reducing it to an acyclic graph.

5.2. Example 2:

The function (X1, X2, X3): 3
16 16B B→ which satisfies

{f = 0} is given by:

()1 2 3 3 1 2 2 3 1 2

2 3 2 3 1 2

f X ,X ,X bX bX X bX X aX X

aX X aX X abX X

= ν ν ν ν

ν ν

 (16)

Here the underlying Boolean algebra B16 = FB (a, b)

is the free Boolean algebra generated by the two
generators a and b. This algebra has 16 elements that are
exactly the binary switching functions of a and b. These
elements constitute a complemented distributive lattice
in the form of a four dimensional hypercube. Figure 3
shows the hypercube lattice of B16 and indicates partial
ordering among its 16 elements. Notable among these
16 elements are the 0 and 1 elements and also the four
elements ab, ab, ab and abwhich are the minterms of a

switching function of two variables, or the atoms of
the atomic algebra B16, or the dimensions of its
hypercube representation.

Figure 4-7 demonstrate the derivation of CS(f) for
the function f in (16) via VEKM folding. Initially, we
represent f in Fig. 4 by its natural map, which is a
VEKM of map variables X1, X2 and X3 and entries that
are functions of the generators a and b. These entries are
written in CS forms. The VEKM in Fig. 4 is now folded
(according to the rules of Fig. 1), first with respect to X1
(Fig. 5), then with respect to X2 (Fig. 6) and finally with
respect to X3 (Fig. 7), while retaining CS entries during
each folding. Figure 7 is simply an ANDing table
(multiplication table) for the two entries in Fig. 6. Every
absorbed term is encircled with an arrow pointing to the
absorbing term (which happens to be on the same row or
the same column). The remaining terms, which are PIs
of f, are not circled and are stressed in bold. Their
disjunction is CS(f) given by:

3 2 3 1 2 3 2 3 2 3

1 2 1 2 1 3 1 2

CS(f) bX aX X aX X X aX X bX X

abX X bX X aX X aX X ab

= ν ν ν ν

ν ν ν ν ν
 (17)

Now, we rearrange the CS formula (17) so as to

express X1 in terms of X2 and X3 and to express X2 in
terms of X1:

() () ()
() () () ()

2 3 2 2 1 3 2 1

3 3 2 3 2 3 3

CS f aX X abX bX X aX aX X

aX bX X aX X b X 0 X ab

= ν ν ν ν

ν ν ν ν ν ν
 (18)

Now, some complementation is needed as follows:

()()()
()()

()

1 2 3 2 2

1 2 3 2 2

2 3 2

2 2 2 3

2 3

2 3

P aX X abX bX

P a X X a b X b X

a X bX b X

ab aX bX bX X

P a b X

P ab X

= ν ν

= ν ν ν ν ν

= ν ν ν

= ν ν ν

= ν

= ν

Hence, the subsumptive solution is:

()
() ()

3

3 2 3

3 2 1 2 2 2 3

ab 0

0 X b

aX X ab X

aX aX X ab aX bX bX X

=

≤ ≤

≤ ≤ ν

ν ≤ ≤ ≤ ν ν ν

 (19)

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

161 Science Publications

JMSS

Fig. 2. Expansion tree (reduced to an acyclic graph) for obtaining all particular solutions of Example 1 from the general subsumptive

solution (13). For clarity a is written as b

The consistency condition (ab 0)= will force the
lattice in Fig. 3 to lose one atom or one dimension and
hence to collapse to the three dimensional cube in Fig. 8.
The subsumptive solution (19) can be used, if necessary,
to develop all particular solutions of f = 0. Figure 9
shows part of the expansion tree that can be used for this
purpose. A complete listing of all 45 particular solutions
(albeit with X1 interchanged with X3) is available in
(Rushdi, 2004; Rushdi and Amashah, 2011).

5.3. Example 3

The function f = (X1, X2, X3): 3
16 16B B→ which

satisfies (f = 0) is given by:

()1 2 3 1 1 3

1 2 1 1 2 1 3

f X ,X ,X ab abX aX X

bX X abX aX X bX X

= ν ν

ν ν ν ν

(20)

The complete sum of this function is:

() 1 1 2

1 2 1 2 3

CS f ab v aX vbX v abX

v bX X v aX X vX

=
 (21)

This CS formula is now arranged to give:

() () ()

() () () ()
2 1 2

1 2 2 3 3

CS f a bX X b aX

X ab X 0 X 1 X 0 X ab

= ν ν ν

ν ν ν ν ν

(22)

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

162 Science Publications

JMSS

Fig. 3. A hypercube lattice indicating the partial ordering among the 16 elements of the atomic algebra B16. Notable among these

elements are the four atoms ab, ab, ab and ab

Fig. 4. A VEKM representa8on for f(X
�

)with CS entries

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

163 Science Publications

JMSS

Fig. 5. The VEKM in Fig. 4 folded w.r.t. X1 and still having CS entries

Fig. 6. The VEKM in Fig. 5 folded w.r.t. X2 and still having CS entries

Fig. 7. ANDing table for the two entries in Fig. 6, producing a VEKM of 0 map variable or an algebraic expression of f in CS form

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

164 Science Publications

JMSS

Fig. 8. The lattice in Fig. 3 when collapsed under the condition ab 0=

Fig. 9. Expansion tree for obtaining all the particular solutions of Example 2 from the general subsumptive solution (19)

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

165 Science Publications

JMSS

Fig. 10. The lattice in Fig. 3 when collapsed under the condition ab=0

Fig. 11. Expansion tree for obtaining all the particular solutions of Example 2 from the general subsumptive solution (23)

The final subsumptive solution is:

()
() ()

3

2

2 1 2

ab 0

0 X 0

0 X a b

b aX X ab aX

=

≤ ≤

≤ ≤ ν

ν ≤ ≤ ν

 (23)

Figure 10 illustrates the acyclic-graph production of

all 8 particular solutions from the general solution (23).
Here, the consistency condition (ab = 0) made the
underlying Boolean algebra collapse from the hypercube
lattice of B16 in Fig. 3 to the cubic lattice of B8 in Fig. 11.

 5.4. Example 4

Consider the Boolean equation:

()f X bX aX ac bc 0= ν ν ν =

(24)

where, f(X) = B→B and B = FB (a, b, c) is a Boolean
algebra of 2**(2**3) = 256 elements constituting all the
switching (bivalent Boolean) functions of three
arguments a, b and c. In the following, we update f(X)
gradually into CS form using Tison algorithm, by adding

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

166 Science Publications

JMSS

consensi with respect to the biform variable X and the
three biform generators a, b, c respectively. Of course,
there will be some need herein for absorbing subsuming
terms whenever such terms emerge:

() ()
()
()
()

()

f X bX aX ac bc ab

bX aX ac bc ab cX bc

bX aX ac bc ab cX bc cX ac

bX aX ac bc ab cX bc cX a c

ab bX aX aX bX ab

= ν ν ν ν

= ν ν ν ν ν ν

= ν ν ν ν ν ν ν ν

= ν ν ν ν ν ν ν ν ν

ν ν ν ν ν

 (25)

The last line of equation (25) has three terms

enclosed in parentheses which are absorbed in other
terms. This equation represents CS(f) when these terms
are omitted and can be rearranged as:

() ()CS f PX QX R= ν ν (26a)

Where:

R a b c= ν ν (26b)

Q a b c= ν ν (26c)

Q ac bc ab bc a c ab= ν ν ν ν ν (26d)

from which one obtains:

()a b c X abcν ν ≤ ≤

(27a)

Subject to the consistency condition:

()ac bc ab bc a c ab 0ν ν ν ν ν = (27b)

The terms in parentheses in (27b) are the only terms

that would appear in consistency conditions by the
eliminants method (Rudeanu, 1974; Brown, 1990), the
don't-care method (Rushdi, 2001b; 2004) or the Rudeanu
method (Rudeanu, 2003). Other terms in (27b) are
generalized consensi of the earlier terms. The condition
(27b) indicates that six out of the eight atoms of the
underlying Boolean algebra are nullified. These are the
atoms abc, abc, abc, abc, abc and abc. Hence B retains
the two (now complementary) atoms abc and abc and
hence it reduces into a 4-element Boolean algebra:

{B 0, , , 1}= α α

(28)

where, abc and abcα = α = . The two bounds in (27a) are

both equal to α and hence X has a single particular
solution X = α

6. DISCUSSION

The present method of CS subsumptive solution of
Boolean equations utilizes a canonical representation
that explicitly shows complete information about the
pertinent Boolean function f (X)

��

 in the most compact
form. It is typically more efficient than the don't-care
techniques in (Rushdi, 2001b; 2004), but while the CS
solution obtains a rather compact solution that is not
necessarily minimal, the don't-care techniques seek
the most compact solution by using Boolean
minimization methods.

The CS method is comparable in efficiency and
compactness of solution to the Rudeanu method in
(Rudeanu, 2003). The CS method might need slightly
more effort than the conventional method based on
constructing eliminants, but this extra effort pays off,
since it results in a more compact solution and hence in
easier generation of the tree (or acyclic graph) of
particular solutions. The CS solution obtained herein has
two minor advantages over other known methods of
subsumptive solutions, namely, (a) it explicitly casts the
consistency condition in CS form and hence provides
immediate complete information about it and (b) it
allows nesting the subsumptions in (2) according to any
desirable permutation of the set of integers {1,2,…,n}.

The CS method easily detects if a Boolean equation
f (X) 0=
��

 is inconsistent, for then it produces

CS(f (X)) 1=
��

, which leads to the inconsistency {1 = 0},

or in other words, leads to a consistency condition {1=
0} which is not satisfiable. In this case, all atoms of B are
nullified, B collapses to a single element and the
solution set is empty.

7. CONCLUSION

A novel method for obtaining the general
subsumptive solution of a general Boolean equation is
introduced. The method is based on the derivation of the
complete sum CS(f) of the pertinent Boolean function.
Prominent methods for such a derivation are briefly
outlined and utilized in four demonstrative examples,
covering Boolean algebras of various sizes.

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

167 Science Publications

JMSS

Occasionally, the consistency conditions result in
collapse of the underling Boolean algebra into a
smaller subalgebra. An expansion tree (typically
reduced to an acyclic graph) is used to deduce a
complete list of all particular solutions from the
subsumptive solution. The present CS method is
guaranteed to produce correct solutions, thanks to the
fact that it fits into the frame of the most general
subsumptive solution. Among competing subsumptive
methods, the CS method is relatively good (albeit not
necessarily the best) from both criteria of
computational efficiency and compactness of
solutions obtained. The CS method also enjoys the
advantages of casting its consistency condition in a
complete (but compact) form and of allowing the
nesting of subsumptions in any possible permutation.

The CS method for solving Boolean equations can be
classified as an application of the Modern Syllogistic
Method (MSM) (Blake, 1937; Brown, 1990; Gregg,
1998; Rushdi and Al-Shehri, 2002; Rushdi and Baz,
2007; Rushdi and Ba-Rukab, 2007; 2008a; 2008b; 2009;
2014). In this perspective, the equation f (X) 0=

��

 can be

viewed as a set of premises in a logic-deduction process,
while the equation CS(f (X))

��

 is thought of as a set of

consequents in this deduction.
An interesting topic for further research is whether

a linear (Reed-Muller) representation of the pertinent
Boolean function (see, e.g., Rushdi and Ghaleb, 2013;
Rushdi and Alsogati, 2013) could provide a new
alternative for solving the corresponding Boolean
equation.

8. ACKNOWLEDGEMENT

This article was funded by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah.
The authors, therefore, acknowledge with thanks DSR
technical and financial support.

9. REFERENCES

Blake, A., 1937. Canonical expressions in boolean
algebra. Ph.D. Dissertation, Department of
Mathematics, University of Chicago.

Brown, F.M. and S. Rudeanu, 1988. Prime implicants
of dependency functions. Anal. Univ. Bucu., 37:
16-11.

Brown, F.M., 1990. Boolean Reasoning: The Logic of
Boolean Equations. 1st Edn., Kluwer Academic
Puplishers, Boston, USA.

Cutler, R.B., K. Kinoshita and S. Muroga, 1979.
Exposition of Tison’s method to derive all prime
implicants and all irredundant disjunctive forms
for a given switching function. Department of
Computer Science, University of Illinois, Urbana,
IL, USA.

Gregg, J.R., 1998. Ones and Zeros: Understanding
Boolean Algebra, Digital Circuits and the Logic of
Sets. 1st Edn., IEEE Press, New York, USA.

Kean, A. and G. Tsiknis, 1990. An incremental method
for generating prime implicants/implicates. J.
Symbolic Computat., 9: 185-206. DOI:

10.1016/S0747-7171(08)80029-6
Levchenkov, V.S., 2000a. Boolean equations with many

unknowns. Comput. Math. Model., 11: 143-153.
DOI: 10.1007/BF02359181

Levchenkov, V.S., 2000b. Solution of equations in
Boolean algebra, Comput. Math. Model., 11: 154-
163. DOI: 10.1007/BF02359182

Muroga, S., 1979. Logic Design and Switching Theory.
1st Edn., Wiley, New York, NY, USA.

Reusch, B., 1975. Generation of prime implicants from
subfunctions and a unifying approach to the
covering problem. IEEE Trans. Comput., C-24: 924-
930. DOI: 10.1109/T-C.1975.224338

Rudeanu, S., 1974. Boolean Functions and Equations. 1st
Edn., North-Holland Publishing Company and
American Elsevier, Amsterdam, the Netherlands.

Rudeanu, S., 2001. Lattice Functions and Equations. 1st
Edn., Springer Verlag, London, UK.

Rudeanu, S., 2003. Algebraic methods versus map
methods of solving Boolean equations. Int. J.
Comput. Mathem., 80: 815-817. DOI:
10.1080/0020716031000087159

Rudeanu, S., 2010. Boolean sets and most general
solutions of Boolean equations. Inform. Sci., 180:
2440-2447. DOI: 10.1016/j.ins.2010.01.029

Rushdi, A.M. and A.O. Baz, 2007. Computer-assisted
resolution of engineering ethical dilemmas.
Proceedings of the 7th Saudi Engineering
Conference, (SEC ‘07), Riyadh, Saudi Arabia, pp:
409-418.

Rushdi, A.M. and A.S. Al-Shehri, 2002. Logical
reasoning and its supporting role in the service of
security and justice. J. Security Stud., 11: 115-153.

Rushdi, A.M. and H.A. Al-Yahya, 2000. A Boolean
minimization procedure using the variable-entered
Karnaugh map and the generalized consensus
concept. Int. J. Elec., 87: 769-794. DOI:
10.1080/00207210050028724

A.M. Ali Rushdi and H. Mobarak Albarakati / Journal of Mathematics and Statistics 10 (2): 155-168, 2014

168 Science Publications

JMSS

Rushdi, A.M. and H.A. Al-Yahya, 2001a. Derivation of
the complete sum of a switching function with the
aid of the variable-entered Karnaugh map. J. King
Saud Univ. Eng. Sci., 13: 239- 269.

Rushdi, A.M. and H.A. Al-Yahya, 2001b. Further
improved variable-entered Karnaugh map
procedures for obtaining the irredundant forms of
an incompletely-specified switching function. J.
King Abdulaziz Univ. Eng. Sci., 13: 111-152.

Rushdi, A.M. and Al-Yahya, 2002. Variable-entered
Karnaugh map procedures for obtaining the
irredundant disjunctive forms of a switching
function from its complete sum. J. King Saud Univ.
Eng. Sci., 14: 13-27.

Rushdi, A.M.A. and H.M. Albarakati, 2013a. The
inverse problem for Boolean equations. J. Comput.
Sci., 8: 2098-2105. DOI:

10.3844/jcssp.2012.2098.2105
Rushdi, A.M.A. and H.M. Albarakati, 2013b. Using

variable-entered Karnaugh maps in determining
dependent and independent sets of Boolean
functions. J. King Abdulaziz Univ. FCIT, 2: 1- 27.

Rushdi, A.M.A. and A.A. Alsogati, 2013. On reduced
scalar equations for synchronous Boolean networks.
J. Math. Stat., 9: 262-276. DOI:

10.3844/jmssp.2013.262.276
Rushdi, A.M. and M.H. Amashah, 2010. Parametric

general solutions of Boolean equations via variable-
entered Karnaugh maps. J. Qassim Univ. Eng.
Compu. Sci., 3: 59-71.

Rushdi, A.M. and M.H. Amashah, 2011. Using variable-
entered karnaugh maps to produce compact
parametric general solutions of Boolean equations.
Int. J. Comput. Math., 88: 3136-3149. DOI:

10.1080/00207160.2011.594505
Rushdi, A.M.A. and M.H. Amashah, 2012. Purely-

algebraic versus VEKM methods for solving big
Boolean equations. J. King Abdulaziz Univ. Eng.
Sci., 23: 75-85.

Rushdi, A.M. and O.M. Ba-Rukab, 2007. Some
Engineering Applications of the modern syllogistic
method. Proceedings of the 7th Saudi Engineering
Conference, (SEC ‘07), Riyadh, Saudi Arabia, pp:
389-401.

Rushdi, A.M. and O.M. Ba-Rukab, 2008a. Powerful
features of the modern syllogistic method of
propositional logic. J. Math. Stat., 4: 186-193. DOI:
10.3844/jmssp.2008.186.193

Rushdi, A.M. and O.M. Ba-Rukab, 2008b. The
modern syllogistic method as a tool for
engineering problem solving, J. Qassim Univ.
Eng. Comput. Sci., 1: 57-70.

Rushdi, A.M. and O.M. Ba-Rukab, 2009. An
exposition of the modern syllogistic method of
propositional logic. J. Umm Al-Qura Univ. Eng.
Archit., 1: 17-49.

Rushdi, A.M.A. and O.M. Ba-Rukab, 2014. Switching
algebraic analysis of relational databases. J.
Mathem. Stat., 10: xxx-xxx. DOI:

10.3844/jmssp.2014.xxx.xxx
Rushdi, A.M.A. and F.A.M. Ghaleb, 2013. On self-

inverse binary matrices over the binary Galois field.
J. Math Stat., 9: 238-248. DOI:

10.3844/jmssp.2013.238.248
Rushdi, A.M., 1987. Improved variable-entered

Karnaugh map procedures. Comput. Elec. Eng., 13:
41-52. DOI: 10.1016/0045-7906(87)90021-8

Rushdi, A.M., 1996. Karnaugh Map, In: Hazewinkel,
M. (Ed.), Encyclopedia of Mathematics. Kluwer
Academic publishers, Boston, USA, 1: 327-328.

Rushdi, A.M., 2001a. Prime-implicant extraction with
the aid of the variable-entered Karnaugh map. J.
Sci., Med. Eng., 13: 53-74.

Rushdi, A.M., 2001b. Using variable-entered Karnaugh
maps to solve Boolean equations. Int. J. Comput.
Math., 78: 23-38.

Rushdi, A.M., 2004. Efficient solution of Boolean
equations using variable-entered Karnaugh maps. J.
King Abdulaziz Univ. Eng. Sci., 15: 105-121.

Rushdi, A.M., 2012. A comparison of algebraic and
map methods for solving general Boolean
equations. J. Qassim Univ. Eng. Comput. Sci., 4:
1-32.

Thayse, A., 1978. Meet and join derivatives and their use
in switching theory. IEEE Trans. Comput., C-27:
713-720. DOI: 10.1109/TC.1978.1675178

Tison, P., 1967. Generalization of consensus theory and
application to the minimization of Boolean
functions. IEEE Trans. Elec. Comput., EC-16: 446-
456. DOI: 10.1109/PGEC.1967.264648

Tucker, J.H. and M.A., Tapia, 1992. Using Karnaugh
maps to solve Boolean equations by successive
elimination. Proceedings of the IEEE Southeastcon
92, Birmingham, AL, USA, pp: 589-592.

