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Abstract: For the better part of a century, methods have been illustrated for 
the enumeration of all possible permutations of cases from which an exact 
characterization of the likelihood of obtaining results as or more extreme as 
that observed may be determined without having to rely on parametric 
assumptions or schemes that may be only asymptotically correct. The 
challenge is the computational intensity associated with these methods, 
which is largely overcome with the wide availability of inexpensive, 
powerful computational resources. The algorithm presented here is given in 
two versions, one a general form that can be adapted to a wide variety of 
permutation tests and a specialized one that is efficient for the exact analog 
to the dependent-t test. The application is illustrated using Charles Darwin’s 
Zea mays data, which presents a modest task of accounting for 215 = 32,768 
permutations. The resultant algorithm improves on that of Odiase and 
Ogbonmwan and is presented in syntax that may be run in R, the open 
source statistical package. 
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Introduction 

Permutation tests have been explicated for nearly a 
century, so the premise of being able to escape the bonds 
of parametric tests that are correct only under strong 
assumptions-and asymptotically at that-is well-known. 
The usual arguments against the use of permutation (or 
“exact”) tests are: (a) they are more computationally 
intensive than ordinary parametric or rank-based 
nonparametric tests; and (b) they are not always 
available in standard statistical packages. In the first 
instance, Fisher (1966) noted that his analysis of Charles 
Darwin’s Zea mays data set of 15 paired corn plant 
heights required 215 = 32,768 permutations. It has been 
suggested (Ludbrook and Dudley, 1998) that the effort 
required may have proved a deterrent to Fisher’s further 
use of permutation tests. That’s a conclusion consistent 
with the first argument. However, since that time, 
computational power has increased dramatically and 
large-scale, voluntary operations have been established 
for tackling massive problem sets, such as the Berkeley 
Open Infrastructure for Network Computing (BOINC; 
http://boinc.berkeley.edu/), which currently boasts nearly 
300,000 volunteers and exceeds 7.3 peta FLOPS of 
computing power on a daily average. Even on a modest 

personal computer, Fisher’s analysis can be completed in 
under 0.2 s, using the R package, which is not uniformly 
optimized for speed. The availability issue is also fading 
as an argument.  

Towards that end, there have been many publications of 
algorithms to assist in the computation of permutation tests. 
As a specific example, Odiase and Ogbonmwan (2007) 
outlined an algorithm suitable for the matched-pairs case of 
score comparisons. This article presents an improved 
algorithm and mildly optimized method for the R statistical 
package that can be used with data sets of any size. 

Permutation Tests 

As far back as Pitman (1937a; 1937b), the logic of 
permutation tests has been well-explicated. More 
recently, excellent explanations from Edgington and 
Onghena (2007; Manly, 2007) are available. The basic 
logic is to compare the observed results (“base”) to the 
sample space of all permissible permutations of the 
scores-what defines permissible permutations depends 
on the nature of the test. If the number of permutation 
instances in which the results are as extreme or more 
extreme than the base results is a sufficiently small 
fraction of the sample space (e.g., less than one’s 
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threshold for classifying a result as non-chance), then we 
characterize the result as statistically significant. If not, 
then the result is declared non-significant. It is a simple 
framework that can easily be extended.  

For comparisons involving two sets of scores, there 
are three principal sets of permissible permutations. For 
an independent groups comparison (analogous to the 
independent t-test), the population of permissible 
permutations is “n choose r” (Edgington and Onghena, 
2007; Manly, 2007; Pitman, 1937a), in which all 
possible combinations of n1 and n2 cases are created 
from the combined set of scores, N. For a correlation 
coefficient, the population of permissible permutations is 
n! (Pitman, 1937b), in which each “x” score is 
systematically paired with a different “y” score. Finally, 
for a dependent or matched-pairs design, the population 
of permissible permutations is 2n (Fisher, 1966; 
Ludbrook and Dudley, 1998). The definition of 
permissible permutations in some classes of designs, 
however, may require careful thought (Heyvaert and 
Onghena, 2014) for the class of designs called single 
subject design.  

Materials and Methods 

In this presentation, the goal is to present an 
improved and general algorithm to serve as the basis for 
permutation tests. It can be used for either independent 
or matched pairs (dependent) data sets, though the 
application presented here is strictly for matched pairs 
sets. In this section, more detailed information is given 
about: (a) the algorithm presented; and (b) efficiency 
considerations for implementation of the algorithm in the 
circumstance of matched pairs data sets.  

Permutation Algorithm 

The general form of the algorithm presented below 
can be used to process cases for the paired cases 
permutation test, or it can also be easily adapted to 
independent group tests. The algorithm presented by 
Odiase and Ogbonmwan (2007) relied on hard coding of 
for loops, one for each case in the data set. The current 
algorithm may be applied to any sample size without 
additional coding and is therefore much more portable. 
The logic is based on the FORTRAN algorithm AS 88 
by Gentleman (1975). The result of a single call to the 
algorithm is that, internally, all subsets of size r from the 
N cases are generated in lexicographic order (e.g., for “5 
choose 3”, the 10 resulting sets of cases would be 
{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2, 3,4} 
{2,3,5} {2,4,5} and {3,4,5}). These subsets are not saved 
in memory; rather, after each is generated, the permuted 
data set is processed and a running tally of results is 
updated. Other solutions to enumerating the “n choose r” 
options have also been published (Nijenhuis and Wilf, 

1978), though those often must be called once for each 
permutation cycle. The general form below assumes that: 
(a) the data vector being processed, Xi, represents the 
difference scores (= X1i-X2i) for each of the N pairs of 
cases, i = 1,2,…,N and there are no missing values; (b) 
for a paired cases (dependent) data set, the algorithm is 
externally called N times, for r = 1, 2, …, N and the 
results within each cycle recorded appropriately against 
the base (initially observed) result, which represents the 
case of r = 0; and (c) the user accumulates the 
appropriate computation or outcome for each cycle 
(represented by “PROCESS DATA” in the algorithm).  
 
Algorithm allnr: n Choose r Function in R Syntax 
1. allnr <- function(n, r, x) 
2. # n is number of cases; r is number to be permuted; 

x is vector of difference scores 
3. # initialize local variables                            (note: 

“#” signifies a comment in R) 
4. nmr <- (n-r)# n minus r.  R can use either “=” or “<-

“ for assignment statements 
5. i<- 1   # index.   
6. j<- c(1:r)                         # create vector to store the 

chosen case index numbers for a cycle 
7. # main loop cycles ‘n choose r’ times 
8. while (i > 0) { 
9. # reset the loop indices, then process the cases 
10. if (i != r) {                 # “!=” is the “not equal to” 

operator in R 
11. ip1 <- i +1           # R does not have an increment 

function like C (e.g., + =) 
12. for (k in ip1:r)  { j[k] <- j[k-1] +1 } 
13. }                             # end of if loop 
14. # PROCESS DATA call or insert the data 

processing here, on chosen cases j[1],j[2],…,j[r] 
15. i <- r 
16. while ( j[i] >= nmr + i)  { i <- i-1;  if (i == 0) break }      

# exit routine when i reaches 0 
17. j[i] <- j[i] +1              # otherwise, increment the 

index and continue 
18. }                                     # end of main while loop 
19. }                                          # end of function 
 
Efficiency Considerations for Paired Observations  

There are several ways that the generation of a 
permutation test for paired data may be made more 
efficient. First, the number of permutation cycles that 
actually have to be generated is only 2n/2, not 2n. The 
reason is, in the permutation analog to the paired or 
dependent t-test, the exchange under investigation for a 
given case is only considering the second score of a pair 
to come first for an instance, instead of the first score. 
So, if a case’s values are exchanged, the resulting 
difference is the negative of the original difference (e.g., 
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if a pair of scores was 7, 4 then the original difference = 
7-4 = 3 and the exchanged values difference would be 4-
7 = -3). Thus, if the original set of differences was all 
positive (the r = 0, or first permutation) then the last 
possible permutation (or r = N instance) will necessarily 
have all N cases having exchanged scores, yielding all 
negative differences (if the permutations are generated in 
lexicographic order). The second permutation (r = 1, 
reversing only scores for case #1) will therefore be the 
negative of the 2n-1th permutation (r = N – 1, last 
instance), in which all cases except #1 have scores 
exchanged, and so will have negative differences. For 
example (-1, 2, 3, 4, 5) sums to 13; (1, -2, -3, -4, -5) 
sums to -13. The rest of the permutations may be thought 
of as pairs, each member of which also has a negative 
counterpart. Thus the sum of differences, or the average 
difference, or the t-statistic for that set of mean 
differences will be the negative of the corresponding 
value in the first permutation. In this way, the 
distribution of permutation test results will be symmetric 
around zero. Only half of the permutations (which 
means, calling the allnr routine only for r = 1,2,...,N/2) 
need to be generated. When N is odd, one simply stops 
processing after the r = N/2th call is complete. When N 
is even, we need to track within the r = N/2th call to 
function allnr until half of the 2n permutations have been 
generated. That will save time, even though we have to 
build in a check on total permutations. In my 
comparisons using R, this reliably yields a reduction in 
processing time of about 34%. 

A second consideration for efficiency is that, for the 
permutation analog to the dependent t, the sum of the 
differences is a sufficient statistic for determining 
whether the results of a permuted data set would equal, 
exceed, or be less than the originally observed result for 
a data set. Thus, all the processing step need involve is 
computation of the sum of the difference scores for a 
given permutation. This brings up a third efficiency step. 
In generating that sum, one can sum the exchanged 
differences only, then subtract twice that sum from the 
base sum of differences (e.g., permutation sum of 
differences = base difference-2*sum of exchanged 
scores). As an example, let the original differences set be 
(2, 4, 1.5, 1, 3), summing to 11.5. If we exchange the 
values for cases # 2 and 5, the resulting differences 
would be (2, -4, 1.5, 1, -3), summing to -2.5. The short-
cut described here is to instead take 11.5-2*(4 + 3) = 
11.5-14 = -2.5. In other words, we need only sum the 
exchanged differences, not the full set. These three 
considerations have been incorporated into the 
exact.dep.t function and its corresponding version of 
function allnr, presented in the Appendix. A sample call, 
using the Darwin data set, also is included. 

Appendix: R Code Implementing the allnr and 
exact.dep.t Functions 
allnr <- function(n, r, data, base, outcome) { 
  # R implementation of Algorithm AS 88 by J.F. 
Gentleman (1975).  Applied Statistics, 24, 374-376. 
 
  # n = number of elements in set 
  # r = number of elements to be drawn 
  # data = vector of scores from which to draw 
 
  # base  = base statistic from data set as recorded 
  # outcome[1] = number of instances wherein permuted 
result = base result 
  # outcome[2] = number of instances wherein permuted 
result > base result 
  # outcome[3] = number of instances wherein permuted 
result < base result 
  # outcome[4] = number of permutations generated thus 
far 
  # outcome[5] = target number of permutations to 
generate ( = 1/2 of 2^n) 
 
  # This procedure generates all subsets of r cases out of 
the set of n. 
  # Current processing is set up for matched pairs 
permutation test. 
 
  # Local variables 
  # i     = index  
  # ip1   = i plus 1 
  # j     = vector to store case number/index of chosen 
cases (1..r) for a given cycle 
  # nmr  = n minus r 
  #      
  # initialize local variables 
  nmr <- (n - r)                
  i <- 1                       
  j <- c(1:r)  
  ndiv2 <- n %/% 2                   # integer division 
 
  # loop processes 'n choose r' times 
  while (i > 0) { 
    # reset loop indices 
    if (i != r) { 
      ip1 <- i + 1 
      for (k in ip1:r) j[k] <- j[k - 1] + 1 
    } 
      # for dependent t, sum of difference values is 
sufficient statistic for magnitude 
      x <- base - 2.0 * sum(data[j])                               # 
reverse values for selected cases 
      if (abs(x-base) < 1.0e-7) { outcome[1] <- outcome[1] 
+ 1   # equal to base value 
       } else if (x > base) { outcome[2] <- outcome[2] + 1         
# more extreme than base 
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         } else outcome[3] <- outcome[3] +1                       # 
less extreme than base 
 
      # process symmetric case result 
      x <- -x 
      if (abs(x-base) < 1.0e-7) {outcome[1] <- outcome[1] 
+1   # equal to base value 
      } else if (x > base) {outcome[2] <- outcome[2] +1          
# more extreme than base 
        } else outcome[3] <- outcome[3] +1                        # 
less extreme than base 
 
    outcome[4] <- outcome[4] + 1                                   # 
increment total 'cycles' processed 
    if (r == ndiv2) 
       {if (outcome[4] == outcome[5]) break}                     
# early exit if half of all permutations done 
    i = r 
    while (j[i] >= nmr + i)  { i = i - 1; if (i == 0) break}      
# exit main loop when i = 0 
    j[i] <- j[i] + 1 
 
  } # main loop end 
 
  return (outcome) 
}  # end function 
 
 
exact.dep.t <- function (data) { 
 
  n <- length(data)               # number of cases, no check 
for missing values 
  base <- sum(data)               # total of difference scores; 
used as referent (e.g., r = 0th case) 
  if (base > 0) {  
    outcome <- c(1,0,1,1)         # vector of comparisons.  
[1] = results equal to data obtained (base value) 
    } else if (base < 0) {                # [2] = results more 
extreme than base  
        outcome <- c(1,1,0,1)             # [3] = results less 
extreme than base 
        } else outcome <- c(2,0,0,1)     # [4] = number of 
permutations processed.  stop at tot_perm / 2 
  outcome[5] <- sum(choose(n,0:n)) %/% 2  # [5] = half 
of the total possible permutations; this is number needed. 
 
  for (i in 1:(n %/% 2))            # lexicographic 
distribution of outcomes is symmetric; only need to 
process half  
    { outcome <- allnr(n, i, data, base, outcome) } # cycle 
allnr for instances r = 1, 2,...,n (0 is base case) 
 
  total <- sum(outcome[1:3])                      # number of 
comparisons recorded 

  prob1 <- (outcome[1] + outcome[2]) / total       # 1 tail 
probability 
  prob2 <- 2.0 * prob1                            # 2 tail 
probability 
  if (prob2 >1.0) prob2 <- 1.0                   # cap 
probability at 1 
 
  # output results  
  print (paste0('Observed mean difference ', base / n)) 
  print (paste0('More extreme instances   ', outcome[2])) 
  print (paste0('Equal instances          ', outcome[1])) 
  print (paste0('Less extreme instances   ', outcome[3])) 
  print ('') 
  print (paste0('One-tail probability     ', prob1)) 
  print (paste0('Two-tail probability     ', prob2)) 
 
}  # end function 
 
# Sample call in R, using Darwin data (diff = vector, 
Cross-fertilized plant height – Self-fertilized height) 
diff = c(6.125, -8.375, 1.0, 2.0, 0.75, 2.875, 3.5, 5.125, 
1.75, 3.625, 7.0, 3.0, 9.375, 7.5, -6.0) 
 
exact.dep.t(diff)               # diff is a vector of differences 
in matched pairs observations 
 
Results 

The full implementation of the permutation test was 
evaluated using the Darwin data on corn plant heights 
(N = 15). As reported by Odiase and Ogbonmwan 
(2007), there were 835 permutations in which the results 
were more extreme than those observed in the original 
data, 28 permutation trials in which the results were 
equal to the original data and 31,905 instances in which 
the results were less than those originally observed. 
Thus, as a directional (“one-tailed”) probability under 
the null hypothesis of no difference, the p-value is 
computed as (28+835)/32,768 = 863/32,768 = 0.026337. 
The non-directional (“two-tailed”) result would evaluate 
as a p-value of twice as much, (2 * 863)/32,768 = 
0.0526733. These values agree with Odiase and 
Ongbonmwan, who correctly reported that the dependent 
t statistic, applied to the same data, yields p-values of 
0.02485 and 0.04970, respectively, for the directional 
and non-directional tests. Thus, the dependent t test tends 
to be close, but mis-represents the exact test results.  

The performance of the R package is reasonably 
quick for data sets of moderate size. Some examples of 
processing speed on an ordinary desktop running 
Windows 7 (64 bit) via an Intel i7 CPU (3.4 Ghz) are: N = 
20 (2n = 1,048,576), approximately 5.7 s; N = 25 (2n = 
33,554,432), about 185.8 s (approximately 32.5 times 
longer, which is consistent with the change in size), 
which is not unreasonable for an interpreted language 
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interface, as R is. For data sets that are substantially 
larger, it would well be worth the effort to convert the 
provided code into a compiled form, which would 
execute more quickly. There are also some vectorized 
function operations available in R that could profitably 
be applied, but one design consideration was to keep the 
code snippets as simple to convert to a different language 
or framework as possible. 

Discussion 

Whenever an algorithm is presented, a pertinent 
question is that of whether alternative methods or routines 
already exist. The R package has a built-in function, combn, 
which will generate a set of indices (as column vectors) for 
an “n choose r” problem. For example, the call, “x<- combn 
(15,5)” would generate a 5×3003 matrix containing the 
indices of all combinations in lexicographic order (i.e., x[,1] 
would include 1,2,3,4,5; x[,2] would be 1,2,3,4,6; and 
x[,3003] would be [11,12,13,14,15]). That function could 
be used in lieu of the allnr function presented here. 
However, there must be sufficient memory to hold the 
resultant array. As N increases, this could become 
problematic; the allnr implementation minimizes memory 
requirements. The Coin package in R is a more fully 
developed set of easily-called routines, but these are all for 
independent group tests. The StatExact package (Cytel 
company), available in stand-alone or as an add-on to IBM 
SPSS and Systat, is well-known, but is costly and has just 
recently added the permutation test for matched pairs cases.  

This algorithm was developed to allow researchers a 
simple, no-cost method for implementing the 
permutation test for matched pairs data sets. By choice, 
the code was developed to run in the R statistical 
package, an open-source software project. However, it 
can easily be converted to many other languages or 
platforms. The algorithm by Odiase and Ogbonmwan 
(2007) is functionally satisfactory, but must be revised, 
by adding or deleting for loops for each possible 
sample size that one would encounter, which is a slight 
nuisance for users. No such modification is needed for 
the present algorithm. 

Conclusion 

The method described herein yields an exact 
representation of the permutation method for judging the 
equivalence of matched pairs data sets. The memory 
requirements are minimal, the method runs in the most 
widely used open-source statistical package on the planet 
and can easily be made a bit more efficient, as shown in 
the implementation presented in the Appendix. 
Resampling methods, while easier to program and quick 
to run, will always yield an approximate result to an 
exact distribution.  
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