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Abstract: The objective of this paper is to consider an indirect comparison 

between treatments B and C when each have been compared directly to 

treatment A in separate studies. Problems of this type are common in Network 

Meta-Analysis (NMA). A commonly used method assumes that the 

underlying data, Y, are normally distributed and µ = E(Y) is the measure of 

clinical effectiveness. The normal assumption is often violated. In addition, 

the sample sizes are not necessarily large. These conditions challenge the 

concept that a single location parameter, such as, the mean or median 

should be used as the measure of clinical effectiveness in the analysis. In 

this paper, we present an alternative approach where the Area Under the 

ROC Curve (AUC) is used as the measure of clinical effectiveness. 

Since the normal distribution may be uncertain, we use a distribution-

free Bayesian mixtures of Finite Polya Trees (MFPT) model with the 

AUC in order to make the indirect comparison. 

 

Keywords: AUC Regression, Simple Network Meta-Analysis, Mixture of 

Finite Polya Trees, ROC 

 

Introduction 

In a standard Meta-Analysis (MA), aggregate effects 

from different studies of a single treatment or the 

comparison between a single treatment and a common 

control are combined using a statistical model. The basic 

elements of the meta-analysis model include two parts, a 

model for the within study variability and a model for the 

between-study variability. In a fixed effects analysis, the 

between-study variability is assumed to be 0. A very 

commonly used MA is based on a normal-normal model for 

the two components (Viechtbauer, 2010). Models of this 

type allow one to estimate a pooled effect by combining the 

results from the individual studies. 
Suppose the objective is to compare different treatments 

from several studies that are linked through common 
comparisons, then a Network Meta-Analysis (NMA) is 
used instead of a meta-analysis. In a NMA, indirect 
comparisons between treatments are possible whenever two 
or more studies compare different treatment effects with a 
common control. Li et al. (2018) presents a NMA for 
advanced or metastatic non-small cell lung cancer where 
each of the studies involve various therapeutics when 
compared with a common control, similar dosage of 
Docetaxel. In this paper, we use two studies, KEYNOTE-
010 and CHECKMATE 057, from the larger NMA as 

illustrated in Fig. 1 as a motivating example where the 
objective is to make an indirect comparison between 
treatments Nivolumab and Pembrolizumab, when each 
have been compared directly to Docetaxel. An indirect 
comparison of treatments Nivolumab and Pembrolizumab 
is possible if the clinical measure of effectiveness, Y, is used 
for each direct comparison and if the assumption of 
consistency holds. It should be noted that the studies 
considered in Li et al. (2018) had the Overall Survival rate 
(OS) as a primary endpoint. A more common NMA 
assumes that µ = E [Y] is the measure of clinical 
effectiveness where the aggregate data for the study, Y , 
have a normal distribution. 

In a frequentist analysis, a common practice is to 

estimate the combined effect between all the studies using 

inverse weighting of the mean of the study effects (Sutton 

et al., 2000; Der Simonian and Laird, 2015). In a Bayesian 

analysis, a typical approach uses a hierarchical model with 

a normal distribution specified on the study effects (Sutton 

and Abrams, 2001). When the above assumption holds 

and E[Y] is used as the measure of clinical effectiveness, 

then an indirect comparison of B and C is consistent since: 

 

( ) ( ) .

CA BA C A B A C B
µ µ µ µ µ µ µ µ− = − − − = −  (1) 
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Suppose the normal assumption does not hold, then the 

parameter µ = E (Y) may not be an appropriate measure of 

clinical effectiveness. This situation often happens when 

the density functions for the continuous random variable Y 

in the NMA are skewed or multi-modal. 

The purpose of this paper is to investigate an alternative 

method for making the indirect comparison when the 

normal assumption does not hold. We propose two 

modifications to the traditional NMA for making an indirect 

comparison between treatments B and C with continuous 

data. The first modification involves the use the Area Under 

the receiver operating Curve (AUC) as the measure of 

clinical effectiveness when making a direct comparison 

between treatments A and B and A and C. The AUCAB is 

chosen since the AUCAB = Pr [YA > YB] does not depend 

upon the distribution of Y yet, involves the entire 

distribution of Y rather than a single location parameter, 

such as the mean or median. The second modification 

involves the use a distribution-free Bayesian approach when 

constructing the hierarchical model. A Mixture of a Finite 

Polya Tree (MFPT) model is used. 

The outline for the paper is as follows. A description 

of the MFPT model is given in section 2. Section 3 

provides a brief summary of the ROC and AUC for 

treatments A and B. The special cases when the response 

variable Y are normally distributed and the distribution-

free MFPT estimates of the ROC and AUC are also 

presented in Section 3. The network models for an 

indirect comparison of treatments B and C are given in 

Section 4. A simulation study comparing the 

performance of the proposed method with the traditional 

normal model is presented in Section 5. The proposed 

method is illustrated using data from two Diabetic 

Macular Edema (DME) studies in Section 6. A summary 

and discussion is given in section 7. 

Mixtures of Finite Polya Trees  

A flexible class of methods given in Bayesian 

nonparametric literature have been proposed for describing 

distributions that exhibit features such as multi-modality 

and skewness. One such model is a mixture of finite Polya 

Trees. As in any Bayesian approach, the posterior density 

function is proportional to the product of the likelihood and 

a joint prior distribution. These components for the Polya 

tree model are presented in the next two sections. 

The Likelihood  

Christensen et al. (2008) illustrate mixtures of finite 

Polya trees that are centered on a N(µ,σ
2
) family of 

distributions. Flexibility from the normal distribution family 

is achieved by reweighting sections of the distribution 

through stagewise partitioning of the support. At each 

successive partition, the conditional probability of being 

above and below the split is altered through the introduction 

of a new set of parameters. The procedure given in 

Christensen et al. (2008) enables one to express the density 

of Y at the M
th
 stage as: 

 
2 2 2

( | , , ) ( ; , ) ( | , ),
m

f y µ y µ r y µσ φ σ σΘ =  (2) 

  

where, Θm = {θms; m = 1,...,M, s = 1,...,2
m
} and the 

weighting function is: 

 

( )
( )

2| , 2  
ms

M

ms

y

r y µ

θ

σ θ

∈Θ

= ∏  

 

and Θ(y) is the set of all probabilities, θms, associated 

with the bins that contain y. The likelihood based on 

different base distributions follows a similar derivation 

where H(·; µ, σ
2
) in Equation 2 is replaced by the density 

function for the new base distribution. 

Prior Distributions 

The parameters of the Polya tree model are divided 

into two sections. The first, denoted by Ψ, consists of the 

indexing parameters for the base distribution. When Y ∼ 

N (µ, σ
2
), then Ψ consists of µ and σ

2
. The second section 

consists of the bin probabilities θms ∈ Θ for m = 1,..., M 

and s = 1,...,2
m
 where Θ contains 2

M+1
 −2 parameters. 

The flexibility of the model is achieved through the 

choice of the bin probabilities. 

Suppose that one has expert opinion that one wishes 

to incorporate into the model. For example, suppose at 

the first stage that one has expert knowledge concerning 

Pr [Y ≤ µ]. At the second stage, one can specify Pr [Y ≤ 

q1|Y ≤ µ] and Pr [Y > q1|Y ≤ µ] where q1 is the first 

quantile for Y. This process of eliciting information can 

be performed for each of the M stages. 

If expert opinion is not available then an alternative 

approach uses the beta distribution as a reference prior. 

That is, let: 

 

( ),2 ,2 ,2 1
,

m s m s m s
Betaθ α α

+
∼  

 

and θm,2s+1 = 1 - θm,2s  for m = 1,..., M and s = 1,3,5,..., 2
m
 −1 

where the pairs of bin probabilities are assumed to be 

independent. In which case, one exchanges specifying 

priors on Θ with the hyperparameters denoted by α. If the 

prior information is unknown, a reference prior in the form 

of αms = cρ(m) is commonly used where c reflects the 

strength of the prior belief in the original parametric family 

and ρ(·) is a nondecreasing function. In which case, prior 

specification on each αms is replaced by specifying a single 

prior on c. This formulation ensures that the beta prior is 

symmetric with decreasing variability as the tree level m 

increases. In which case, the conditional bin probabilities at 

lower tree levels are less likely to deviate from the base 

distribution than higher tree levels. 
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Fixed priors specified on the parameters of the base 

distribution result in a finite Polya tree. A Finite Polya Tree 

(FPT) with M levels, reference prior cρ(·), parametric 

centering family *
F
Ψ

 and priors on the θms is denoted as: 

 

 ( , , ).
M

F PT F c ρ
∗

Ψ
∼   (3)  

 
The posterior density using a finite Polya tree model is 

potentially discontinuous at the boundaries of the bins. A 
solution to this problem is to specify a prior distribution on 
the parameters of the base distribution (Christensen et al. 
(2008)). That is, by introducing a prior on Ψ = (µ,σ

2
) when 

Y ∼ N(µ,σ
2
), the median, quartiles and all subsequent splits 

are no longer fixed but are random. A Mixture of Finite 
Polya Trees (MFPT) is given by: 
 

( )( ,  , )
M

F PT F c dpρ
∗

Ψ
∼ Ψ∫   (4) 

 
which is obtained after generating a set of {θms} from the 
prior distribution on {θms} and averaging over the prior 
on the support Ψ. The MFPT model for the distribution, 
F, is denoted as: 
 

( , , ).
M

F MFPT F c ρ
∗

Ψ
∼   (5) 

 
There are situations when E[Y] = µ may not be an 

appropriate measure of clinical effectiveness, in which 
case, we propose using the AUC. In the next section, a 
non-parametric estimate of the AUC is presented when 
the model described in Equation 5 holds. 

3 ROC and AUC 

The Receiver Operating Curve (ROC) and area under 
the ROC (AUC) can be used to compare two distributions. 
In the MFPT model, the relationship between the ROC and 
survival functions for each treatment are of special interest 
as given by: 
 

( ) ( )( ) ( )( )1 1
1 ,

AB A B A B
ROC t S S t F F t

− −

= = −   (6) 

 
where, Sg(·) = 1 − Fg(·) is the survival function for 

treatment g, g ∈{A,B} and t ∈ [0,1] (Pepe et al., 2009). 

The AUC is: 
 

( )
1

0

.

AB AB
AUC ROC t dt= ∫   (7) 

 
Bayesian non-parametric models in ROC analysis 

can be found in Branscum et al. (2008; 2015) and 
Hanson, (2006). 

ROC and AUC for the Binormal Model 

In the special case when YA ∼ N(µA, σA) and YB ∼ 
N(µB, σB), the ROC and AUC have a closed form 
expression (Dorfman and Alf (1968) and Faraggi and 
Reiser (2002)) given by: 

( ) ( )1
 · ,

AB
ROC t a b t

− = Φ + Φ   

and: 
 

2

,
1

AB

a
AUC

b

 
= Φ 

+ 
 

 
where Φ is CDF for the standard normal distribution 

function: 
 

,   .

A B B

A A

µ µ
a and b

σ

σ σ

−

= =  

 

ROC and AUC for the MFPT Model 

The MFPT model provides distribution-free estimates 

for the ROC by replacing Fg and 1

g
F

−  in Equation 6 with 

the posterior distribution function and inverse of the 

posterior distribution function. The posterior distribution 

function, Fg, for treatment g is: 
 

( ) ( )
( )

( )( ) ( ) ( )

1

1

,

| ,

2 1 ,

k y

g g

i

M

g g

F y p i

p k y F y k y

−

=

∗

Ψ

Θ Ψ =

 + − + 

∑
  (8) 

 
where, k(y) indicates the bin at level M that contains 

observation y from group g, *
F
Ψ

(y) is the base 

distribution function and: 
 

( )
( )gms g

g gms

i

p i
θ

θ

∈Θ

= ∏  

 
is the unconditional posterior probability of bin i at level 

M for i = 1,..., k(y) (Hanson, 2006). Θg(i) is the set of 

probabilities, θgms, for group g, m = 1,..., M and where s 

indicates the bin at the m
th

 level that contains the i
th
 bin 

at level M. 

The inverse posterior distribution function, 1

g
F

− , for 

treatment g is: 
 

( )
( ) ( )

( )
11 1

,
| ,

 2

Q

i g g

g g M

g

t p i Q p Q
F t F

p Q

=− −

Ψ

 − ∑ + ⋅
Θ Ψ =  

⋅  
  (9) 

 

where, Q is such that ( ) ( )1

1 1

Q Q

i g i gp i t p i
−

= =
∑ < < ∑ (Hanson, 

2006). 

The posterior density function is given by: 
 

( ) ( )( ) ( )
,

| , 2 ,
M

g g g
f y p k y f y

∗

Ψ
Θ Ψ =  (10) 

 

which is similar to the likelihood in Equation 2 where 

pgk(y) is the posterior unconditional probability of the 

bin at level M and *

,g ( )f y
Ψ

 is the density function 

associated with the base distribution *

,g ( )F y
Ψ

. 
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Numerical integration of the ROC is used to provide 

an estimate for the AUC. 

Network Models with Random Effects 

The two primary methods used to combine 
information from studies are fixed and random effects 
models (Stangl and Berry, 2000). A fixed effects model 
is used when the studies are homogeneous, in which case 
the studies do not differ in terms of the underlying study 
population, patient selection criteria and application of 
therapies. The fixed effects model is highly restrictive, in 
that, it assumes that patients are exchangeable between 
studies. A random effects model is appropriate under a 
less rigid assumption of homogeneity, where each study 
effect is modeled as a random effect from a common 
distribution of study effects. 

A random effects model is used in the scenario 
described in Fig. 1 where the direct comparisons with 
effect A are estimated from two studies, one with B and 
one with C. 

Bayesian Normal Network Model 

In this section, the commonly used Bayesian parametric 
normal model is described where one assumes that the 
observations for the treatment and control groups are 
random samples from normal populations. That is, let: 
 

( ),ijk jk ky N µ σ∼   (11) 

 
for subject i = 1,..., Njk, study j = 1,..., Jk and treatment 

k∈{A,B,C} where JA = 2 and JB = JC = 1. The mean, µjk, 

in a random effects model is: 
 

( )| ,
i jk jA k jA k

g E y β β β β  = +    (12) 

 
where, βjA is the random effect for the control group and βk  

is the treatment effect for k∈{B,C}. The random effects 

model assumes that the control group effect, βjA, is 

randomly selected from a normal population of effects with 

mean mA and standard deviation, sA. Independent uniform 

priors, σjk ∼ U(0, Bσk), are specified on the standard 

deviations in Equation 11 and independent normal priors on 

the regression coefficients, βA and βk, in Equation 12. A 

hyperprior, (0, )
A

A m
m N τ∼ , is specified on the mean of the 

random effects on A and a uniform hyperprior, 

(0, )
A

A S
S U B∼ , on the standard deviation on A. The 

Bayesian normal random effects model can be written as: 
 

( )| , ,i jk jk k jk ky µ N µσ σ∼   (13) 

 

( | ,
i jk jA k jA k

g E y β β β β  = +    (14) 

with priors on the model parameters: 
 

( )| , ,jA A A A Am s N m sβ ∼   (15) 

( ),

k k k
N m sβ ∼  (16) 

 
and hyperpriors on the parameters of the random effects: 

 

( )0,
k

k
U B

σ

σ ∼   (17) 

 

( ) ( )0,   0, .
A A

A Am s
m N and s U Bτ∼ ∼   (18) 

 

MFPT Network Model 

In this section, the MFPT model is specified when the 

effect on the control group, A, is assumed to be random. 

That is, let: 
 

( )( ), , , .

ijA M jA A jA
y MFPT N µ cσ ρ∼   (19) 

 

and treatment effects for groups, k∈{B,C}: 
 

( )( ), , , .

ik M k k k
y MFPT N µ cσ ρ∼   (20) 

 
Independent normal priors are specified on the 

means, µjA ∼N(mA, sA) and µk ∼N(mk, sk) and independent 

uniform priors on the standard deviations, (0, )
A

A
U B

σ

σ ∼  

and (0, )
k

k
U B

σ

σ ∼ . Similarly to the binormal model, 

hyperpriors are specified on the mean of the random 

effects on A, (0, )
A

A m
m N τ∼ and a uniform hyperprior on 

the standard devation, (0, )
A

A s
s U B∼ . The weighting 

factors, cjA and ck, are fixed constants and a non-

decreasing function, ρ(m) = 2
−vm

 with v = −1 or −2 is used. 
 

 
 
Fig.1:  Illustration of a simple network configuration of 

treatments, B = Nivolumab and C = Pembrolizumab with 

A = Docetaxel 

Nivolumab 

Pembrolizumab 

Docetaxel 

KEYNOTE-010 

CHECKMATE 057 
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The Bayesian MFPT random effects model on A is 

written as: 
 

( )| , ,
jA jA

ijA jA M jAjA jA
Y G c MFPT G c

θ θ
∼   (21) 

 

( )| , , ,
jAjA jA A jA AG µ N µ
θ

σ σ∼  (22) 

 
with priors on the model parameters: 
 

( ) ( ),   0, ,
A

jA A A Aµ N m s and U B
σ

σ∼ ∼   (23) 

 
and hyperpriors on the random effects parameters: 
 

( ) ( )0,   0, .
A A

A Am s
m N and s U Bτ∼ ∼   (24) 

 
The model on the k

th
 treatment effect is written as: 

 

( )| , ,
k k

ijk k M kk k
Y G c MFPT G c

θ θ
∼  (25) 

 

( )| , , ,
k

k k k kk
G µ N µ
θ

σ σ∼  (26) 

 
with prior structure: 
 

( ) ( ),  0,
k

k k k k
µ N m s and U B

σ

σ∼ ∼  (27) 

Simulation Study 

A simulation is performed to evaluate the performance 

of the MFPT model using the AUC as a measure of 

clinical effectiveness. The type I error in testing the 

indirect comparison of treatments B and C will be of 

particular interest. 

The null hypothesis is: 
 

0
: 1,CA

CB

BA

AUC
H R

AUC
= =   (28)  

 
when the AUC is the measure of effectiveness in the 

MFPT model. The ratio of AUCs is chosen instead of a 

difference in AUCs for the sake of interpretability. For 

example, if RCB = 1.2 we can interpret this as P(C>A) is 

1.2 times larger than P(B>A). 
The simulations involved two data types, 

normal and Gumbel (extreme value). The pdf for the 
Gumbel distribution is: 
 

( ) 1

 

v µ v µ
g v exp exp expλ

λ λ

−

 − + − +   
= −    

    
  (29) 

 
for v∈R, the mode, µ and scale parameter, λ. When the 

data are normal, the indirect comparison of B and C using 

the MFPT model is compared with the traditional 

binormal model given in Section 4.1 using µ as a measure 

of clinical effectiveness and the null hypothesis given by: 

 

0
: .

B C
H µ µ=  (30) 

Table 1 summarizes the design parameters and true 
values for the AUC. The design parameters for the three 
designs using the extreme value data are summarized in 
Table 2. The performance of the MFPT model is 
evaluated using both data types. 

Rejection of the null hypotheses in Equation 30 and 

28 are based on the (1-α) 100% equal-tailed credible set 

from the Markov Chain Monte Carlo simulation to 

control the type I error at α = 0.05. For design D1 and 

D3, the null hypothesis of equality of B and C should not 

be rejected; whereas in design D2 the null hypothesis 

should be rejected. The percentage of times the null 

hypothesis are rejected for the normal and extreme value 

simulations using N = 250 iterations are reported in 

Table 3 and 4. 

Results with Normal Data 

In this section, the comparison of B and C through 
the null hypothesis in Equation 30 is appropriate using 
the estimates from the binormal random effects model. 
In D1 where the null hypothesis should not be rejected 
more than 5% of the times, the rejection rate of Equation 
30 is 5% using the binormal model. Using the ratio of 
AUC’s in Equation 28 has the same rejection rate as that 
found in the binormal model. The MFPT model 
performs similarly with a rejection rate of 6% and 4% 
testing Equation 28 and 30, respectively. In D2 where 
the null hypothesis is false, the null hypotheses in 
Equation 28 and 30 are correctly rejected 100% of the 
times using the binormal and MFPT models. In D3, the 
rejection rate of Equation 30 and 28 is 3% and 4%, 
respectively, using the binormal model. The MFPT 
model has a rejection rate of 3% and 5% testing Equation 
30 and 28, respectively. The type I error is controlled 
close to the nominal rate using each measure of clinical 
effectiveness with the binormal and MFPT models. 

Results with Extreme Value Data 

In this section, it is no longer appropriate to use the 

binormal model or difference in means to compare B and 

C. Instead, the results for the rejection rate of the null 

hypothesis with the MFPT model using a ratio of AUC’s 

is reported in Table 4. In D1, the rejection rate of 

Equation 28 is 1%. The null hypothesis is correctly 

rejected 100% of the times in D2. In D3, where the null 

hypothesis should not be rejected, the rejection rate is 

2% using the ratio of AUC’s from the MFPT model. The 

random effects MFPT model using the ratio of AUC’s is 

slightly conservative testing Equation 28. 
The results presented here are very representative of 

the results found when doing a more exhaustive 
simulation study. 

In the next section, we illustrate the methods given 
above with data from two published clinical trial with 
diabetic patients with macular edema. 
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Table 1: Normal simulation design parameters: n = 100 and σ = 1 

Design µA µB µC AUCBA AUCCA AUCCB 

D1 0 0 0 0.5 0.5 0.5 

D2 0 0 2.5 0.5 0.96 0.96 

D3 0 2.5 2.5 0.96 0.96 0.5 

 
Table 2: Extreme value simulation design parameters: n = 100 and λ = 1 

Design µA µB µC AUCBA AUCCA AUCCB 

D1 0 0 0 0.5 0.5 0.5 

D2 0 0 3.18 0.5 0.96 0.96 

D3 0 3.18 3.18 0.96 0.96 0.5 

 

Table 3: Indirect comparison of B and C in the normal simulation 

Model Parameter Iterations D1 D2 D3 

Binormal µC − µB 250 5 100 3 

 AUCCA/AUCBA 250 5 100 4 

MFPT µC − µB 250 6 100 3 

 AUCCA/AUCBA 250 4 100 5 

 

Table 4: Indirect comparison of B and C in the extremevalue simulation 

Model Parameter Iterations D1 D2 D3 

MFPT AUCCA/AUCBA  250 1 100 2 

 

Example with Diabetic Macular Edema 

Diabetic Macular Edema (DME) is a form of diabetic 

retinopathy that impairs the central vision. The current 

standard treatment is focal/grid photocoagulation (laser 

therapy) from which vision stabilization is an optimistic 

outcome where a primary endpoint is the change from 

baseline in the visual acuity score and a secondary 

endpoint is the change from baseline in central retinal 

thickness (CRT). Two randomized controlled trials, 

RESTORE (NCT00687804) and VIVID (NCT01331681), 

compared the efficacy of Ranibizumab (R) and Intravitreal 

Aflibercept (IAI) to laser therapy (control). A description 

of RESTORE and VIVID and results for the secondary 

endpoint, change from baseline in CRT, are given in 

Sections 6.1 and 6.2. A comparison of the efficacy of R 

and IAI is of interest. However, there are no available 

trials that directly compare the two therapeutics. The 

random effects MFPT model for an indirect comparison 

between R and IAI is given in Section 6.3. 

RESTORE Trial 

Novartis, (2013) performed a randomized, double-

blind, multi-center, phase 3 trial with a laser control arm 

and two treatment arms. The laser photocoagulation 

treatment was administered at the commencement of 

treatment. If necessary, additional treatments were 

administered at intervals of at least 3 months. 

Ranibizumab 0.5 mg was administered monthly by 

intravitreal injection in the study eye for 3 months. The 

treatment was suspended following the third injection if 

one of the specified criteria reported by Novartis, (2013) 

was met. The study results for the change from baseline 

at month 12 in central retinal thickness of the study eye 

is given in Table 5. 

VIVID Trial 

A double-blind, randomized, phase 3 study of the 
efficacy and safety of IAI administration of VEGF 
TRap-Eye with a laser control arm in patients with DME 
was completed by Bayer and Regeneron Pharmaceuticals 
(2016). The laser control arm was administered at 
baseline, with additional treatments at intervals of at least 3 
months when necessary. Patients in the IAI 2Q4 group 
received 2mg Intravitreal aflibercept injection every 4 
weeks. The study results for the change from baseline at 
month 12 in CRT of the study eye is given in Table 6. 

Indirect Comparison of RESTORE and VIVID 

Trials 

The summary statistics from RESTORE and VIVID 

trials were used to simulate the data presented in this 

section. The treatment arms of interest are Ranibizumab 

0.5mg from the RESTORE trial and IAI 2Q4 from the 

VIVID trial. Data are adjusted so that a larger response 

correspond to a more effective treatment. Summary 

statistics for the simulated data are given in. Table 7 note 

that the data are skewed with the median less than the mean. 

Figure 2 illustrates the sample densities of the four 

treatment arms. The objective of the study is to make an 

indirect comparison between Ranibizumab 0.5mg and 

IAI 2Q4. The random effects MFPT model used to make 

an indirect comparison between B and C has two 

components. The model for the random effects on A and 

the model for the treatment effects. 
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Fig. 2: Sample densities for simulated change from baseline in CRT in the RESOLVE (Study 1) [laser (A), Ranibizumab 0.5mg (B)] 

and in the VIVID (Study 2) [laser (A), IAI 2Q4 (C)] 

 

Table 5: Mean change from baseline at month 12 

Variable Laser Ranibizumab 0.5 mg 

Number of participants 113 116 

Mean Baseline (SE) 412.4 (124.53) 427.1 (118.42) 

Value at Month 12 (SE) 351.1 (139.91) 308.4 (112.26) 

Change from Baseline (SE) -61.3 (132.29) -118.7 (115.07) 

 
Table 6: Mean change from baseline at week 52. 

Variable Control IAI 2Q4 

Number of participants 132 135 

Change from Baseline (SE) -66.2 (138.99) -195.0 (146.59) 

 
Table 7: Summary statistics of simulated data 

Treatment N Mean (SE) Median (IQR) 

A1: Laser (RESTORE) 120 61.30 (132.29) 35.97 (135.42) 

B: Ranibizumab 120 118.70 (115.08) 100.10 (139.25) 

A2: Laser (VIVID) 120 66.19 (138.95) 36.53 (161.70) 

C: IAI 2Q4 120 195.01 (146.59) 171.31 (177.40) 

 

on B and C. The random effects component is 

summarized as: 
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for k ∈{B,C}. Prior selection on the random effects 

component, mA and treatment means, µB and µC are 

based on summary statistics from two additional trials; 

RESOLVE (NCT00284050) and DA VINCI 

(NCT00789477). These trials are Phase II studies for the 

safety and efficacy of the treatments under consideration 

(Novartis, 2011; Bayer and Regeneron Pharmaceuticals, 

2016) A sensitivity analysis for the specification of the 

upper bound on the uniform prior on sA and σk in 

Equation 36 and 41 is illustrated in Fig. 3. The MFPT 

model for the network of treatments is fitted with a range 

of upper bounds, B, on the uniform priors. Figure 3 

presents the 95% credible set on RCB, the ratio of 

AUCs. This example is an interesting scenario where 

the choice of maxB potentially influences the 

inference illustrating the importance of conducting a 

sensitivity analysis on the prior selection. The width 

of the credible sets on the ratio of AUCs 

conservatively has stabilized beyond maxB = 230 

indicating that the choice of a U(0, 250) prior does not 

influence the posterior results in terms of the variability 

around the estimate of the ratio of AUCs. 

 

 
 
Fig. 3: Sensitivity analysis of the prior specification on the upper bound of the uniform prior on the standard deviation of sA,σB and 

σC. 
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Fig.4:  Posterior history and density plots for the ratio of AUCs comparing intravitreal aflibercept (C) to Ranibizumab (B). The 

triangle indicates the empirical ratio of AUCs and the asterisk indicates the true ratio of AUCs 

 

The model given in Equation 31-41 is fitted using 

SAS Proc MCMC with a burn-in of 15000 iterations, 

90000 additional iterations and thinning of 15 resulting 

in 6000 final iterations. History, autocorrelation and 

posterior density plots are checked for convergence of 

each parameter. Figure 4 presents satisfactory 

convergence diagnostics for RCB. The posterior density 

plot is centered over the true ratio of AUCs as indicated 

by an asterisk. The empirical ratio of AUCs is 

represented by the triangle. The posterior probability 

that RCB is greater than 1 is 97.3%. Recall that having 

RCB > 1 indicates that the numerator effect (IAI) is more 

effective then the denominator effect (R) when 

compared with the laser control. 

Discussion 

This paper presented a method for making indirect 

comparisons between treatments when the commonly used 

normal method for the NMA framework was inappropriate. 

The method made use of a distribution-free Bayesian 

MFPT to develop a random effects model when the AUC is 

the measure of clinical effectiveness. A simulation study is 

performed to evaluate the performance of the MFPT model 

using the AUC as a measure of clinical effectiveness. The 

type I errors for the proposed method is comparable to those 

found using the binormal model when the data are 

simulated from a normal distribution. The proposed method 

performed well when the data were simulated from an 

extreme value distribution. In both simulations the method 

was able to control the type I error when testing the indirect 

comparison of the two treatments.  

There is one caveat to the ratio of AUCs. For the case 
where there is a complete separation between the treatment 
and control group, the AUC is 1 regardless of the degree of 
separation between the control and treatment groups. If this 
is the case for both studies, the ratio of AUCs will not work 
since the ratio equals 1 and a conclusion of no significant 
difference is made when it is possible that there might be a 
difference between the two groups. Since this case is so 
extreme, one suspects that a simple visual inspection of the 
respective histograms or density functions will keep one 
from making this error. 

The proposed method was demonstrated using two 
clinical trials for treatment of Diabetic Macular Edema 
(DME). The two trials, RESTORE and VIVID, separately 
investigated the safety and efficacy of Ranibizumab and 
Aflibercept as compared to a laser control. The example 
illustrated the capabilities of the proposed method of 
making an indirect comparison between two treatments that 
have been compared separately to common control. Since, 
we used the summary statistics from the two studies to 
generate simulated data we were not overly concerned with 
the outcome of this exercise. It should be noted, that the real 
value of the procedure presented in this paper might be in 
the in-house investigations that pharmas undertake when 
trying to access theirs (and other’s) drug pipeline. 

In conclusion, the MFPT model provides a reasonable 
alternative for an indirect comparison within a network 
meta-analysis when the normality assumption for the 
measure of clinical effectiveness might not hold. The use of 
the ratio of AUCs has the added benefit of providing a 

stochastic interpretation, AUCAB = Pr[YB  >YA], instead of 
using the difference in location parameters for Y in the two 
treatment groups. An additional advantage of using the 
AUCs is the ability to include covariates, X, AUCAB(X) = 
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Pr[YB >YA | X]. We were not able to demonstrate the use of 
covariates with the DME examples since we did not have 
access to the subject-wise data. It should be noted that 
modeling the AUC as a function of a continuous 

covariates X is somewhat problematic. A potentially 
better approach would be to model the ROC as a 
function of covariates X (Alonzo and Pepe (2002); Cai, 
(2004); Rodriguez-Alvarez et al. (2011) and Stanley and 
Tubbs, (2018). Stanley and Tubbs, (2018) utilized the 
relationship that the ROCAB|X(t) = Pr[PVAB ≤ t | X] where 

PVAB is the conditional placement value when an 
observation from B is placed into the survival curve for 
group A. One can perform the indirect comparison by 
testing the hypothesis that the CDFs defined by the two 
ROCs are equal using standard test of fit procedures. 
This work will appear in a separate manuscript. 

Conclusion  

The MFPT model provides a reasonable alternative for 
an indirect comparison within a network meta-analysis 
when the normality assumption for the measure of 
clinical effectiveness might not hold. The use of the 
ratio of AUCs has the added benefit of providing a 
stochastic interpretation, AUCAB = Pr[YB>YA], instead of 
using the difference in location parameters for Y in the 
two treatment groups. 
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