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Introduction

The scalar Young inequality says that if @ and b be
nonnegative real numbers and 0 < v< 1, then:

a’b™ <va+(1-v)b (1.1)

With equality if and only if @ = b Inequality (1.1) is
called the v-weighted arithmetic-geometric mean

inequality. If v :% then:

Mg%b (12)

Which is called arithmetic-geometric mean.
Zuo et al. (2011) refined Young inequality (1.1) as
follows:

va+(1-v)b=K(h2) ab"™ (1.3)

For all @, b > 0 and vE [0, 1], where r = min {v, 1

2
i, b= and K(h, 2) = (h;hz) , so that K(h, 2) is

called Kantorovich constant.
Here, we need to recall that Kantorovich constant
satisfies the following properties:

(i) K(1,2)=1,
(i) K(t, 2) = KGZJ

(iii) K(¢, 2) is monotone increasing on [1, o) and is
monotone decreasing on (0, 1]
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Wu and Zhao (2013) improved inequality (1.3) in the
following form:

v, +(1-v)b>Y(Na -b)* + Kh,2)" a'b (1.4)

Forall @, b >0 and v €[0, 1]; where h:%, = min

{v, 1 —v} and r=min{2r, 1 — 2r}.
By (Nasiri et al., 2016) we give some improved
inequalities of (1.1) as follows:

Va' +(1-v)’h* = (va)' b +v(a - b)

1.5
+r0b(\/v_a—\/3)2,0SvS% (15)

where, h= % and r = min{2v, 1- 2v}.

And:

Via® +(1=v)*b* 2 a”[1-v)b]" > + (1 —v)*(a - b)’

1.6

+r0a(\/2—«/(l—v)b)2,%ﬁv£1 (1.6)
here, h=—2 =min{2v — 1,2(1-)}.
where, Y and ro=min{2v — 1,2(1-v)}

Suppose M, be the space of nxn complex matrices.
Suppose ||.|| denote any unitarily invariant norm on M,,.
So, |[UAV]| = ||A|| for all 4 € M, and for all unitary
matrices U, VeM,. For A = [a;]eM,, the Hilbert-
Schmidt norm (or Frobenious) and the trace norm of A
are defined by:
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1 4l,=[>5204) 11 41= 35, (4)

Respectively, where s1(4) > s55(4) >........ > 5,(A4) are
the singular values of 4, that is, the eigenvalues of the
1
positive matrix |A|=(4*4)? arranged in decreasing
order and repeated according to multiplicity. It is known
that the Hilbert-Schmidt norm is unitarily invariant.
For more information about Young type inequality

and its matrix version the reader is referred to (Bhatia,
1996; Hu, 2012).

Inequalities for Scalars

In this section, we will derive some Young type
inequalities for scalars.
Theorem 2.1. Leta, b >0and 0 <v<1.

(i)If0§vs%,then:

Vviat +(1-v)*b* 2 v (a - b)*

2.1
+rb(b —va)? + K(Nhv,2) [(va)ywb' ™ T @1

where, h=—,r=min{2v, 1-2v} and r'= min{2r, 1-2r}.

a
b
(ii) I %Svsl . then

Via* +(1-v)*b* > (1-v)*(a—b)* + ra(\/g—@/(l —v)b)?

+K( &,2)"[5'((1 -b) " Ta”

,r=min{2v — 1, 2(1 —v)} and r’= min{2r,

2.2)

where, h=
1—2r}.

Proof: Let 0<v s% . Then we have:

a
b

via* +(1-v)*b> —v*(a—b)’

= b[(1-2v)b + 2v(va)]

> b[r(b —va)? + K(vh,2)r' b (va)*']
= rb(b—~Iva ) + K(\vh,2)r' 6> (va)™

That is:

(1.4)

via® +(1=v)*b* =2 v (a—b)* + rb(b —va)’
+ KN, 2)r[(va)' b T

Thus, (2.1) holds.

1
For 5 <v<1, compute:

202

Vviat +(1-v)’b* —(1-v)*(a—b)
=a[(2v-Da+2(1-v)(1-v)b)]

r(Va =)

>a 7
-J—K(1 /1,2]r'a2”(b(1 —y)2
-y

=rb(Na —J(I=v)b) +K( /&,Z)r'[av(b(l —W)P

(1.4)

Hence:

v’ +(1-v)’b* 2 (1-v)(a—b)* + ra(\/; —J(1=v)b)?

K[ /h,ZJr'[av(b(l—v)”]z
1-v

This estimate completes the proof of (2.2); Theorem
2.1 is thereby proved.
Remark 1: Clearly, inequalities (2.1) and (2.2) are
improvement of inequalities (1.5) and (1.6).

Inequalities for Matrices

According to the results obtaining from section 2,
we present the trace and the Hilbert-Schmidt norm
versions.

Let 4,B,XeM, so that 4 and B are positive
semidefinite. We recall since 4, B>0, thus 4 = UDU*
and B = V EV* where D = diag(hi,...,A,) and E =
diag(Wy,...,W,), A, v> 0 for 1< i < n. Moreover, we
mention that A; and p; are the singular values of 4 and
B (respectively). It is showed (Nasiri ef al., 2016) that:

VAX +(1-vXB|2+"| A" XB"™
| |

§+vzH
AX - XB|}+, [VHA%XB%H; + (3.1

g -2 x5 3420 - 42257

K=mind| kX2 2 lij=1,m
H;

r=min{2v,2v -1} :
A" XB"™

where, and

HUAX +(1- VXBH 2> (1-v)r?

|+ -vy|ax - xB|; +

5—2@\\/1%)(3% G2

1 1
i [(1-v)| 4° XB? |3+] ax

[21+ 2001 - 232 ;
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where, K =min{(k ,2)i,j =1,.,m} and

ﬁ’i
-V,
r=min{2v—-1,2-2v}.

Our first main result is the following.

Theorem 3.1. Let A, B, XeM, so that A and B are
positive semidefinite.

(i)IngvS%,then:

HUAX+ (1-v)XB| 32 v?|| X — XB|}++(]| xB

o] o axs ) (33)

1 1
+Krv?| 4 XB" |3 42v(1 - )| 42 XB2 |}

where, K = min {K [ VA

J

,2}1 <i,j< n},r =min{2v,1 -2v}

and »'=min{2r,1-2r}.

(ii) If%s\/sl . then:

HUAX+ (1=v)XB|32 (1)’ AX - XB|3+r{]

Ax|); +(1—v)HA%XB%H§ -
s (3.4)
Wi vHA“XB“ Hg)]+1<"(1 )2

A XB"™ §+2v(1—v)HA%XB%H§

where, K =min{K L,Z A<i, j<ny,
(I=-v)y,
F=min{2v-1,2(1-v)} and r'=min{2r,1-2r} .

Proof: To prove assertions of Theorem 3.1, we need to
1 1

obtain  assertions VAX +(1-v)XB, AX — XB, A>XB?
and 4"XB'™. It is well known, that every positive
semidefinite matrix is unitarily diagonalizable.

Therefore, it concludes that there are unitary matrices
U, Ve M, so that A = UDU* and B = V EV*, where D
= diag(\y, ..., 4,) and E = diag(y,,...,4,) with A, 14>0
for 1<i <n.

Let Y= U*XV = [y;], then we have:

A" XB"™ = (UDU*)' X(VEV*)"™
=UD"(uU * XV)E"™V *
=U(D'YE"")V *

Thus, using unitarily invariant property of ||.|}, it
follows that:

203

A" XB™ 2

P =|vyE=yr

=|pyEyp
= 2 BT by

2
2

Analogously, we can prove that:

VAX +(1=-v)XB =U[(vA, +(1=v)u)y, V'™,

And:

1 1 11

A XB* =U[(A2 1)y, IV *

1 . .
We firstly suppose OSVSE’ then in view of the
unitary invariance of the Hilbert-Schmidt norm, we

have:

HUAX +(1-v)XB|3

” 2
:Zi,,'=1(v;ii +(1_v)/uj) |yl] |2
ZvZZiW,jﬂ(l[ _/Uj)z |yg |2
+r,uj(,[/1j —VA )2 |J’,-j |2

+Kr'v2vzzj=1(/1ivy}’v)2 |y, I +2v(1—v) (2.1

11

2 AR |y,
=v?[AX - XB;+r{] XB| 3+

A%XBéHﬁ—Zx/;HA%XB%Hﬁ]

+Kr'v 4 XB 34201 -v)| A XB? I

1e.,
|oAx + =) XB|)3 2 v 4x - XB]}+11]
XBH§+VHA%XB% H§—2\/;HA%XB% 21

+Krv? || 4" XB |3 +2v(1- )| AXB 2

This show (3.1) holds.

Using of unitarily invariant property |.|l, and by
(2:2); we can obtain (3.4).

This completes the proof.
Remark 2: Obviously, (3.3) and (3.4) are improvement
of inequalities (3.1) and (3.2).

At the end, we recall the following Lemmas that are
necessary to obtain the other inequalities by (2.1) and (2.2).



Leila Nasiri and Mahmood Shakoori / Journal of Mathematics and Statistics 2016, 12 (3): 201.205

DOI: 10.3844/jmssp.2016.201.205

Lemma 3.1. Bhatia (1996) (Cauchy-Schwarz
inequality). Suppose a;, b>0, (1<i<n). Then:

1
n n 5 n l
Yab <Xa) OB (3.5)
i=1 i=1 i=1
Lemma 3.2. Bhatia (1996) Let 4, BeM,, then:
D s, (AB)< (D s,(A)s,(B) (3.6)
i=1 i=1

Theorem 3.2. Let 4, BeM, so that 4 and B are positive
semidefinite and 0<v <1.

() If 0 <o g% then:

valz+a-vr| sz il 822 48]

48|, = 23w\ JJ 4], I B 111

AVBFV 2

2

+r[HBH§+v

(3.7)

+Kr'v?

where, K :min{k[ vh,

H

and »'=min{2r,1-2r}.

,2}1 <i,j< n}, r =min{2v,1 - 2v}

(ii) I % <v<1, then we have:

val+a-vr|alz a -t 4]+ 8]:-2] 48] 3

erl]ali+a -] a5], -2 |8, LT, (3.8)
+Kr'(1-v) A BY |3
where,

K =minik 4 ,
(1 - V)/Ub,‘

and r'=min{2r,1-2r}.

Proof: Here, to establish Theorem 3.2, we will first
prove the assertion of Theorem 3.1 together with
estimate 3.5.

For 0<v< %, based on inequalities (2.1), (3.5) and (3.6),
it follows that:

tr(vV*A* +(1-v)*B?)

=v'rd® + (1-v)’trB’

= z;l(vzs]z.(A) +(1-v)’s7(B))

2],1 <i,j< n}, r=min{2v—12v(1-v)}

204

> vz[Z;lsJZ.(A) + z;l s} (B) - 2Z;=1sj(A)sj (B)]

+28 (BIs, (B) = Jus, (O

vs;(A)

+K( ) ’Z)F'VZVZLI[S,-(Av)sj(Bl-V)]z

> vz[ijlsf(A) + ijlsf(B) - Zijlsj(AB)]
+r[z::1sf(8) +v

X8 (s (A)s;(B)=2V(D" 57 (A)s (B))]
+Kr'v2vz;:1[s j(A”Bl'”)]z

> [HAH§+HBH§—2HABH1]

| =2Vl 41,1 B

AvBl—v 2

2

+r[]BH§+v AB

+Kr'v”

It is trivial that:
(@’ 4" +(1=v)'B") =0’trA” + (1= v)'trB” =v*| 4[3+(1-v)’| B[3
From two recent relations, it follows that:

V|4f:+a-vr|a]iz i 4f2+] 522 45].)

2Nl Al I BY I 1+ Ky

AvBl—v 2

2

+[| B3 +v| 4B

This estimate completes the proof of (3.7). The proof
(3.8) is similar. So we omit its details. This completes
the proof.

Conclusion

This paper obtained some refinements of Young type
inequalities for scalars, then as applications of them, we
presented some norm and trace inequalities.
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