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Function

Introduction

Recently, a new generalization of the Exponential (E)
distribution as an alternative model to the gamma (Ga),
Weibull (W) and Exponentiated-Exponential (EE)
distributions was proposed by Nadarajah and Haghighi
(2011). The Cumulative Distribution Function (CDF) of
Nadarajah and Haghighi (NH) model the is given by:

G, (x) =1—exp[l—(lx +1)“J

and the corresponding Probability Density Function
(PDF) is:

9, (X)=ad(Ax +1)Hexp[l—(/1x +1)“]

where, and 2are the shape and scale parameters,
respectively, which are both greater than zero. Clearly,
when « =1, we have the standard Exponential (E) model.
Nadarajah and Haghighi (2011) pointed out that the
density function (gai(x)) has the attractive feature of
always having zero mode. They also showed that larger
values of o in (ga (X)) Will lead to faster decay of the
upper tail. In this study, we will refer to the proposed
distribution as the Burr X Nadarajah Haghighi
(BXNH) model. According to Yousof et al. (2017a),
the CDF and the PDF of the BX-G family of
distributions can be expressed as:

F(x)= Zejoeé(x)/éi(x)texp(ftz)[17 exp(ftz)]%1 dt
’ S0 @)
~f1-ex| (6. (016,00 ||
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Abstract: In this study, new version from the Nadarajah Haghighi model is
proposed. The introduced model has a failure rate function that may change in
different directions. Statistical properties of the new density function are derived
along with the analysis of variance, Skewness and Kurtosis. Parameter estimates
are obtained by the method of maximum likelihood. Illustration of real data set
was employed to measure flexibility of the new model. A simulation study was
executed to test performance of the proposed version.
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respectively, where >0 is the shape parameter,
g:(x) andG,(x) denote the PDF and the CDF of the

baseline model with parameter vector ¢ . To this end, we

use Gaa(x), Gua(xX) and (1) to obtain the four-parameter
BXNH PDF (for x >0) as:

F(X) = Fpun( ){1 p{ { exp|1-(2x+1)" | }ﬂ |

with corresponding PDF:

f(X)=1,,.,(x)= 2024 (Ax+1)""
1-exp[1-(2x+1)" |

Xexp{Z[l—(MJrl)”]}
ool 1—exp[1—(/1x+1)"] ’
P exp[l—(ix +1)”}

1—exp[1—(lx+1)a} T
X{l—exp[—[eXp[l(ﬂXJrl)q] ﬂ

4)
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Fig. 2: Plots of the BXNH HRF at some parameters value
The Reliability Function (RF), Hazard Rate Function . = (-1 T(1+b)
(HRF), Reversed Hazard Rate Function (RHRF) and (1-T) |(|Y|<1andb>0):ngM' ®)
Cumulative Hazard Rate Function (CHRF) of X can be o
derived with the well-known relationships. Forg = 1, we
have the Rayleigh NH (RNH) model. For ¢ = 1, we have Applying (5) to (4) we have:
the Rayleigh Exponential (RE) model. Foro= 1, we
have the BX Exponential (BXE) model. Figure 1 shows s
that the new density function can take a unimodal, f(x) =204 (Ax+1)
symmetric and right skewed shapes. Figure 2 shows that 1—exol1— (Ax+1) n
the HRF may be increasing or upside-down or x{ p[ ( : J} z (1) T(9) (6)
decreasing or bathtub (U) or increasing then constant or exp{2[l—(/1x+l)a]} aomir(6—m)

constant shaped failure rate function.

Useful Representation

In this section, we provide a useful simple
representation for the BXNH density function. Consider
the following power series:

1—exp[1—(/1x+1)“} ’
exp[l—(lx +1)“}

xexp| —(1+m)

Applying the power series to the term:
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1—exp[1—(,1x+1)“};2

exp [1— (Ax+ 1)(1

exp| —(1+ m){

Then, f (x) in (6) becomes:

f(x) =200 (Ax+1)" " exp[1-(Ax+1)" |

& ()7 (2+m) T (0)
A mle!l(0-m)

{1— exp[l— (Ax +1)"}}2m+1 |
{exp[l— (Ax+1)" ]}hm

X

()

X

Consider the series expansion:

r'(b+q)
qr(b)

(1_ Y‘)7b |(\r\<land b>0) " Z; e (8)
o=

Applying the expansion in (8) to (7) for the
term {exp[l— (Ax +2)“¥*3, f (x) in (7) becomes:

B 2 [0 I'(20+x+3)[20+ K +2]
f00=20 3 ol (0-m) 2o+ 3)20+ x+2]

x(=)"" (1+m)” a2 (Ax+1)" exp[1- (Ax+1)" |

x{l —exp [1 —(Ax+1)" J}zwml .

This can be written as:

f (X) = i V(u,K”2w+K+2(X’a’/1)’ )

,k=0

where:

_20(-1)'T(O)I (20+x +3) i (-1)" (1+m)”
“ @IKIT (20+3)(20+Kk+2) o mIC(O-m)

and:
Ty (%@, 2) = (20 + k + 2) a2 (Ax+1)"
x exp[l—(/ix +l)“}

x {1—exp[l—(/1x+l)q}

20+x+1

Equation (9) show that the density of X can be
expressed as a linear mixture representation of
Exponentiated NH (ENH) density. So, several
mathematical properties of the BXNH model can be
obtained by knowing those of the ENH distribution.
Similarly, the CDF of the BXNH model can also be
expressed as:

F(x)= D v, 0,0 (%a,) (10)

where:

,,, . (Xald)= {1— exp [1— (Ax+1)" }}ZMM

Is the CDF of the ENH density with power parameter
(2a)+ K+ 2).

Mathematical and Statistical Properties
Moments and Moment Generating Function

The r" ordinary moment of X is given by:
e =E(X’)=Jm f (X)X dx.

Then we obtain:
Ho= Y D, eI (et +1, +1), (11)
w,x,6=0i=0
where:

M:im ~la\(r
= )

and:

o 20+k+1l T
20+Kk+2,1)

ﬂ; = Z z zvm,/\‘cg,i
w,k=0 ¢=0 i=0
(it +1¢ +1)|,

2w+k+2>0and integer).

Setting r = 1 in (11), we have the mean of X:

W=3 ivwcf;““*Z”F(ia*l+1,§+1),

w,x,{=0i=0

where:
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Lo _a ()" e(¢ +) ()0 7, =20, (1 )+ 244 F(z4 ) and 7, =—2¢,(M) + 4 ,
g 2 (é,+1)ia’1+1 ¢ i
and: respectively, where |, =E(X), M =ng = Median(X)
o 20tk 1 P is the median, F(y )is easily calculated from (3) and
e = ZVW ci @1(t) is the first incomplete moment given by (12) with s

w,xk=0 ¢=0 i=0

xr(ia’l ‘1L +1)| = 1. The @1(t) can be derived from (12) as:

(2w+x+2>0 and integer),

0 o 1
where: Z Z;z; 42'M+21
S ®
r'(av)= L z " exp(-z)dz [(rl(aa Af (+;1)+1)(1+/u) )}

denotes the complementary incomplete gamma function,
which can be evaluated in MATHEMATICA, R, etc. and:
The variance Var(X), skewness Ske(X) and kurtosis

Ku(X) measures can be calculated from the ordinary o 2R c(2orwe2)
. - . - o ()= E E E % C,
moments using well-known relationships (see subsection il S

kurtosis (Ku(X)) can also be calculated from the ordinary x Fﬂfalf(”)ﬂ) (M)u)} lzwrors250 and imager)
moments using well-known relationships. Here, we v

provide a formulae for the moment generating function - _

(MGF) My (t) = E (&%) of X. Clearly, the MGF can be Probability Weighted Moments (PWMs)

derived from (9) as: .
The (s, rNth PWM of X following the Burr type X
generator, say s, is formally defined by:

3.7 ).The variance (Var(X)), skewness (Ske(X)) and [

i itr—:v“ ;,’”*““F(ia’hrl, §+l),
w,k,¢{,r=0i=0
t =E{CR(X) =7 XF (0" f (x)ax.

and:

Using equations (3), (4) and (10) we can write:

o 2w+k+l T tf

M . (t) _ z Z ZFVW Kc(gzlwﬂwrz.r)

w,x,r=0 ¢=0 i=0

XF(Ia +1’¢ +l) |(2a)+r(+2>0 and integer) * f(X)F(X)r = z Ta;,r(ﬂ- 2(u+lc+2(x)’

@,k=0

Incomplete Moments
where:

The s™ incomplete moment, say s (t), of X can be
expressed from (9) as: _ 20(-1)"T(2w+x+3)

bor = o'x!T(20+3)(20+ K +2)

(ps (t) _[ X dX - zogng ’(C Ereese) = o(r+1)-1
(12) ()" (e m)("37),

rfie+1,¢+1) m=0
X 1
~r(ia 4 ()2 )

And:

Then, the (s, r)" PWM of X can be expressed as:

©  2m+k+l S ﬂs,r = i iz-wwcfiprrz S)r(la +1g+1)

o, =] xfd=3 Y D,

0,x=0 (=0 i=0
X{ r(ie+1,¢+1)

and also:
fl"(ia’1+1,(§+1)(1+/u)") |(2w+x+2>0 and integer)

©  20+k+l T

# Z Z Z ”K 2(1+/(+Zs

0x=0 £=0 i=0

The mean deviations about the mean [71 = E(|X — x3])] o
xC (i +1,¢ +1)|

and about the median [t2 = E (]JX-M]|)] of X are given by:

(2w+x+2>0and integer).
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Residual and Reversed Residual Life
The n" moment of the residual life, say:

&, (t) =E |:(X _t)n:| Ix>t and n-12..

which uniquely determine the F(x). The n®" moment of
the residual life of X is given by:

f (x=t) dF (x)

» 0=
Therefore:

WO =1 F(t)(ugogro(:)(_t

xv,, S (it +1,6 +1),
or:

1 w  2w+k+l n n n nr

O PAPIPMIGI

0
(20+x+2,n) )
xv, cl C(ia™+1,

é’ + 1) |(2w+K+>0 and integer) *

The Mean Residual Life (MRL) function or the life
expectation at age t can be defined by:

a,,(t)=E[(X-t)|X>t],

which represents the expected additional life length for a
unit which is alive at age t. The MRL of X can he
obtained by setting n = 1 in the last equation.

The n® moment of the reversed residual life, say:

AM=E |:(t -X )n} |(X£[, t>0and n=12,.)’

then, we obtain:
A (t) = F()j( —x)"dF ().

Then, the n"moment of the reversed residual life of X
becomes:

nn

Al(t)_%wgm =0 r=

APl +1.6+1)-T (la’l +L(¢+D)(L+ )7 |,

( )tn T {I)AC(Z(H/MZ \n)

Or:

o 2m+k+l n

AO-zo 33

n
n (20+x+2,n)
z ( ) Vw/cC5|
w,xk=0 ¢=0 i=0r=

{ F(la +l,g+l) ]

i I (ie +1,(c +1)(1+ 2t)")

(2w+x+2>0 and integer ) *

The Mean Waiting Time (MWT) or the Mean
Inactivity Time (MIT) which also called the mean
reversed residual life function, is given by:

A1:1(t) =E |:(t -X )n:| |(xgt, t>0 and n=1)

and it represents the waiting time elapsed since the
failure of an item on condition had occurred in (0,t). The
MIT of the BXNH distribution can be obtained easily by
setting n = 1 in the above equation of A, (t).

Stress-Strength Reliability Model

Stress-strength reliability model is the most widely
approach used for reliability estimation. The stress-
strength reliability model is used in many applications
of physics and engineering such as system collapse
and strength failure. In stress strength reliability
modeling, Rxx<x1 = Pr(Xo<Xi:) is a measure of
reliability of the system when it is subjected to
random stress X, and has strength X;.

The system only fails when the applied stress exceeds
its strength. This means that component will be satisfied
for Xi1>X,. Hence the performance of a system can be
considered as Rxz<x1 and naturally arise in electrical and
electronic systems. The reliability, Rxo<x1, can also be
explained as the probability that the system is strong
enough to defeat the stress imposed on it.

Let X; and X, be two independent rvs with

BXNH (6, ,a,4) and BXNH (6,,,4) distributions,

respectively. The PDF of X; and the CDF of X, can be
written from Equations (9) and (10), respectively, as:

e (N T(6)r 204k +3)
f, (x4 ,a,/‘t)—2491i§:0 iCIKIT(6, —i)T (200 +3)

x oA (Ax+1)"" exp[lf (Ax +1)“J

x {1— exp[l—(/ix +1)5’J}2M+1

and:

F, (x0,a2) - 26, Z r(6,)r(20+m+3)

he mor( h) (20+3)(20+m+2)
X_h!w#{l*exp[l*(ﬂx+l)a}}2w-m\z

Then, the reliability is defined by:
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Rx2<><1 :J‘: f1 (X1 81 ya,ﬂ«)Fz (X, 62 ,a,/i)dx.

We can write:

RX2<X1 = z q{,mw‘mj‘o 72-2§+2m+r(+m+4(x)dx!

¢, x,0,m=0

Where:

2 (17T (2¢ + 6 +3)(20+m+3)
cishe CIRlo!mID (24 +3)0(20+3)
y i (-1)"(i+2)" (h+1)"

0 (20+m+2) (20 + Kk +20+m+4)

()

=
Il

and:

”2§+210+K+m+4(x) = (24 +K+ 20)"‘ m+ 4)

x al(AX +1)Hexp[l— (Ax +1)°']

X {1— exp [1 —(Ax+ 1)a }}ZGMMM

Thus, the reliability, R can be expressed as:

X <X, !

)
Rx2<x1: Z qﬁmw,m'

¢, k,0,m=0

Order Statistics

Let X1, X, be a Random Sample (RS) from the
BXNH of distribution and let Xga),...Xn be the
corresponding order statistics. The PDF of i order
statistic, say Xin, can be written as:

n-i

_ (X )
f.:n(X)—mZ( 1) (

j=0

n—i

j ij*”(x), (13)

where, B(...) is the beta function. Using (3), (4), (9) and
(10) in equation (13) we get:

FOOF(X)™ = 3 Y, Ten (K0 2),

@,k=0

Where:

r - 20(-1)°T (20 +x+3)
ox o'k (20 +3)(20+ k + 2)

DYCE m)“[e(j * i)‘l}

m

The PDF of Xi., can be expressed as:

2 (-1)'()Y,.

oL, A). 14
k=0 j=0 B(i,nfi +l) 7[241)+K+2(X o ) ( )

Then, the density function of the BXNH order
statistics is a mixture of ENH density. Based on (14), the
moments of X, can be expressed as:

K.
XC£%50+K+2vq)r(7

Numerical Analysis for the E(X); Var(X),
Ske(X) and Ku(X) Measures

Numerical analysis for the E(X), Var(X), Ske(X) and
Ku(X) are calculated in Table 1 using (10) and well-
known relationships for some selected values of
parameter 9, and A using the R software. Based on Table
1 we note that:

1. The skewness of the BXNH distribution is always
positive

2. The kurtosis of the BXNH distribution can be only
more than 3

3. The parameter 1 has a xed efct on the Ske(X) and
Ku(X) for all dierent values of and : When =5 and
= 0:25; Ske(X) = 0:7646761 and Ku(X) = 3:892269
for any value of the parameter 1. wheng=2anda =
0:15; Ske(X) = 1:799314 and Ku(X) = 8:140326 for
any value of the parameter 1 .

4. The mean of the BXNH distribution increases
as g increases

5. The mean of the proposed model decreases as« and
Aincreases

Maximum Likelihood Estimation

Let X1, x, be a rs from BXNH distribution with
parameter vector ¥ = (6,a,4)". The log-likelihood
function for, ¥ say ¢ (¥ ), is given by:
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Table 1: E(X), Var(X), Ske(X) and Ku(X) of the BXNH distribution

17 a A E(X) Var(X) Ske(X) Ku(X)
0.001 0.25 0.5 0.0289654 0.3563506 34.5865 1566.503
0.01 0.2859682 3.474523 10.92097 158.4655
0.1 2.544613 27.62755 3.412509 17.8054
0.5 8.812294 68.26591 1.511783 5.728996
1 13.12034 79.13151 1.110063 4.475175
2 17.95289 80.92004 0.8832963 4.014145
5 24.49028 74.37878 0.7646761 3.892269
10 29.2648 67.32041 0.749148 3.926701
0.5 0.1 0.5 304.8507 433498 5.533706 55.54326
0.15 41.42335 3283.812 2.899656 15.58616
0.2 15.8246 295.9851 1.980476 8.291567
0.25 8.812294 68.26591 1.511783 5.728996
0.3 5.872409 24.87189 1.226266 4.523618
0.35 4.32819 11.73789 1.033561 3.85533
0.4 3.397696 6.514068 0.8945249 3.443576
0.45 2.783351 4.031865 0.7893849 3.170498
5 0.25 0.1 122.4514 1859.47 0.7646761 3.892269
0.5 24.49028 74.37878 0.7646761 3.892269
1 12.24514 18.5947 0.7646761 3.892269
5 2.449028 0.7437878 0.7646761 3.892269
20 0.6122569 0.04648674 0.7646761 3.892269
50 0.2449028 0.007437878 0.7646761 3.892269
2 0.15 1 50.34097 1536.089 1.799314 8.140326
10 5.034097 15.36089 1.799314 8.140325
30 1.678032 1.706766 1.799314 8.140325
100 0.5034097 0.153609 1.799313 8.140325

((¥)=nlog2+nlogd+nloge +nlog A

+(a —1)§Iog(l+ 2% )+§Iog{1—exp[l—(l+ 2% )HJ}

n 1—exp[1—(1+’1Xi )a} 2
+(6‘—1)§|09 1-exp| - exp[l—(l*'ﬁ'xi )n}

2

_zg[l—(Hixi F-s L-exp[1-(1+4x)]

=0 exp[lf (1+ 4%, )1

¢(¥) can be maximized either by using the deferent

programs like R (optima function), SAS (PROC
NLMIXED) or by solving the nonlinear likelihood
equations obtained by differentiating (14). The score

a(P) a(E) aI(W)jT are
00 ' oa ' oA

vector elements, U(¥) :(

easily to be derived.

Simulation Studies

In this section, we simulate the BXNH model by
taking n = 20, 50, 150, 500 and 1000. For each sample
size (n), we evaluate the ML Estimations (MLEs) of the
parameters. Then, we repeat the process 1000 times (i.e.
N = 1000) and compute the averages of the estimates

(AEs) and the Mean Squared Errors (MSEs). Table 2
gives all numerical results of the simulation experiments.
The numerical results in Table 2 indicate that the
MSEs and the bias of 6, o and A decay towards zero
when n increases for all settings of 6, o and A as
expected under the asymptotic theory or large sample
theory. The AEs of the parameters tend to be closer to
the true parameter values |I: 6 = 2.5, o= 1.5and A = 2.0; II:
0 =15 a=25and A = 1.5 when n increases. These results
support that the asymptotic normal model provides good
approximation to the finite sample model of the MLEs.

Data Analysis

In this section, we present an application based on the
real data set to show the flexibility of the BXNH
distribution. First, we compare BXNH with the RNH,
the odd Lindley NH distribution (OLNH) (Yousof et al.,
2017b), Proportional Reversed Hazard Rate (PRHRNH)
(new), exponentiated Weibull NH (New), the Gamma-NH
(GNH) (Ortega et al., 2015), Marshall-Olin NH (MONH)
(Lemont et al., 2016), exponentiated NH (ENH)
(Lemonte, 2013), beta-NH (BNH) (Dias et al., 2018), the
standard NH distributions. Other useful extension of the
NH model such as the Topps-Leone NH distribution
(YYousof et al., 2017b) and extended exponentiated NH
model (Alizadeh et al., 2018).
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Table 2: AEs and MSE for N = 1000

N ® AE MSE ® AE MSE
| 1
20 0 2.864044 0.2047603 0 1.5872651 0.2913098
a 1.3611143 0.8063241 a 2.8140401 0.3550603
A 1.7934323 0.1981093 A 1.8054763 0.6151902
50 0 2.6351883 0.1895662 0 1.5767954 0.2024421
a 1.4522802 0.3918004 a 2.7051811 0.2628198
A 1.8702466 0.1210564 A 1.7271091 0.4545328
150 0 2.5603383 0.1119021 0 1.5652243 0.1299292
a 1.4922332 0.0931274 a 2.6124758 0.2028198
A 1.9609656 0.1054192 A 1.6099811 0.3013233
500 0 2.5244465 0.0551823 0 1.5003211 0.0913652
a 1.5004343 0.0576872 a 2.5105512 0.0832017
A 1.9745479 0.0305103 A 15311971 0.1023321
1000 0 2.5003231 0.0004291 0 1.5000112 0.0011432
a 1.5004411 0.0060651 a 2.5005491 0.0065762
A 2.0041123 0.0012018 A 1.5003243 0.0055492
Table 3: Estimates of the competitive models fitted to the Choulakian and Stephens data
Model Estimates (SD)
NH (o, 1) 0.841 0.1094
(0.259) (0.059)
RNH (6, o, 1) 0.125 6.28
(0.012) (2.919)
BXNH (6, a, A) 0.446 0.232 0.408
(0.147) (0.087) (0.478)
OLNH (6, o, 1) 0.7293 0.2519 1.8065
(0.6059) (0.052) (3.355)
PRHRNH (6, , A) 0.364 1.714 0.031
(0.068) (1.191) (0.031)
GNH (a, o, 4) 0.7286 1.9299 0.0242
(0.1385) (1.7591) (0.0312)
MONH (a, a, 2) 23.77 0.0011 0.2660
(5.5053) (0.0003) (0.0895)
ENH (a, a, 2) 0.7289 1.7126 0.0309
(0.1404) (1.2607) (0.0330)
BNH (a, b, o, 4) 0.8381 316.0285 0.6396 0.0003
(0.1215) (4.2194) (0.8227) (0.0004)
EWNH (6, a, o, 1) 2.7591 0.3989 0.4732 0.6129
(1.742) (0.167) (0.158) (0.959)

The model selection is applied using the estimated
Iog—IikeIihood(‘f(y/)j, Kolmogorov-Smirnov  (K-S)
statistics, Akaike information criterion (Alc), Consistent
Akaike information criteria  (CAlc), Bayesian
information  criterion  (Blc), and Hannan-Quinn
information criterion (HQIc). Alc, CAlg, Blcand HQIc:

Alg ==2((y)+2n,
2,

n 7[%)}71’
Bl =-2/(y)+ plog[n,, |,

HQI =-2((y)+ Z[n(p)}log(log n),

CAl, =-2((y)+

where, ng) is the number of the estimated model
parameters and n is sample size. In general, the smaller
values of Alc, CAlg, Blc, HQIc and K-S indicate to the
better t to the data set and the biggest log-likelihood and
p values of p values of the K-S statistics is chosen.
Second, Total Time on Test (TTT) plot is given for the
used data set. Finally, we present the estimated PDF,
estimated CDF, estimated HRF, P-P and Kaplan-Meier
survival plots of the BXNH for the used data set (the
exceedances of flood peaks data).

The used data corresponds to the exceedances of food
peaks (in m%/s) of the Wheaton River near Carcross in
Yukon Territory, Canada. These data consist of 72
exceedances for the years 1958 1984, rounded to one
decimal place (see Choulakian and Stephens (2001)).
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Table 4: Statistics of the competitive models fitted to the Choulakian and Stephens data

Model Loglike Alc CAlc Blc HQIc K-S(p-value)
BXNH(6, o, 4) -250.438 506.88 507.23 513.71 509.6 0.0980 (-0.50)
RNH(a, 4) -251.722 507.44 507.62 513.99 509.7 0.10629 (0.3901)
NH(e, 4) -251.9874 507.97 508.15 512.53 509.79 0.12444 (-0.2148)
OLNH(e, o, 2) -250.589 507.18 507.53 514.01 509.9 0.1009 (-0.4565)
PRHRNH(6, o, 2) -300.83 607.66 608.02 614.49 610.38 0.24985 (0.00025)
GNH(e, o, 4) -250.917 507.834 508.187 514.66 510.55 0.1065 (-0.388)
MONH(e, o, 4) - 51.087 508.175 508.53 515.005 510.894 0.1074 (-0.3771)
EWNH(6,¢, a, 1) -250.032 508.064 508.66 517.17 511.69 0.0974 (-0.5)
ENH(e, o, 2) -250.925 507.849 508.202 514.679 510.57 0.1067 (-0.3859)
BNH(a,b, o, 4) -251.356 510.713 511.31 519.82 514.34 0.1044 (-0.4127)
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Fig. 4: Estimated PDF, CDF, HRF, P-P, Kaplan-Meier survival plots of the BXNH for the exceedances of flood peaks data

This data also have been applied by Lemonte (2013) for
the ENH distribution. In the applications, the
information about the hazard shape can help in
selecting a particular model. For this aim, an important
tool called the TTT plot (see Aarset (1987)) is useful.
The TTT plot for the exceedances of flood peaks data
in Fig. 3 denotes that the failure rate function of these
data is a bathtub-shaped (U) function.

All results of this application are listed in Table 3
and 4. These results show that the OLNH distribution
has the lowest values for Alc, CAlc, Blc, HQIcand K-
S values and also has the biggest estimated log-likelihood
and p-value for the K-S statistics among all the fitted
models. Thus, it could be chosen as the best model under
these criteria and compared to the other fitted models.

Based on the estimated values of parameters given in
Table 3 we note that the E(X) = 12:03718; Var(X) =

15

155.4608, Ske(X) = 1.741001 and Ku(X) = 6.801245.
Finally, we plot estimated functions for the density,
CDF, P-P, Kaplan-Meier survival plots of the BXNH for
the exceedances of flood peaks data in Fig. 4. Clearly, the
BXNH distribution provides a closer fit to the empirical
PDF and CDF. Also, from these figures, we get a bathtub-
shaped (U-shaped) for the estimated HRF for the
exceedances of flood peaks data, which is coincide with
the TTT plot given is Fig. 3.

Conclusion

In this article, a new three-parameter version of the
Nadarajah Highlight (NH) model is introduced and
studied. The new density can be expressed as a straight-
forward linear mixture of exponentiated Nadarajah
Haghighi (ENH) density. It was shown that failure rate
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function of the new model can be increasing, upside-
down, decreasing, bathtub, increasing then constant and
constant. Some of its statistical properties including the
ordinary moments, incomplete moments, moment
generating function, probability weighted moments,
order statistics, moment of residual life and reversed
residual life have been derived. Measures of variance,
skewness and kurtosis were given by a numerical
analysis. A Monte Carlo simulation study is conducted
to assess the performance of the maximum likelihood
method. The flexibility of the new model is illustrated by
a real data set. We hope that the new distribution attract
wider applications in areas such as economics (income
inequality), survival and lifetime data analysis, hydrology,
engineering, meteorology and others.
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