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ABSTRACT 

In this study, we consider the nonparametric quantile regression model with the covariates Missing at 
Random (MAR). Multiple imputation is becoming an increasingly popular approach for analyzing missing 
data, which combined with quantile regression is not well-developed. We propose an effective and accurate 
two-stage multiple imputation method for the model based on the quantile regression, which consists of 
initial imputation in the first stage and multiple imputation in the second stage. The estimation procedure 
makes full use of the entire dataset to achieve increased efficiency and we show the proposed two-stage 
multiple imputation estimator to be asymptotically normal. In simulation study, we compare the 
performance of the proposed imputation estimator with Complete Case (CC) estimator and other imputation 
estimators, e.g., the regression imputation estimator and k-Nearest-Neighbor imputation estimator. We 
conclude that the proposed estimator is robust to the initial imputation and illustrates more desirable 
performance than other comparative methods. We also apply the proposed multiple imputation method to an 
AIDS clinical trial data set to show its practical application. 
 
Keywords: Bandwidth Selection, Local Linear Fitting, Missing Covariates, Nonparametric Quantile 

Regression, Two-stage Multiple Imputation 

1. INTRODUCTION 

Quantile regression has been widely used in 
analyzing the relationship between response and 
covariates since its first introduction in (Koenker and 
Bassett, 1978). Compared with mean regression, quantile 
regression is able to depict the impact of covariates on 
various quantiles of the response, which provides more 
information for analysis. Furthermore, quantile 
regression is robust to outliers in data and distribution-
free for error term. Due to its advantages, quantile 
regression has illustrated its increasingly importance in 
modeling and has attracted great attention in data 
analysis and empirical applications, nonparametric 
quantile regression modeling is such an example. 
Consider the following nonparametric regression model: 
 

( )Y m X= + ∈ 

Where: 
m(·) = The unknown real function and  
∈ = The error term 
 

Based on the above model, we consider the following 
nonparametric quantile regression model Equation (1.1): 
 

( )Q Y | X x c m(x)τ τ= = +  (1.1) 
 
where quantile τ∈(0, 1), Qτ(Y|X = x) is the τ-th 
conditional quantile of Y given X = x. cτ is the τ-th 
quantile of error term ∈ and satisfies cτ = F-1(∈), 
where F(∈) is the unknown distribution function of ∈. 
Here, without loss of generality, covariate vector x 
does not contain constant 1, which means there is no 
intercept term in m(x) and ensures the identification 
of the model. This model overcomes many 
disadvantages of usually used parametric models in 
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which misspecification could be encountered. 
Nonparametric regression does not assume that the 
relationship between response and covariates to be 
linear or satisfy some specified form, which might be 
more reasonable for most of data set and thus more 
flexible than parametric models. Especially when data 
set does not present some kind of parametric form, 
nonparametric regression model could be a plausible 
choice since it avoids the great bias due to the wrong 
model form assumption and brings increasing 
accuracy and more reasonable explanations. 

The above nonparametric quantile regression model 
can be widely applied to many empirical data analysis, 
where the data set is complete. However, it is 
unavoidable to face with data set with missing data, so 
it is necessary to extend the above model to deal with 
missing data. In practice, missing data is very pervasive 
and the reasons for missing are various. More details 
Little and Rubin (1978); Robins et al. (1994) and Vach 
(1994). In this study, we pay more attention to the 
nonparametric quantile regression model (1.1) with the 
covariates missing at random, which has the following 
form Equation (1.2): 
 

( ) ( )Q x,z Q Y | X x,Z z c m(x,z)τ τ τ= = = +≜  (1.2) 

 
where, (X, Z) are covariate vectors, X may be missing 
whereas Z is all observed in sample interval. Denote n as 
the sample size. For notation simplicity, we suppose that 
the first n1 observations are complete while the 
remaining n0 are missing in X. Therefore, rewrite the 
sample as {(Yi, Xi, Zi): i = 1,···, n1} and {(Y j,·, Zj): j = 
n1+1,..., n}. Let δ be a missing indicator whose value is 1 
when X is observed and else 0 when X is missing. Then, 
δi = 1 for i = 1,···, n1 while δi = 0 for i = n1+1,..., n. Here 
we assume that X is MAR which takes the form of 
conditional independence, i.e., X and δ are conditionally 
independent given (Y, Z) Equation (1.3): 
 

( )P( 1| Y,X,Z) P 1| Y,Zδ = = δ =  (1.3) 

 
In order to estimate model (1.2), we may just 

consider the observed data and ignore the observations 
with missing values, which is called the CC analysis. 
Although we can obtain consistent estimator for m(x, z) 
through CC analysis under MAR assumption, it may be 
misleading and inefficient when missing rate is high. 
Therefore, it is necessary to construct a more reasonable 
estimator to make use of the information in data set, e.g., 

imputation estimator. Particularly, the multiple 
imputation methods often bring more reliable inference 
than single imputation methods and perform better in 
missing data problems. In this study, we focus on the 
estimation of model (1.2) under MAR assumption based 
on local linear fitting and propose an effective and easy-
to-use two stage multiple imputation estimator, which 
improves the estimation efficiency to a large extent. 

In the context of mean regression, parametric or 
nonparametric regression models with missing data have 
been studied in many papers. Anderson (1957) derived 
the maximum likelihood estimates of parametric models 
and Cheng (1994) and Chu and Cheng (1995) studied the 
nonparametric regression estimation with missing 
response. Wang and Rao (2001; 2002) and Wang et al. 
(2004) studied the estimation of generalized linear 
models, linear models, semiparametric models with 
missing response, respectively. Furthermore, quantile 
regression models with missing data also have been 
considered in literature. It should be noted that the 
above research mainly consider the models with 
missing response rather than missing covariates. Under 
mean regression, Liang et al. (2004) considered the 
partially linear model with covariate missing depending 
on other complete covariates and response. Wu and Wu 
(2001) proposed a multiple imputation method for 
missing covariates in non-linear mixed-effects models 
and applied the proposed method to HIV Dynamics. 
Robins et al. (1994) studied the regression coefficients 
estimation with missing covariates. Wang (2009) also 
considered the estimation of partial linear models with 
covariables data missing at random. With respect to 
quantile regression, Wei et al. (2012) studied the 
multiple imputation for parametric quantile regression 
model with missing covariates, which provided a new 
imputation method. However, nonparametric quantile 
regression with missing covariates has not been 
considered up to now. Based on the existing research and 
methods, we propose a two-stage multiple imputation 
method for nonparametric quantile regression with 
missing covariates, which greatly enriches the methods 
to cope with missing data in quantile regression. 

The rest of the paper is organized as follows. In 
Section 2, we develop nonparametric quantile regression 
with missing covariates based on a two-stage multiple 
imputation method and present main results of the 
asymptotic properties for the proposed estimator. Section 
3 compares our methods with regression imputation 
method, k-Nearest-Neighbour and Nearest-Neighbour 
methods through simulation study. Discussion is 
available in Section 4. 
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2 ESTIMATION WITH 
MULTIPLE IMPUTATION 

In this section, we present the estimation of model (1.2) 
under CC case and propose a two stage multiple imputation 
estimator. For the CC estimator and the proposed estimator, 
we further study its large sample properties. 

2.1. CC Estimator 

For model (1.2), we first consider the model 
estimation under CC case, which is the basis of the two-
stage multiple imputation estimator. 

To estimate Qτ (Y|X = x), the conditional quantile of 
Y given X = x in model (1.2) under CC case, we apply 
classical local linear fitting and quantile regression 
method and consequently have the following objective 
function Equation (2.1): 
 

( ) ( )( )
( )

1

i i

n1

i 0 i in1 i 1

H

R Y X x,Z z

K X x,Z z

τ
=

β = ρ − β − − − β

− −

∑  (2.1) 

 
where, β0 = cτ + m(x, z), β1 = (∂m(x, z)/∂x, ∂m(x, 
z)/∂z)T and β = (β0, T

1β ). ρτ (u) = τuI[0,∞)(u)-(1-τ)uI(-

∞,0)(u) is the check function used in quantile 
regression, which is one kind of loss function. I(·) is 
the usual indicator function. KH(·) is the kernel 

function satisfying ( ) ( ) ( )1
H

1
K Z K H z

det H
−=  and H 

represents the bandwidth matrix. 
By minimizing Rn1(β) in (2.1) with respect to β, we can 

obtain the estimate of β under CC case Equation (2.2): 
 

( ) ( )( ) ( )T

n n ,0 n ,1 n1 1 1 1

ˆ ˆ ˆ( ) , Arg min R
β

β τ = β τ β τ = β   (2.2) 

 
Via (2.2) we can obtain the conditional quantile 

estimate of Y using the complete data only, i.e., Q̂τ (x, z) 

= ( )
1n ,0

β̂ τ , which is the so-called CC estimator. 

2.2. Two-Stage Multiple Imputation Estimator 

In this subsection, we propose a two-stage multiple 
imputation estimator for model (1.2). The basic idea of 
the two-stage multiple imputation estimator is to impute 
the missing data via the estimated conditional density 

( )f̂ x | y,z  and then estimate model (1.2) based on the 

complete data including imputed data. 

To obtain this estimator, two stages are performed, 
where initial imputation values are realized in the first 
stage while multiple imputation values are obtained 
based on these initial imputation values. Then we discuss 
about these two stages in detail. 

2.2.1. First-Stage Imputation 

In the first stage, we can obtain initial imputation 
values through many imputation methods. Here we 
consider the following three methods to get initial 
imputation values: 

 
• Regression Imputation. Based on the MAR 

assumption in Section 1 and the dependence of x on 
z, construct linear regression model for x given z 
with the complete data and obtain the parametric 
estimates. Then impute the missing x via the 
prediction values based on the corresponding z 

• k-Nearest-Neighbor Imputation. For j = n1 + 1,...,n, 
find the k nearest data pairs (yl, zl) (l = 1,..., k) of 
data pair (yj, zj) in the complete data and the 
corresponding points xl (l = 1,..., k) are the k nearest 
points in distance of missing data xj. Then impute xj 

by averaging these points, i.e., 
k

j ll 1

1
x x

k =
= ∑ɶ  

• Nearest-Neighbor Imputation. Different with k-
Nearest-Neighbor imputation, the Nearest-Neighbor 
imputation just considers the nearest one point of 
missing x as the imputation value, i.e., k = 1. For j = 
n1 + 1,...,n, find the nearest data pair (yl, zl) of data 
pair (yj, zj) in the complete data and the 
corresponding point xl are the nearest point in 
distance of missing data xj. Then impute xj through 
this point, i.e., j lx x=ɶ  

Remark: 

The first imputation method is based on regression 
imputation while the third method belongs to 
matching method. The above regression imputation 
requires the linear relationship between missing 
covariate and regression variables. Matching is 
nonparametric imputation method which allows 
imputation without estimating conditional distribution 
of missing variable. Further information about regression 
imputation and matching method, Little and Rubin 
(1987) and Chen and Shao (2000). 

It should be noted that a reasonable two-stage 
imputation estimator should be insensitive to the above 
initial imputation methods. In other words, if our proposed 
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two-stage multiple imputation estimator is effective and 
reasonable, it should be stable under different initial 
imputation methods. In the simulation study, we will 
illustrate the robustness of the proposed estimator to 
initial imputation. Based on these initial imputation 
values of missing x, we can estimate the conditional 
density f(y|x, z) and then obtain the estimated conditional 
density ( )f̂ x | y,z .We discuss the above estimation 

process in the following second-stage imputation. 

2.2.2. Second-Stage Imputation 

In this stage, we realize the multiple imputation based 
on the estimated conditional density ( )f̂ x | y,z  and estimate 

model (1.2) using the whole data after multiple imputation. 
This stage can be concluded as the following steps: 
 
Step 1: Estimate conditional density f(x|y, z). 

According to Bayes formula, f(x|y, z) ∝ f(y|x, 
z)f(x|z). It is reasonable to estimate f(x|y, z) 
through estimating f(x|z) and f(y|x, z) 
respectively, which can be realized via the 
following steps. 

Step 1a: Estimate conditional density f(x|z). Model x 
given z parametrically as f(x|z, η) and obtain the 
estimate ̂η  and the estimated conditional density 

( )f̂ x | z  of x given z can be denoted as ( )ˆf x | z,η . 

Step 1b: Estimate conditional density f(y|x, z). The 
quantile function is the inverse distribution 
function, so the density function can be 
expressed as the reciprocal of the first 
derivative of the quantile function at the 
corresponding quantile level. Here we choose 
Kn quantile levels τk = k/(Kn + 1) (k = 1,..., Kn), 
similarly and approximate the conditional 
density f(y|x, z) as follows Equation (2.3): 

 

( )( ) ( ) ( )

( ) ( ){ }

Kn
k 1 k

k 1
k 1 k

k k 1

ˆ ˆf y | x,Q x,z
ˆ ˆQ x,z Q x,z

ˆ ˆI Q x,z y Q x,z

+
τ

= τ τ+

τ τ +

τ − τ=
−

≤ <

∑
 (2.3) 

 
where, kQ̂ (x,z)τ is the estimated τk-th conditional quantile 

of Y in model (1.2) with the whole data set including 
initial imputed data from first-stage imputation. 

At last, normalize ( ) ( )ˆ ˆf y | x,z f x | z to be a density, 

then we get the estimated conditional density ( )f̂ x | y,z : 

Step 2: Multiple imputation based on estimated 
conditional density ( )f̂ x | y,z . First, obtain 

empirical distribution function ( )F̂ x | y,z  via 

estimated conditional density ( )f̂ x | y,z . Then 

draw random numbers *
i 0u ,i 1,...,n= from 

uniform distribution U(0, 1). Finally, regard 
*
i 0u ,i 1,...,n= as the quantile levels and obtain 

the corresponding quantiles from empirical 
distribution function ( )F̂ x | y,z , which can be 

seen as the imputation values. 
Step 3: Estimation of model (1.2) using the whole data 

after multiple imputation. Consider a new 
objective function including the observed data 
and the l-th imputed data set as follows: 

 

( ) ( ) ( )( )
( )

( )( )
( )

( ) ( )( )( )
( )

( )( ) ( )

( )( )

0

0

H

T T

i 1

n T T

H j

n1

i i i 1n l
i 1

H i i

n1

i i i 1
i n 11

i i

n1

j i i

H i i

j jj l
j n 11

j l

R Y X x,Z z

K X x,Z z

Y X x,Z z

K X x,Z z

Y 1, X x , Z z

K X x,Z z

Y 1, X x Z z

K X x,Z z

=

τ
=

τ
= +

τ

τ
= +

β = ρ − β − − − β

− −

+ ρ − β − − − β

− −

= ρ − − − β

− −

  + ρ − − − β  
  

− −

∑

∑

∑

∑

 

 
 Minimize Rn(l)(β), we have 

( ) ( )( ) ( )T
n(l) n(l),0 n(l),1 n(l)

ˆ ˆ ˆ( ) , Argmin R
β

β τ = β τ β τ = β  as the 

estimated coefficient under the l-th imputation data. 
Repeat the imputation estimation step L times and 
obtain the two-stage multiple imputation estimator 
Equation (2.4): 

 

( ) ( ) ( )
L

0 n l ,0
l 1

1ˆ ˆ
L

∗

=
β τ = β τ∑   (2.4) 

 
For the two-stage multiple imputation estimator 

ˆ * ( )β τ  obtained based on the above two-stage 
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imputation, we derive its asymptotic properties in the 
following subsection. 

2.3. Large Sample Properties 

In this section, we give the asymptotic distribution of 
the two-stage multiple imputation estimator ˆ * ( )β τ . Let 
h(τ; X,Z) = 1/Qτ(X, Z) be the density of Y given X and Z 
at τ-th quantile. Recall that 

ln
ˆ ( )β τ is the CC estimator in 

section 2.1 and n(l)
ˆ ( )β τ is the estimator obtained from the 

objective function based on the whole data including the 
l-th imputed data of missing values in section 2.2.2. 
Define the following objective function: 

 

( ) ( ) ( )( ) ( )

( )( )

n T T

H j

i jj ln l0
j n 11

j l

R Y 1, X x , Z z

K X x,Z z

τ
= +

  β = ρ − − − β  
  

− −

∑ɶ ɶ

ɶ

 

 

and denote 
0n

ˆ ( )β τ as the estimators obtained from 

0n (l)
R ( )βɶ based on the imputed data of missing values 

only, i.e., 
0 0n n (l)

ˆ ( ) ArgminR ( )
β

β τ = βɶ . 

The above three estimators are the basis for the two-
stage multiple imputation estimator ˆ * ( )β τ . Then define 
the functions as follows: 

 

( ) ( )
( ) ( )( ){ }

( )

( ) ( )
( ) ( )( ){ }

( )

T T

0 Y,X,Z

H

T T

0 Y,X,Z

H

Y 1, X x , Z z
H E ,

K X x,Z z

Y 1, X x , Z z
H E

K X x,Z z

τ

τ

 ρ − − − β
 β =
 − − 

 ρ − − − β β =  
− −  

ɶ

ɶ

ɶ

 

 

where, (X,Y,Z) is the observed data set while ( )X,Y,Zɶ  is 

the imputed data set. Given (Y,Z),Xɶ  follows the 
conditional distribution  ( )f̂ x | y,z . 

To obtain the asymptotic properties for ˆ * ( )β τ , we list 
the following assumptions needed in proof. 

Assumption 1: 

There exists a β(τ)∈Rp such that β(τ) uniquely 
minimizes the objective function H0(β), i.e., β(τ) = 
Argminβ H0(β). 

Assumption 2: 

There exists a compact set Ω∈Rp and β(l)(τ)∈Ω, such 
that ( ) ( )(l) 0Argmin Hββ τ βɶ . 

Assumption 3: 

The covariate X has bounded support χ. The true 
conditional density f(x|z) = f(x|z, η = η0), where f(x|z, η) 
is a continuous function of η uniformly for (x, z) in a 
neighbourhood of η0 and is bounded away from zero and 
infinity for all (x, z). 

Assumption 4: 

The true coefficient functions β0(τ) are smooth 
functions on (0, 1) and for any X∈χ and Z: 
 
• 0 < h(τ; x, z) < ∞ and limτ→0h(τ; x, z) = limτ→1h(τ; 

x, z) = 0 
• There exist constants M and ν1,ν2 > -1, such that the 

first derivative of h(·) satisfies: 
 

( ) ( )vv 21

x
sup | h ' ;x,z | M lτ < τ − τ  

 
Assumption 5: 

The matrix Ψτ = (∂/∂β(τ))E[φτ (Y i-(1, (Xi-x)T, (Zi-
z)T)β(τ))Kh(X i-x, Zi-z)(1, (Xi-x)T, (Zi-z)T)T], is positive 
definite, where φτ(u) = τ-I(u < 0). 

Assumption 6: 

The d-dimensional kernel function K(·) is a bounded 
density function with a compact support Cd within the 
interior of the support of f(x) such that ∫K(u)du = 1, 
∫uK(u)du = 0d, ∫uuTK(u)du > 0d×d. 

Assumption 7: 

The bandwidth matrix H of the kernel function 
satisfies det(H) → 0 and n · det(H) → ∞, as n→∞. 

Remark: 

The Assumption 1 and Assumption 2 ensure the 
existence of solutions for objective functions. 
Assumption 3 and Assumption 4 focus on the 
conditional density f(y|x, z). Assumption 6 and 
Assumption 7 are common in nonparametric 
estimation, which represent the assumptions for kernel 
functions and bandwidths, respectively. 

Additionally, we also make the following definitions: 
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( ) ( )( ) ( )( )
( ) ( ) ( )( )

T T

1 TT T

i i i i

i i i

H

Y 1, X x , Z z
V Var

K X x,Z z 1, X x , Z z

τ
 φ − − β τ 

=  
 − − × − −
  

 

( )( ) ( ) ( )

( )( )
( )( ) ( )

T T

0
n

TT T

j

j jj l

H jj l

j l

Y l, X x , Z z

V lim Var K X x,Z z

1, X x , Z z

τ

→∞

   φ − − β τ      
 = − −
 
 
  × − − 

   

ɶ

ɶ

ɶ

 

( )( ) ( ) ( )

( )( )
( )( ) ( )

( )( ) ( ) ( )

( )( ) ( )( ) ( )

T T

j j

h jj l

TT T

0 jj l

T T

j j

TT T

h j jj l ' j l

j l

n

j l '

Y 1, X x , Z z

K X x,Z z

U Cov 1, X x Z z ,

Y 1, X x , Z z

K X x,Z z 1, X x , Z z

τ

τ

→∞

 
   φ − − − β τ     

 
− − 

 
  = × − −  
  

   φ − − − β τ   
   

 
  × − − − − 

   

ɶ

ɶ

ɶ

ɶ

ɶ ɶ

 

 
 Based on the above regularity conditions, the two-
stage multiple imputation estimator ̂* ( )β τ  has the 
asymptotic distribution in the following theorem. 

Theorem 1: 

Under (1.3) and the above Assumptions 1-7, for 
Kn→∞ and Knn

-1 → 0, the multiple estimator 

( ) ( )( )ˆn.det (H) *β τ − β τ  converges in distribution to a 

multivariate Gaussian vector. Specifically: 

 

( ) ( ) ( )( ) ( )1ˆn.det H N 0,∗ −
τ τβ τ − β τ → Ψ Ψ∑  

 
Where: 

 

( ) ( ) ( ){ }1 1 1
1 0 01 V 1 1 / L V L 1 / L U

− − − = λ + + + λ + − ∑  

 
 Based on the Theorem 1, we gives the large sample 
property of conditional quantile estimator ̂Q (x,z)τ as 

follows. 

Theorem 2: 

Based on (1.3), the above Assumptions 1-7 and 
Theorem 1, ( ) ( )* T

0
ˆ ˆ ˆQ y e * ( )τβ τ = = β τ  has the following 

asymptotic distribution: 

 

( ) ( ) ( )( ) ( )* T 1
0 0

ˆn.det H N 0,e e−
τ τβ τ − β τ → Ψ Ψ∑  

 
where, e = (1,0,...,0)T. 

More details of the proofs are available all request. 

2.4. Bandwidth Selection 

It is well known that the selection of bandwidths in 
nonparametric regression estimation is of vital 
significance. The nonparametric estimation results 
depend on the bandwidth selection to a large extent. 
Silverman (1986) pointed out that the choice of 
bandwidth is much more important than the choice of 
kernel function. Thus, it is necessary to choose 
reasonable bandwidths to improve the performance of 
estimation. There are many bandwidth selection 
methods, such as Plug-in method and cross-validation 
method. Based on the bandwidth selection in mean 
regression and quantile regression proposed in Yu and 
Jones (1998) and Silverman (1986), we discuss about 
the selection of bandwidths in estimating model (1.2). 

According to Yu and Jones (1998), we have the 
following bandwidth selection formula for quantile 
regression Equation (2.5): 

 

( )
( )( )1

1/5

mean 2

1
h hτ −

 τ − τ =  
φ Φ τ  

 (2.5) 

 
where, τ is the quantile level, hτ is the optimal 
bandwidth for the τ-th quantile regression, hmean is the 
optimal bandwidth for the mean regression estimation, 
φ(·) and Φ(·) are the probability density function and 
cumulative distribution function of the standard 
normal distribution respectively.  

In terms of the optimal bandwidth for the mean 
regression estimation hmean, we choose the 
Silverman’s rule-of-thumb bandwidth, i.e., hmean 

1/5ˆ1.06 n−≈ σ , where σ̂  can be the sample estimator of 
standard deviation σ. Based on (2.5) and the rule-of-
thumb bandwidth, we obtain the optimal bandwidth 
for model (1.2). 
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3. NUMERICAL SIMULATION 

In this section, we implement three simulation 
examples to illustrate the finite sample performance of 
the two-stage multiple imputation estimator and 
compare the performance of the proposed imputation 
estimator with the CC estimator and other imputation 
estimators. Specifically, we utilize the two-stage 
multiple imputation based on the three initial 
imputation methods in section 2.2.1 and compare 
these results with that of the first-stage imputation and 
the CC estimator. Denote the CC estimator, the three 
first-stage imputation estimators (the regression 
imputation estimator, the k-Nearest-Neighbor 
imputation estimator and the Nearest-Neighbor 
imputation estimator) and the two-stage multiple 
imputation estimator based on the above three initial 
imputation methods as CC, RI, kNN, NN, TSMI1, 
TSMI2 and TSMI3, respectively. 

The first example represents the linear case of 
function m(x, z) to be estimated while the second 
example is on behalf of nonlinear case of function 
m(x, z) and the third example stands for the 
heteroscedastic case. In both the three simulation 
examples, we consider different sample sizes n = 60, 
120 and 200, respectively and distinct missing 
probability function P(y, z) under different quantile 
levels τ = 0.25, 0.5 and 0.75. In terms of kernel 
function in estimation, we choose Gaussian kernel 

21 1
K(u) exp u

22

 = − π  
 and product kernel Kh(x, z) = 

Kh(x)Kh(z). For the selection of bandwidths, here we 
choose bandwidths for the above 7 estimators according 
to the selection rule in section 2.4. 

For the missing probability function P(y, z), we 
choose the following three functions 

Case 1: 
 

( ) ( )

( ) ( ) ( ){ }

1 P y,z P 1| Y y,Z z

1

1 exp ln 2 0.2 y 4 0.1 z 4

∆ = = δ = = =

=
+ − − − − −

 

 
Case 2: 
 

( ) ( )

( ) ( ){ }

2 P y,z P 1| Y y,Z z

1

1 exp 0.1 0.1 y 3 0.2 z 2

∆ = = δ = = =

=
+ − − − −

 

Case 3: 
 

( ) ( )

( ) ( ){ }

3 P y,z P 1| Y y,Z z

1

1 exp 0.5 0.2 y 3 0.1 z 3

∆ = = δ = = =

=
+ − − − −

 

 
Through the above missing cases, we can study the 

efficiency of each estimator under different missing rates. 
In order to evaluate and compare the performance of 

the proposed three estimators and other 4 estimators, we 
calculate the Mean Square Error (MSE) as follows: 
 

( ) ( )( )
n 2

1
i i i i

i 1

ˆMSE n Q X ,Z Q X ,Z−
τ τ

=

= −∑  

 
and replicate the three simulations k = 100, respectively, to 
obtain the Average Mean Square Error (AMSE), 

k

jj 1

1
AMSE MSE

k =
= ∑ . Furthermore, we also calculate the 

Asymptotic Relative Efficiency (ARE) of our proposed 
estimators with CC estimator and first-stage imputation 
estimators. For instance, the ARE of our proposed estimator 

TMSI1 with the CC estimator is CC
TMSI

TMSI1

AMSE
ARE

AMSE
= , 

where AMSECC is the AMSE of the CC estimator 
while AMSETMSI1 is the AMSE of TMSI1. 

Example 1: 

Consider the following linear quantile regression 
model Equation (3.1): 
 

i i i iY 1 X Z= + + + ∈   (3.1) 

 
where the covariate (X, Z) are jointly normal with mean 
vector (4, 4)T, variance (1, 1)T and correlation 0.5 and ∈ 
is from standard normal distribution N(0, 1). For this 
model, we consider the above three missing cases. Table 
1 and 4 illustrate the AMSE values of the 7 estimators 
and ARE values of our proposed estimators with other 
estimators for model (3.1), respectively. 

Example 2: 

Then we consider a nonlinear function for m(x, z). 
The model is Equation (3.2): 
 

( )i i i iY 1 X sin Z= + + + ε  (3.2) 
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Table 1. AMSE of Linear Model (4.1) 
 P(y, z) n CC RI kNN NN TSMI1 TSMI2 TSMI3 
τ = 0.25 ∆1 60 0.4163 0.4936 0.4609 0.4780 0.3641 0.3633 0.3632 
  120 0.0510 0.0697 0.0623 0.0705 0.0410 0.0413 0.0412 
  200 0.2084 0.3170 0.2924 0.3180 0.1848 0.1849 0.1848 
 ∆2 60 0.4558  0.6174  0.5595  0.6034  0.3722  0.3701  0.3680 
  120 0.3023  0.4626  0.4228  0.4599  0.2425 0.2417  0.2419 
  200  0.2224  0.4137  0.3774  0.4224  0.1853 0.1852 0.1846 
 ∆3  60  0.4729  0.6123  0.5488  0.5779 0.3687 0.3697  0.3676 
  120  0.3221  0.4975  0.4515  0.4887  0.2433  0.2435  0.2427 
  200  0.2364  0.4308  0.3949  0.4330  0.1846  0.1846  0.1842 
τ = 0.5  ∆1  60  0.3243  0.3280  0.3281  0.3463  0.3020  0.3021  0.3012 
  120  0.2241  0.2283  0.2248  0.2321  0.2069  0.2067  0.2068 
  200  0.1712  0.1733  0.1760  0.1827  0.1573  0.1571  0.1570 
 ∆2  60  0.3568  0.3587  0.3725  0.3778  0.3070  0.3061  0.3052 
  120  0.2584  0.2547  0.2521  0.2677  0.2075  0.2073 0.2073 
  200  0.1824  0.1874  0.2006  0.1919  0.1573  0.1571  0.1572 
 ∆3  60  0.3530  0.5243  0.4794  0.4996  0.3092  0.3096  0.3092 
  120  0.2545  0.4393  0.3955  0.4295  0.2099  0.2090  0.2093 
  200  0.1935  0.3904  0.3601 0.3986  0.1566  0.1564  0.1563 
τ = 0.75  ∆1  60  0.3734  0.4609 0.4262  0.4742 0.3434  0.3438  0.3414 
  120  0.2574  0.3681  0.3315  0.3694  0.2408  0.2406  0.2405 
  200 0.1943  0.3093  0.2750  0.3136  0.1770  0.1766  0.1769 
 ∆2  60  0.4120  0.5785 0.5265  0.5687  0.3415  0.3403  0.3397 
  120  0.2925  0.4645  0.4115  0.4620 0.2412 0.2406  0.2400 
  200  0.2116  0.4103  0.3672  0.4233  0.1762  0.1758  0.1755 
 ∆3  60  0.3914  0.5740  0.5230  0.5534  0.3476  0.3447  0.3458 
  120  0.2983  0.4848  0.4394  0.4864  0.2417  0.2414  0.2417 
  200  0.2160  0.4186  0.3776  0.4365  0.1760  0.1757  0.1752 
 
where the covariate (X, Z) are jointly normal with mean 
vector (4, 4)T, variance (1, 1)T and correlation 0.5 and ∈ 
~ N(0, 1). For model (3.2), we also choose the above 
three missing probability functions. The AMSE values of 
the 7 estimators and ARE values of our proposed 
estimators with other estimators for model (3.2) are 
given in Table 2 and 5, respectively. 

Example 3: 

A remarkable advantage of quantile regression is that 
it does not require strict assumptions on error 
distribution, which brings us convenience to analyze 
model with heteroscedasticity. Thus, here we consider 
the following heteroscedastic model Equation (3.3): 
 

i i i i iY X Z Z= + ∈  (3.3) 
 
where the covariate (X, Z) are jointly normal with mean 
vector (4, 4)T, variance (1, 1)T and correlation 0.5 and ∈ 
is from standard normal distribution. For model (3.3), we 
still use the above three missing cases. The AMSE 
values of the 7 estimators and ARE values of our 
proposed estimators with other estimators for model 
(3.3) are shown in Table 3 and 6 respectively. 

3.1. Simulation Results Analysis 

Table 1-3 illustrate the estimation results AMSE of 
CC, RI, kNN, NN, TSMI1, TSMI2 and TSMI3 
estimators for model (3.1), model (3.2), model (3.3), 
respectively, with different sample sizes n = 60, 120 and 
200, respectively and distinct missing probability 
function p(y, z) under different quantile levels τ = 0.25, 
0.5 and 0.75. From these tables, overall, the estimation 
effects are the best under τ = 0.5 for all the 7 estimators, 
which is consistent with the conclusions for quantile 
regression models. Via the comparison of AMSE values 
for the 7 estimators under the same sample size, the same 
missing function and the same quantile level, we 
conclude that the estimation performance of our 
proposed estimators TSMI1, TSMI2 and TSMI3 is 
uniformly better than that of the CC estimator and the 
initial imputation estimators. Compared with the CC 
estimator, the initial imputation estimators RI, kNN and 
NN have similar estimation results and even perform 
worse than the CC estimator, while our proposed 
estimators improve a lot than the CC estimator. 
Apparently, it is necessary to use our proposed 
estimators to improve estimation performance. 
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Table 2. AMSE of Nonlinear Model (4.2) 
 P(y, z) n CC RI kNN NN TSMI1 TSMI2 TSMI3 
τ = 0.25  ∆1  60  0.4871  0.6165  0.5865  0.6181  0.3819  0.3809  0.3800 
  120  0.3221  0.4965  0.4462  0.4806  0.2491  0.2496  0.2489 
  200  0.2338  0.4306  0.4004  0.4373  0.1880  0.1877  0.1879 
 ∆2  60  0.5147  0.6914  0.6299  0.6617  0.3796  0.3773  0.3768 
  120  0.3515  0.5555  0.5460  0.5503  0.2506  0.2500  0.2493 
  200  0.2663  0.5086  0.4749  0.5003  0.1865  0.1864  0.1860 
 ∆3  60  0.5963  0.7959  0.7451  0.7724  0.3743  0.3756  0.3747 
  120  0.4225  0.6848  0.6454  0.6433  0.2531  0.2530  0.2520 
  200  0.1800  0.3487  0.3393  0.3359  0.1090  0.1087 0.1087 
τ = 0.5  ∆1  60  0.3706  0.5238  0.4926  0.5177  0.3119  0.3107  0.3116 
  120  0.2690  0.4490  0.3942  0.4328  0.2099  0.2101  0.2102 
  200  0.1886  0.3925  0.3644  0.3956  0.1570  0.1570  0.1569 
 ∆2  60  0.3946  0.5825  0.5467  0.5759  0.3076  0.3075  0.3066 
  120  0.2795  0.5003  0.4664  0.4848  0.2112  0.2108  0.2111 
  200  0.2098  0.4653  0.4184  0.4598  0.1577  0.1574  0.1572 
 ∆3  60  0.4650  0.6814  0.6446  0.6813  0.3092  0.3092  0.3087 
  120  0.3316  0.5969  0.5556  0.5729 0.2125  0.2130  0.2128 
  200 0.2649  0.5712  0.5501  0.5640  0.1675  0.1672 0.1669 
τ = 0.75  ∆1  60  0.4088  0.5579  0.5391  0.5880  0.3418  0.3404  0.3405 
  120  0.2982  0.4920  0.4325  0.4922  0.2404  0.2403  0.2404 
  200  0.2184  0.4252  0.3841  0.4328  0.1754  0.1753  0.1751 
 ∆2  60  0.4024  0.6049  0.5800  0.6209  0.3418  0.3396  0.3397 
  120  0.3186  0.5571  0.5110  0.5326  0.2402  0.2401  0.2405 
  200  0.2385  0.4916  0.4382  0.4952  0.1753  0.1752  0.1752 
 ∆3  60  0.4746  0.7244  0.7044  0.7510  0.3378  0.3385  0.3393 
  120  0.3572  0.6397  0.6019  0.6449  0.2427  0.2420  0.2421 
  200  0.1612  0.3413  0.3247  0.3478  0.1030  0.1028  0.1029 
 
Table 3. AMSE of Heteroscedastic Model (4.3) 
 P(y, z) n CC RI kNN NN TSMI1 TSMI2 TSMI3 
τ = 0.25  ∆1  60  7.4379  7.8215  7.3706  7.4371  6.6702  6.6908  6.6903 
  120  4.7398  5.4485  4.8840  5.0029  4.3043  4.3098  4.3055 
  200  3.8177  4.5728  4.0704  4.1675  3.4440  3.4482  3.4436 
 ∆2  60  8.1419  9.1333 8.0609  8.3306  6.6151  6.6442  6.6226 
  120  5.2419  6.7107  5.9150  6.1060  4.2878  4.2907  4.2882 
  200  4.1749  5.7374  5.0413  5.2337  3.4457  3.4407  3.4433 
 ∆3  60  8.1459  8.9268  8.0955  8.0714  6.7563  6.7274  6.7320 
  120  5.3136  6.5546  5.6952  5.7854  4.3051  4.2933  4.2965 
  200  4.2479  5.4410  4.7731  4.8984  3.4324  3.4298  3.4316 
τ = 0.5  ∆1  60  6.6802  7.0337  6.8267  7.0758  6.1920  6.2081  6.2041 
  120  4.0949  4.8229  4.4451  4.5662  3.8816  3.8790  3.8857 
  200  3.1105  3.9112  3.5443  3.7113  2.9140  2.9132  2.9120 
 ∆2  60  6.6055  7.7472  7.3155  7.3147  5.6392  5.6482  5.6207 
  120  4.3871  5.8509  5.1849  5.5298  3.8602  3.8595  3.8555 
  200  3.4791  5.0172  4.4262 4.7402  2.9112  2.9082  2.9088 
 ∆3  60  6.5070  7.4823  7.1850  6.9774  5.7121  5.6902  5.6897 
  120  4.4310  5.6454  5.0598  5.3750  3.9054  3.9016  3.8931 
  200  3.3833  4.6930  4.2232  4.5003  2.8648  2.8555  2.8583 
τ = 0.75  ∆1  60  6.5826  7.2507  7.0541  7.1712  6.3269  6.3502  6.3015 
  120  4.8126  5.5770 5.2269  5.4253  4.6149  4.6222  4.6284 
  200  3.5127  4.3220  3.9366  4.2053  3.3541  3.3496  3.3501 
 ∆2  60  7.3087  8.8290  8.2471  8.4216  6.3694  6.3552  6.3519 
  120  5.1900  6.6381  6.1926  6.4209  4.6202 4.6137  4.6119 
  200  3.8991  5.5529  4.9208  5.3910  3.3481  3.3431  3.3457 
 ∆3  60  7.0599  8.1882  7.6723  7.8852  6.5087  6.4697  6.4990 
  120  4.9981  6.3682  5.8842  6.2399  4.6580  4.6503  4.6301 
  200  3.8518  5.1829  4.6411  5.1500  3.3463  3.3395  3.3455 



Yanan Hu et al. / Journal of Mathematics and Statistics 10 (1): 30-44, 2014 

 
39 Science Publications

 
JMSS 

Table 4. ARE of Linear Model (4.1) 

 P(y, z)  n CC

TSM I1
 R1

TSMI1
 CC

TSMI2
 kNN

TSMI2
 CC

TSMI3
 NN

TSMI3
 

τ = 0.25  ∆1  60  1.1434  1.3556  1.1460  1.2687  1.1463  1.3162 
  120  1.2439  1.6996  1.2339  1.5079  1.2369  1.7090 
  200  1.1276  1.7152  1.1270  1.5814  1.1272  1.7203 
 ∆2  60  1.2247  1.6587  1.2315  1.5115  1.2388  1.6398 
  120  1.2470  1.9080  1.2509  1.7492  1.2498  1.9011 
  200  1.2002  2.2321  1.2010  2.0378  1.2051  2.2882 
 ∆3  60  1.2824  1.6605  1.2790  1.4844  1.2864  1.5720 
  120  1.3238  2.0452  1.3228  1.8543  1.3272  2.0138 
  200  1.2809  2.3340  1.2809  2.1396  1.2836  2.3512 
τ = 0.5  ∆1  60  1.0736  1.0860  1.0733  1.0860  1.0767  1.1498 
  120  1.0835  1.1037  1.0844  1.0874  1.0840  1.1226 
  200  1.0884  1.1015  1.0899  1.1207  1.0901  1.1632 
 ∆2  60  1.1625  1.1685  1.1659  1.2171  1.1690  1.2376 
  120  1.2456  1.2278  1.2463  1.2156  1.2464  1.2913 
  200  1.1600  1.1919  1.1612  1.2767  1.1606  1.2213 
 ∆3  60  1.1418  1.6957  1.1405  1.5486  1.1417  1.6157 
  120  1.2121  2.0924  1.2173  1.8920  1.2159  2.0524 
  200  1.2360  2.4936  1.2375  2.3030  1.2382  2.5504 
τ = 0.75 ∆1  60  1.0873  1.3421  1.0862  1.2397  1.0938  1.3889 
  120  1.0689  1.5286  1.0696  1.3776  1.0702  1.5359 
  200  1.0982  1.7479  1.1004  1.5573  1.0984  1.7725 
 ∆2  60  1.2065  1.6940  1.2107  1.5471  1.2130  1.6743 
  120  1.2129  1.9259  1.2160  1.7108  1.2190  1.9253 
  200  1.2011  2.3291  1.2035  2.0887  1.2057  2.4118 
 ∆3  60  1.1261  1.6514  1.1354  1.5170  1.1318  1.6002 
  120  1.2343  2.0060  1.2360  1.8204  1.2344  2.0127 
  200  1.2271  2.3785  1.2292  2.1493  1.2327  2.4914 
 
Table 5. ARE of Nonlinear Model (4.2) 

 P(y, z)  n CC

TSM I1
 R1

TSMI1
 CC

TSMI2
 kNN

TSMI2
 CC

TSMI3
 NN

TSMI3
 

τ = 0.25 ∆1  60  1.2753  1.6142  1.2789  1.5398 1.2817 1.6265 
  120  1.2927  1.9931  1.2901  1.7872  1.2940  1.9310 
  200  1.2436  2.2907  1.2451  2.1326  1.2439  2.3268 
 ∆2  60  1.3559  1.8214  1.3643  1.6696  1.3661  1.7563 
  120 1.4028  2.2167  1.4061  2.1841  1.4103  2.2077 
  200 1.4282  2.7274  1.4287  2.5471  1.4319  2.6897 
 ∆3  60  1.5931  2.1264  1.5875  1.9837  1.5914  2.0614 
  120  1.6696  2.7057  1.6703  2.5513  1.6767  2.5525 
  200  1.6516  3.2006  1.6561  3.1225  1.6559  3.0907 
τ = 0.5 ∆1  60  1.1881  1.6793  1.1925  1.5854  1.1891  4.0000 
  120  1.2817  2.1397  1.2801  1.8760  1.2796  2.0592 
  200  1.2009  2.4994  1.2010  2.3208 1.2023  2.5218 
 ∆2  60  1.2830  1.8937  1.2833  1.7778  1.2871  1.8784 
  120  1.3233  2.3687  1.3257  2.2122  1.3240  2.2965 
  200  1.3304  2.9515  1.3327  2.6584  1.3342  2.9247 
 ∆3  60  1.5038  2.2039  1.5037  2.0845  1.5063  2.2068 
  120  1.5606  2.8091  1.5572  2.6090  1.5587  2.6925 
  200  1.6104  3.4112  1.6131  3.2907  1.6154  3.3788 
τ = 0.75  ∆1  60  1.1959  1.6321  1.2010  1.5838  1.2005  1.7268 
  120  1.2402  2.0464  1.2409  1.7999  1.2401  2.0472 
  200  1.2450  2.4233  1.2459  2.1911  1.2475  2.4719 
 ∆2 60  1.1775  1.7701  1.1849  1.7078  1.1848  1.8280 
  120  1.3262  2.3192  1.3270  2.1286  1.3248  2.2151 
  200  1.3605  2.8044  1.3614  2.5012  1.3612  2.8264 
 ∆3  60  1.4049  2.1443  1.4022  2.0810  1.3990  2.2135 
  120  1.4715  2.6354  1.4757  2.4866  1.4751  2.6635 
  200  1.5648  3.3129 1.5685  3.1590  1.5669 3.3802 
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Table 6. ARE of Heteroscedastic Model (4.3) 

 P(y, z)  n CC

TSM I1
 R1

TSMI1
 CC

TSMI2
 kNN

TSMI2
 CC

TSMI3
 NN

TSMI3
 

τ = 0.25 ∆1 60  1.1274  1.1726  1.1239  1.1016  1.1240  1.1116 
  120  1.1012  1.2658  1.0998  1.1332 1.1009  1.1620 
  200  1.1085  1.3278  1.1072  1.1804 1.1086  1.2102 
 ∆2  60  1.2308  1.3807  1.2254  1.2132  1.2294  1.2579 
  120  1.2225  1.5651  1.2217  1.3785  1.2224  1.4239 
  200  1.2116  1.6651  1.2134  1.4652  1.2125  1.5200 
 ∆3  60  1.2057 1.3212  1.2108  1.2034 1.2100  1.1990 
  120  1.2343  1.5225  1.2376  1.3265  1.2367  1.3466 
  200  1.2376  1.5852  1.2385  1.3916  1.2379  1.4274 
τ = 0.5  ∆1  60  1.1328  1.1359  1.1298  1.0996  1.1306  1.1405 
  120  1.0549  1.2425 1.0557  1.1459  1.0538  1.1751 
  200  1.0674  1.3422  1.0677  1.2166  1.0682  1.2745 
 ∆2  60  1.1714  1.3738  1.1695  1.2952  1.1752  1.3014 
  120 1.1365  1.5157  1.1367  1.3434  1.1379  1.4342 
  200  1.1951  1.7234  1.1963  1.5220  1.1961  1.6296 
 ∆3  60  1.1392  1.3099  1.1436  1.2627  1.1436  1.2263 
  120  1.1346  1.4455  1.1357  1.2968  1.1382  1.3807 
  200  1.1810  1.6382  1.1848  1.4790  1.1837  1.5744 
τ = 0.75  ∆1  60  1.0518  1.1460  1.0480  1.1108  1.0561 1.1380 
  120  1.0428  1.2085  1.0412  1.1308  1.0398  1.1722 
  200  1.0473  1.2886  1.0487  1.1752  1.0485  1.2553 
 ∆2  60  1.1475  1.3862  1.1500  1.2977  1.1506  1.3258 
  120  1.1233  1.4368  1.1249  1.3422  1.1254  1.3923 
  200  1.1646  1.6585  1.1663  1.4719  1.1654  1.6113 
 ∆3  60  1.0847  1.2580  1.0912  1.1859  1.0863  1.2133 
  120  1.0730  1.3672 1.0748  1.2653  1.0795  1.3477 
  200  1.1511  1.5489 1.1534  1.3897  1.1514  1.5394 
 

In terms of the different missing functions, we can 
see that, on the whole, all the 7 estimators perform worse 
as the missing rates increase under the same sample size 
and the same quantile level, which is common for 
analyzing data sets with missing values. However, for 
this conclusion some exceptions exist as sample size 
increases and when it is big enough. These two 
conclusions reflect the relative importance of imputation 
when sample size is small and missing rate is high. 

Furthermore, Table 4-6 show ARE values of TSMI1, 
TSMI2 and TSMI3 with CC and corresponding first-
stage imputation estimators for model (3.1), model (3.2), 
model (3.3), respectively, with different sample sizes and 
various missing probability functions under distinct 
quantile levels. According to Table 4-6, with all the 
ARE values are larger than 1, we find that our proposed 
two-stage multiple imputation estimators are uniformly 
more effective than the CC estimator and the first-stage 
multiple imputation estimators for all the models 
considered. For any one of the above models, under the 
same quantile level and the same missing function, 
overall, the relative efficiency of our proposed estimators 

increases as sample size increases. Additionally, under 
the same quantile level and the same sample size, 
overall, the relative efficiency of our proposed estimators 
increases as missing rate increases. What’s more, the 
advantages of our proposed estimators are more obvious 
when model is nonlinear or heteroscedastic and at 
extreme quantile levels. 

In addition, we can see that the estimation results of 
our proposed estimators TSMI1, TSMI2 and TSMI3 are 
very close, which reflects the robustness of our two-stage 
multiple imputation estimator to the initial imputation 
methods. This point is of vital importance for the 
application of our methods. Based on this good property, 
we can choose one kind of initial imputation methods to 
realize our two-stage multiple imputation, which provides 
great convenience for implementation and applications. 

4. EMPIRICAL DATA ANALYSIS 

In this section, we apply the proposed two-stage 
multiple imputation method to the ACTG 315 data set, 
which can be found on the website: 
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http://www.urmc.rochester.edu/biostat/people/faculty/wu
site/datasets/data/ACTG315LongitudinalDataNLME 
Data3.cfm. Meanwhile we analyze this data set using CC 
method for comparison. The ACTG 315 data set comes 
from an AIDS clinical trial group (ACTG 315) study 
which aimed to investigate the relationship between 
virologic and immunologic responses in AIDS clinical 
trials. In this data set, virologic response RNA was 
measured by viral load while immunologic response was 
measured by CD4 cell count. The ACTG 315 data set 
has been analyzed by many papers. Liang et al. (2004) 
analyzed this data set via partially linear models. Wu and 
Wu (2002) used non-linear mixed effects models for this 
data set in which more details about the data can be 
found. Similar research Wu and Wu (2001) and Zeger 
and Diggle (1994). Recently, Grun and Hornik (2012) 
used a mixed effects model while accounting for 
censored longitudinal data. Guo et al. (2014) considered 
the multi-index regression models with missing 
covariates at random to study the effect of the tumor 
necrosis factor. However, these papers just constructed 
mean regression models to analyze this data set, we may 
want to obtain more information from the analysis. For 
instance, we may be more interested in the influence of 
covariates on different quantiles of response variable; we 
may want to explore the influence pattern without 
specifying the model form in advance. Such analysis aims 
can be realized by the nonparametric quantile regression 
model, which is the interested model in this article. 

The data set we used here has 317 observations in 
total with 20.19% CD4 cell counts missing. Similar to 
the analysis in Liang et al. (2004), we here choose the 
viral load as the response Y while CD4 cell count as the 
missing covariate X and time as the complete covariate 
Z. According to the related research, the missingness of 
CD4 cell counts is due to the distinct measure times of 
CD4 cell counts and viral load. Thus, it is reasonable to 
assume this data as MAR. 

Since the missing rate is relatively high, CC analysis 
may lead to information loss to some extent and hence 
imputation for the missing data can be necessary to 
consider. Based on the above mentioned analysis aims 
and data imputation requirement, we apply model (1.2) 
to this data set and utilize the proposed two-stage 
multiple imputation methods to estimate the model. To 
verify and compare the performance of our proposed 
two-stage multiple imputation methods, CC method is 
also implemented. Here we consider quantile levels τ = 

0.25, 0.5 and 0.75 and choose Gaussian kernel and 
product kernel. In terms of the bandwidths selection, we 
use the bandwidths obtained according to the selection 
rule in Section 2.4. 

Table 7 lists the Average Residual Sum of Squares 
(ARSS), which is calculated as 

( )( )2n1
i i ii 1

ˆARSS n Y Q x ,z−
τ=

= −∑ . CC, TSMI1, TSMI2 

and TSMI3 represent the ARSSs of the CC method and 
the proposed two-stage multiple imputation methods, 
respectively. Figure 1-3 show the estimation results of 
quantile function Q(x, z) based on different methods 
under τ = 0.5, 0.25 and 0.75, respectively. 

From Table 7, we can know that, overall, the 
smaller values of ARSS of our proposed two-stage 
multiple imputation methods show that our methods 
perform better than CC method in terms of data fitting. 
We also calculate the relative efficiency of our methods 
compared with the CC method, which is measured via 
the ratio of ARSSs and we find that our proposed two-
stage multiple imputation methods can improve about 
5% under τ = 0.5. In addition, the estimation result 
under τ = 0.5 is best, which is common on quantile 
regression. From Fig. 1, we can see, under τ = 0.5, our 
three multiple imputation methods show similar results, 
which reflects the robustness of the proposed 
imputation method to the initial imputation. 
Furthermore, our estimation results represent bigger 
variation of viral load between different time, which 
shows the distinct influence of cd4 cell count on 
virologic response under different time. Therefore, our 
proposed two-stage multiple imputation methods reflect 
more helpful information to some extent due to their 
full use of more data information. Similar conclusion 
can be obtained from Fig. 2 and 3. 

In addition, from the comparison of these three 
figures, we can see the different influence patterns 
among distinct quantile levels of the viral load. In other 
words, at different virologic response levels, 
immunologic responses show diversity. Such additional 
information and conclusion from our analysis can 
provide more useful signal for relevant research. 
 
Table 7. ARSS of model (1.2) based on CC and two-stage 

multiple imputation methods 

 CC  TSMI1  TSMI2  TSMI3 

τ = 0.25 0.5196  0.5139  0.5206  0.5107 
τ = 0.5 0.3949  0.3774  0.3797  0.3750 
τ = 0.75  0.6838  0.6693  0.6636  0.6701 
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Fig. 1. Estimation result of Q(x, z) at quantile τ = 0.5 
 

 
 

Fig. 2. Estimation result of Q(x, z) at quantile τ = 0.25 
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Fig. 3. Estimation result of Q(x, z) at quantile τ = 0.75 
 

5. CONCLUSION 

In this study, we study the nonparametric quantile 
regression model with the covariates missing at random. 
We propose an effective and convenient two-stage 
multiple imputation method for the model and construct 
the two-stage multiple imputation estimator and give the 
asymptotic properties of the proposed estimator. Via 
several simulation examples, we compare the finite 
sample performance of the proposed estimators under 
different initial imputation methods with CC estimator, 
the regression imputation estimator, k-Nearest-Neighbor 
imputation estimator and the Nearest-Neighbor 
imputation estimator, which reflects the accuracy and 
efficiency of the proposed method. In empirical analysis, 
we construct nonparametric quantile regression model 
and apply the proposed multiple imputation methods to 
analyze the ACTG 315 data set and we find that our 
methods could fit better and give more useful 
information than CC method. 

In addition, the research can be extended to 
additive quantile regression models with missing 
covariates, which can avoid the “curse of 
dimensionality” in nonparametric regression. 
Furthermore, we can apply the proposed two-stage 

multiple imputation method to semiparametric models 
which have more flexibility and interpretation. 
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