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Abstract: In many clinical and reliability research reports, the outcomes of 

basic interest is the time to a particular event happens in order to indicate 

the person’s “true” state of health or survival status. Different models have 

been used to analyze such data separately, but may be unsuitable if the 

longitudinal and health status measures are correlated. In this study, mixed 

effect and Cox model of latent class are jointly modelled for the correlation 

between the covariates, observed and unobserved health status variable 

with binary latent class indicators. A Bayesian approach for Maximum 

likelihood estimates is implemented using Markov Chain Monte Carlo 

(MCMC) techniques. The repeated and survival measures are 

independently assumed to be a Gaussian process for latent bivariate. The 

joint model is applied to TB cohort study for the HIV comorbidity effect on 

event time for Tuberculosis patients. R package is used for curvilinear 

repeated measures of latent class model and joint latent class models for 

both repeated measures and survival time event. 
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Introduction 

In various medical researches, the outcomes from the 
data depend on the time a particular event occurred, for 
instance time-to-event outcomes in Randomized 
controlled trials (Argyropoulos and Unruh, 2015). Data 
in such a way are referred to as time to event (survival) 
data of a particular interest (Austin et al., 2016). 
However, the event may not be necessarily death, but 
could be a remission time from a disease, symptoms 
relief or a disease recurrence. Many of such studies focus 
on the effect of patients’ information on different 
survival predictions and jointly model the repeated 
longitudinal with time-to-event measures to develop a 
prediction models for dynamic event that reestablish 
over time the evidence of using joint modelling 
(Andrinopoulou et al., 2015). 

Time-to-event outcomes can be used to censor a 

longitudinal data and modelling separately the repeated 

longitudinal and time-to-event measures, for instance 

using time-dependent random effect models (Barrett and 

Su, 2017), linear mixed effects models and Cox 

regression models (Hickey et al., 2016), may sometimes 

be incompetent to use, which could have a biased effect 

on the size of the estimates if the two models are 

correlated (Ibrahim et al., 2010). The Cox proportional 

hazards model is the most commonly utilized for 

survival model (Cox, 1992) and serves as part of the 

techniques used for this study. The Cox model has been 

included with various extensions such as inclusion of 

random effects (Vaupel et al., 1979), longitudinal 

modeling with outcome-dependent drop-out 

(Henderson et al., 2000), covariates measurement error 

(Wulfsohn and Tsiatis, 2010), covariates time-dependent 

(Sweeting and Thompson, 2011), multivariate survival 

times (Hougaard, 2000) and latent classes for 

longitudinal measures (Berlin et al., 2014). 

However, in our study, the Cox model has been 

included with a classifying latent class indicators with 

explanatory covariates measured without error. The class 

membership information is only indirectly available for 

categorical variables that depends on the latent class 

regression model distribution, which can be used for 

multinomial binary indicators of latent classes. This 

model consists of a multinomial logit model for the 

covariates with latent class as well as the association of 

the observed and the latent classes’ indicators. 

Meanwhile, conditionally independence is one of the 

assumptions for the indicators with given covariates and 
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latent variables, which the probabilities will also to be 

independent of the covariates. 

 A joint model assessment for multiple categorical 
and survival data is established in this study using the 
latent class logit regression model as a distribution for 
categorical data and Cox Proportional hazards model as 
the distribution for survival times data on the conditional 
latent class. It is of interest to know the extent in which 

the disease is related to the survival times. One approach 
to explore this is to examine and establish the 
measurement model before including the survival time 
events with binary covariates using a Cox PH model. A 
semi-parametric PH model is presented to incorporate a 
variable with latent class as predictor of time-to-event. A 

binary value is used indirectly to measure the class 
association and likelihood estimation function is 
maximized to establish the joint modelling time event 
data and latent class variables using EM algorithm.  

The Methods for the Joint Modelling  

The joint modelling comprises of two sub-models: A 

generalized latent class logit model for binary variables and 

a Cox proportional hazards model for survival times. 

The Generalized Latent Class Logit Model  

Yi = (Yi1,….,Yij)t represents a multiple random 
variables (random vector) of J binary values for the ith 
individual in random variables with N individual 

population, where Yij is the response of case i on item j 
of J items and t of a particular class. Let Zi = (zi1,….,ziP) 
denotes (1 X P) row vector of zth covariates for ith 
individual. Assume that the population comprises of k 
subpopulations and with latent class variable Xi of the 
ith individual unobserved. Therefore, the conditional 

latent class probability distribution for the jth 
individual is expressed as: 
 

   
1

Pr | 1 ,
y

ij i xj cjY y X x  


     (1)  

 

where, x = (x1,…., xJ)t and  x = (1,…..,K) are parameters 

for class-specific probabilities of each of the individuals 

with value 1. Also, the probability of latent class assumed J 

individuals are mutually independent event, we have: 
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However, the generalized logistic model is applied 

for modelling the association between the covariates (Zi) 

and the latent class (Xi) is given as: 
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where, k is a (P1) scalar vector consisting the 

parameters for the kth group. Therefore, the distribution 

of (Yi,Xi) is expressed as: 
 

   

 

 

 
 

1

1

Pr , | Pr |

Pr | ,

exp
1 1 .

exp

ij

i i i i i i

i i i i

j
i k y

xj xj ijK
J

i k

k

Y y X x Z X x Z

Y y X x Z

Z
y

Z


 

 



   

  

 
   

 




 

 

The Cox Proportional Hazards Model  

Let h(t|wi1,…,wik) signifies the hazard function of 

thi individual at time t and Wi is the covariates vector 

comprising of categorical and continuous variables and 

0(t) is signified as baseline hazard function, which 

corresponds to the intercept term in the regression 

model. In proportional hazard model, 0(t) is not 

specified but positive and assumed a completely non-

parametric shape for, which can be expressed as: 
 

     0| , exp ,i i i xih t w x t w     (4)  

 

where, Wi = (wi1,….,wiQ) stands for (1Q) row vector 

with a corresponding  is the (Q1) parameter vector. 

The (K1) is the parameter vector of  that contain the 

effect of the latent class variable Xi on the hazard (1 = 

0). As a result of (4), the probability density distribution 

of the time to events is expressed as: 
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where,    *

0 0
0

t

t s ds    is the baseline hazard when 

integrated. Meanwhile, in a case when the event time is 

not right–censored but has a non-informative censoring, 

the probability density distribution (Ui,i) becomes: 
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However, this study assumes to have non-informative 

censoring. 

The Joint Modelling of Cox PH with Latent Class 

Mixed Model Indicator  

 Using a latent class mixed model for regressing 

(Yi,Xi) on Zi and (i,i) on (zi,xi) for Cox Proportional 

Hazards model, therefore, the joint distribution model of 

(i,i) on (zi,xi) is expressed as: 
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By integrating the variable with latent class 

indicators, the distribution for a marginal variables 

observed (i,i,Yi) becomes: 
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Inference 

 This study uses Expectation-Maximization (EM) 

algorithm, which applied to find the maximum 

likelihood estimates of observed parameters (i,i,Yi). 

This is achieved through iterative method of E-step and 

M-step. The E-step is used to estimate the expected 

log-likelihood of the complete data through a 

conditional estimation on the observed data while M-

step is applied in new parameters estimation to 

maximize the expected log-likelihood. 

Suppose  = (,,0(t), ,v) hence, the log-likelihood 

for the complete data is expressed as: 
 

   ,

1

; , , , ; , , , ,
N

cmpt i cmpt i i i i

i

L u y x L u y x   


  

 
where: 
 

   

    
    

,

1

1

*

0 0

; , , , log exp

log 1 log 1

log exp

i

ij ij

i i

k

i cmpt i i i i i i kx
x

J

ij ijx x
j

i i i ix x

L u y x z z

y y

w w

   

 

       





 
   

 

   

     
 



  

 

Therefore, the log-likelihood for an observed 

parameters is expressed as: 
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From the E-step algorithm, Qi(; ()) = 

E(Lcmpt(;U,,Y,X)|U,,Y;()) is estimation of the expected 

log-likelihood of the complete data with respect to the 

conditional distribution of (X|U, ,Y) to be calculated, 

where () is the parameter estimate of  from the rth step. 

In the M-step iteration, we maximize the E-step with 

respect to the parameters obtained in a new setting of the 

s i.e., Q is maximize as a function of . We expressed 

the posterior distribution of Xi with given parameter data 

for  = () to be  
i



 = Pr(Xi = x|U, ,Y; ()), c = 1,…,p. 

Hence, Q and π are maximized as: 
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For Q and κ is maximized as: 
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Also to maximize (,v) and Q through (+1, v+1), we 

solve: 
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An update of iterative scheme for (0,,v) is needed 

in the M-step, in which the update of 0 depends on 

(,v). For the update, the following steps are considered: 

 

i. Update of (,v) is done through Newton-Raphson 

algorithm 

ii. The value of 0(t) is calculated from 0(i) formula 

iii. Iteration scheme is carried between (i) and (ii) until 

convergence 

 

Estimation and Results 

Simulation for the estimation of the model was 

performed to illustrate the method and examine the 

practicality properties of the proposed joint latent class 

model and its parameters performances. We generated for 
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n subjects for longitudinal data from a conditional 

distribution that is Bernoulli distribution as given by (1) 

and Weibull distribution for the baseline hazard 

proportional model to simplify the computation. We 

described the change in the longitudinal data subject over 

time using a mixed effects model as a latent class subject-

specific variables. We used binary covariates, time 

continuous covariate and also consider the interaction 

between them along the intercept term. The covariate zi 

represents the ith longitudinal subjects’ characteristics. 

 We denoted the scale and shape parameters of 

Weibull distribution as . The censoring procedure used 

is assumed to be uniformly distributed and the given age 

is transformed linearly to create an effective age 

distribution function. In each subject, we generated a 

simulated repeated measurements of n = 200 replicates 

and k = 2 number of latent class-specific. In each of 

Monte Carlo simulated data sets, a sample of n = 200 

and 500 were generated for a joint modelling defined by 

 = 0 with  = 1.0,  = 0.80 and 0() = 1. The number 

of repeated nominal time schedule measurements were 

taken for tij = 0, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 

and latent class were selected to cater for sufficient and 

adequate observations in each of the class-specific for 

easier posterior classification and to show the accuracy 

of the parameter estimation.  

 The latent class assumed to be represented as: Logit 

(i) = xi-0.5. The slope and the intercept were assumed to 

be distributed uniformly with independent measurement 

of error (ijN(0,0.1)). The estimates from both 

longitudinal and survival part were done for the two 

classes with shape of 1.5 and scale of 20 for class1 and 

shape 0.5 and scale 10 for class2 respectively. The 

simulation was performed using R language package. 

The Simulation Results 

 The estimated parameter bias and standard error of 
the posterior means are reported in Table 1. There was 
overestimation in the longitudinal measurements of both 
the intercept and time (tij) when the sample size is small 
(n = 200) and the biases estimation for these parameters 
were more in latent class1 joint model compared to 
class2. BIC values are used to select the size of the latent 
classes and used it for the proposed class size K, then 
compare with the model with smallest BIC. To avoid 
overestimation and underestimation, we increased the 
sample size to 500 and found that the two latent class 
model BIC values are smaller compared to one latent class 
model and three latent class model respectively. 
However, this is correctly used to select the number of 
latent classes with the smallest BIC criterion for 
simulated datasets. The simulated data of n = 500, is 
used to evaluate the true value difference in the latent 
classes joint model. The true value slopes decreases in the 
same direction for the two latent classes (0.11 against 
0.10). Therefore, the important of joint latent class model 
to identify various sub-groups increases the heterogeneity 
of the model across the latent class and the estimated 
standard errors tend to be slightly larger than the true 
ones, which makes the joint model to be conservative. 

 
Table 1: Simulation results with parameter bias and standard error of the estimates 

 Class 1   Class 2 

 ----------------------------------------------------- -------------------------------------------------- 

Parameters True value Bias SE True value Bias SE 

N = 200 

Longitudinal part 

Intercept  7.11 0.45 0.34 7.09 0.42 0.28 

tij 0.14 0.31 0.17 0.11 0.30 0.13 

Covariate (binary) 0.60 0.74 0.46 0.63 0.71 0.37 

tij x covariate (binary) 0.59 -0.40 0.09 0.62 -0.38 0.08 

1 1.00 0.50 0.23 1.00 0.46 0.23 

2 1.00 0.65 0.30 1.00 0.58 0.31 

Survival part 

Covariate (binary) 1.01 0.07 0.42 0.51 0.21 0.09 

 0.54 0.04 0.27 0.52 0.03 0.34 

N = 500 

Longitudinal part 

Intercept  7.08 0.41  0.27 7.09 0.40 0.25 

tij  0.21 0.30  0.15 0.10 0.32 0.11 

Covariate (binary) 0.60 0.71  0.39 0.62 0.68 0.39 

tij x covariate (binary) 0.58 -0.31  0.08 0.60 -0.35 0.05 

1 1.00 0.48  0.19 1.00 0.48 0.21 

2 1.00 0.59  0.26 1.00 0.55 0.38 

Survival part 

Covariate (binary) 1.01 0.06  0.51 1.01 0.08 0.44 

 1.05 0.01  0.16 1.02 0.05 0.32 
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Estimation Results of Real Data 

The joint model is applied to the TB longitudinal 

retrospective cohort data of all confirmed TB diagnosed 

in Eastern Cape Province from 2010 to 2015 recorded on 

monthly and yearly to study the association effect 

regarding the severe TB prognosis of time event data for 

elderly patients with those with HIV infection, dialysis, 

state of immunosuppression and cases of multi-drug 

resistant TB death risk. A total of 449 patients were 

included in the study. Due to too small variances of 

random effects, the age is subtracted from 25 and 

divided by 30 to decrease the numerical constraints of 

too large ages in quadratic mixed models. We also 

considered some covariates such as gender, age, 

smoking, alcohol use, body weight, smear status, type of 

TB and diabetes. The time-to-event was measured in 

days to accommodate the effect of TB prognosis on 

survival time for TB patients with severity and without.  

Model Fit 

The Latent Class Mixed Models (LCMM) 

 The LCMM was implemented to illustrate the 

quadratic trajectories of TB prognosis factors by 

assuming that there is correlated random effects for 

TB patients age-factors functions. The model 

summary indicates the dataset information, quantity of 

subjects, number of missing observation deleted, 

latent classes and parameters. It shows also the 

number of iterations during the convergence process 

and criteria to show if the model converged correctly 

or satisfied. It gives the information about model 

goodness of fit estimates, which include the maximum 

log-likelihood value, Akaike Criterion (AIC) and 

Bayesian Information Criterion (BIC) values. The 

model also shows the parameter estimated, standard 

error of estimates, the approximately normal Wald 

Test statistics and the p-values. 

 The process of estimating the models with varying 

latent classes gives the values of log-likelihood 

estimates, parameters estimates, BIC and posterior 

proportion of each class. The optimal number of latent 

classes chosen is two according to the BIC in Table 2. 

The Bayesian Information criterion for the one 

(190.18851), two (187.82920, 185.54193, 184.40445) 

and three-class models (186.89412, 187.32477) 

respectively, indicating that the two latent class model is 

better. The proportion of replications from 2c BIC 

correctly identified the class model 92.1% of the time on 

the average and that the proportion was close to the 

probability of choosing the 2 class model randomly out 

of 1 class and 3 class models. The two-class model 

corresponds to the most risk TB prognosis factors 

response patterns, which are diabetes as an indicator and 

smoking as an indicator. The two groups of the two 

latent classes as a representative parts for each of the 

latent classes in terms of TB indicators of Age and 

gender of the patients (Table 3). The two latent classes 

may be explained as: (a) a diabetic patients have high 

prognosis risk factors of TB (b) smoking status of 

patients is a great risk factors of TB. 

 The age and gender of patient with TB are treated 

as predictors of latent class, which are significantly 

associated with latent class membership with an 

interaction between the two indicators (Table 3). 

Interaction of differential item functioning (DIF) is 

examined in model 2c. The TB factor predictors (age 

and gender variables) are added separately for each of 

the five binary factor variables. The differential item 

functioning estimates and standard errors are 

summarized in Table 3. The results of the analysis 

indicate that no significant differential item 

functioning because the variables from both groups 

have a different probability results given in each of 

the responses (the values of z-scores in Table 3 are 

approximately normally distributed). DIF shows that 

the items are measuring different abilities for TB 

indicators subgroups to see if the items are measuring 

the same way for all TB prognostic factors subgroups. 

There is interaction of DIF of TB prognostic factors 

among TB patients from different groups with the 

same underlying true ability have a different 

estimation of giving the same results. It showed that 

Diabetes has highest DIF among the TB prognostic 

factors for both age and gender (11.33 and 2.18) 

follow by the alcohol use by the TB patients (0.57 and 

1.00). The least of estimation in DIF was found in 

smoking habit of the TB patients. 

 The mean subject-specific predictions of the model 

is presented in Fig. 1a-1d and the goodness of fit statistic 

of the model support the model using the subject-specific 

and marginal residual plots in the two-latent class mixed 

model presented in Figure 4 (Appendix file). 

Joint Modelling of Cox PH and Latent Mixed 

Models 

 The analysis of joint model is to fit a latent class 

mixed effects model and survival model using Cox 

proportional hazard model with baseline hazard 

functions estimated by Weibull distribution. The models 

considered having TB prognosis variables (age, gender, 

diabetes and smoking) as covariates for the latent class 

mixed model. In the analysis, class-specific quadratic 

trajectories of TB prognosis risk variables and adjusted 

for variable TB indicators. We jointly modelled the risk 

of severe TB prognosis according to diabetes and 

smoking habit assuming class-specific Weibull baseline 

risk functions with age and gender of TB patients. 

 Furthermore, we performed Likelihood Ratio (LR) 

test in comparing the joint model to a longitudinal model 



Adeboye Azeez et al. / Journal of Mathematics and Statistics 2020, Volume 16: 90.103 

DOI: 10.3844/jmssp.2020.90.103 

 

95 

with the same covariate effect across latent classes. The 

analysis of the LR test is to show the time effect in 

longitudinal trajectories, with p-value < 0.01, which 

indicates over the time that the risk of severe TB 

prognosis has the same pattern validating the use of class 

specific time effects in the model. We additionally check 

all covariates (diabetes, smoking status and gender) and 

found them all to be less than 0.05. In this way, we keep 

all the covariates that are significant as class-specific in 

the model and use them to describe the effect of 

covariates on longitudinal and survival results in class-

specific time analysis. 

 
Table 2: Summary table of models estimation process with varying number of latent classes 

Models G Log-likelihood No of parameters BIC %class1 %class2 %class3 

1 1 94.8439 20 190.1885 100.0 

2a 2 103.1036 25 187.8292 7.9 92.1 

2b 2 120.9599 25 185.5419 0.9 99.1 

2c 2 134.0412 25 184.4044 97.1 2.9 

3a 3 141.8356 30 186.8941 3.4 87.3 9.3 

3b 3 153.2261 30 187.3247 87.3 3.5 9.2 

 
Table 3: Interaction of differential indicator functioning (DIF) in model (2c) 

 TB indicators 

 --------------------------------------------------------------------------------------------------------------------------------- 

TB prognostic Age25   Gender 

factors ----------------------------------------------------------- ------------------------------------------------------- 

Indicators  Est. SE Z-score Est.  SE Z-score 

Diabetes 11.33 1.952 5.79 2.18 1.079 2.02 

Body weight -0.54 0.285 -1.88 0.56 0.707 0.79 

Smoking -0.19 0.355 -0.55 -0.06 0.441 -0.15 

Alcohol use 0.57 0.232 2.45 1.00 0.389 2.56 

Smear status -0.33 0.476 -0.69 -0.50 0.794 -0.63 

Type of TB 0.22 0.692 0.31 0.13 0.297 0.44 

 
Table 4: Joint modelling of latent class longitudinal and Cox proportional hazard model 

 Parameters Coef SE Wald P-value 

Latent class Intercept   1.27 0.312  4.07 <0.001 

 Age25  0.12 0.006  1.84 <0.001 

 Gender   4.12 1.920  2.15  0.032 

 Diabetes  6.93 1.833  3.78 <0.001 

 Smoking  6.71 1.349  4.94 <0.001 

Class 1 Longitudinal part 

 Intercept   1.77 1.026  1.72  0.085 

 Age25  0.76 0.747  1.02  0.008 

 Gender   0.91 0.683  1.33  0.012 

 Age25*gender  0.17 0.238  0.69  0.005 

 Survival part 

 Event1 +/-sqrt(Weibull1)  0.04 0.002  2.17 <0.001 

 Event1 +/-sqrt(Weibull2)  1.49 0.085  1.72 <0.001 

 Event1 SurvPH class1  0.25 0.455  0.55  0.048 

 Diabetes -2.19 0.332 -0.59  0.050 

 Smoking -2.09 0.293 -0.33  0.034 

Class 2 Longitudinal part 

 Intercept   0.48 0.438  1.10  0.020 

 Age25  0.10 0.318  0.30  0.061 

 Gender   0.47 0.371  1.26  0.008 

 Age25*gender  0.05 0.318  0.16  0.007 

 Survival part 

 Event2 +/-sqrt(Weibull1)  2.67 1.095  2.43 <0.001 

 Event2 +/-sqrt(Weibull2)  2.53 0.994  2.54 <0.001 

 Event2 SurvPH class2  0.12 0.473  0.44  0.012 

 Diabetes -1.96 1.208 -1.28  0.001 

 Smoking -1.58 0.919 -1.72  0.085 
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Fig. 1: (a) Weighted mean marginal prediction for two class mixed model; (b) Weighted subject-specific predictions for two-class 

mixed model; (1) Weighted mean marginal prediction for two class joint model; (d) Weighted subject-specific predictions for 

two-class joint model 

 

The joint modelling estimates of the two latent class 

longitudinal and Cox proportional hazard model 

parameter are shown in Table 4. The estimation results 

of logistic analysis model indicates that age, gender, 

diabetes and smoking status are all significant covariates 

in subjects’ classification (P-value <0.05). Male TB 

patients, who are older in age, diabetic and smoking 

were less likely to be classified into the class2, 

signifying that the class2 may comprise of the patients 

with better health status i.e., may not have the likely 

course or experience a TB disease. Comparing the 

estimation in the class2 (0.096) and class1 (0.761) 

with respect to age (age25) was observed that class1is 

higher and significantly associated with TB prognosis 

as the patients getting older but not significant in 

class2. The value associated with gender among TB 

patients in class1 is significantly likely to increase the 

severity of TB disease (0.911) compare to patients in 

class2. The value of interaction of age and gender of 

TB patients in class1 was higher compare to class2 

and they have a significant effect on event of TB 

disease prognostic. Two class model possess small 

biases in parameter estimates and standard error 

estimates are close to their empirical values. 

 As for the survival analysis part, diabetes and 

smoking status are significant to the time-to-event for 

adults with TB prognosis. This shows that both diabetes 

and smoking status are significant factors on time-to-

event of TB diseases. Patients in the class2 had a better 

survival rate (HR = 1.128) compare to class1 (HR = 

1.284) concerning the effect of severe TB prognosis on 

the time-to-event for adults with TB disease. 
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Fig. 2: Above - Predicted Cross-validated EPOCE for joint models with one class. Below -Difference in EPOCE estimates 

prediction for two latent classes’ joint models 

 
Table 5: Posterior classification and probabilities mean table 

Posterior probabilities Mean in each class 

 prob1 prob2 

class1 0.8730 0.1270 

class2 0.0309 0.9691 

Posterior classification for longitudinal and time-to-event data 

 class1 class2 

N 41.00   409.00 

% 8.91 91.09 

Variance of the random-effects Latent class joint model  One class joint model 

 Est. SE Est. SE 

Class1 0.09298 0.00413 1.05622 0.08261 

Class2 0.10356 0.01289 

 

The mean of posterior probabilities from the posterior 

classification (Table 5) is satisfactory. Class1 consist of 

a posterior 41 subjects (8.91%) while class2 have 409 

(91.0%) subjects. The class1 subjects have a mean 

posterior probability of 87.3% and class2 has a mean 

posterior probability of 96.9% respectively. Also, the 
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variance of random effects results show that the 

heterogeneity estimation in one class joint model is 

larger (1.056) than variance from latent class joint 

model, suggesting that classification of latent classes 

reduces the heterogeneity within each class (Table 5).  

 In summary, part of the objective in this joint 

modelling is aspect of dynamic prediction of the event 

for TB patients. We use EPOCE function to compute the 

predictive ability of our models using the Expected 

Prognostic Observed Cross Entropy (EPOCE) at 

different landmark times. The EPOCE is plotted to 

compare different models to envision the model 

predictive power at different landmark times. The 

predictive power difference between the two models is 

computed using Diffepoce function in displaying the 

associated plot function for both models.  

Joint models for TB prognostic factors for two latent 

classes display a better predictive power showing a 

lesser EPOCE than a simple one class survival model. 

Although the two latent class model gives a better 

goodness-of-fit in terms of BIC with good predictive 

accuracy, particularly after 80 years of age (Fig. 2). 

Discussion 

In this study, our model encompasses latent class 

indicator to jointly model the longitudinal and 

survival outcomes concurrently. The Cox proportional 

hazard model has been expanded to encompass 

variables with latent class measured by binary 

indicator as factor of time-to-event data. The latent 

classes stand for different categories of trajectories 

which were repeatedly measured and assumed to be a 

normal distribution with given latent class. The 

proposed model is used to evaluate the likelihood 

through the mixed effect model and survival processes 

to discover the underlying trends for the two 

processes efficiently.   

 

 
 
Fig. 3: The predicted trajectories (marginal) of hypertension and diabetes and their associated survival curves in each of the two 

latent classes for patients with above age of 65 years 
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The class-specific mean predicted trajectories in 

each latent class are shown in Fig. 3 according to two 

prognostic factors (smoking and diabetes). The plots 

depicts predicted trajectories for both fitted models at 

a different combination of covariates; male patients 

who are smoking and above the age of 65years for 

class1 (dotted lines) and class2 (solid lines). These 

patients are observed to be at the of severe TB 

prognostic risk of a prior smoking habit particularly 

for patients older than 25years. We discovered a 

relatively increased probability of TB prognosis over 

the time and the survival of patients having a drug 

resistant TB is lower in class2 with regard to the 

patients’ age compared to class1. 

In finding the estimators for global maximum 

likelihood, the inference procedures is set up 

sequentially for initial values in the estimation of the 

data. In each plots in Fig. 1a and 1b, the dotted lines 

represent true trajectories and solid lines give the 

average predicted model trajectories. The below set of 

dotted and solid lines predicted trajectories are for 

risk = 0 and above dotted and solid predicted 

trajectories lines are for risk = 1. The difference 

between the solid and dashed lines in each pair 

indicates the model bias. In overall, for one predicted 

joint model, predicted trajectories are observed with 

small bias regardless of fitted model (Fig. 1a). For the 

two interacting predicted joint model, the plots 

correspond to where the predicted trajectories are 

provided not only by number of risk, but also by 

survival status. The plots are largely in bias similar to 

mixed model plots but smaller in bias regardless of 

fitted model for the two class joint model. In contrary 

to the one-predicted joint model case, few bias is also 

observed for values at the extreme ends when two-

interacting predictor joint model is fitted. Summarily, 

for one or two interacting predictor joint models to be 

considered, we computed the trajectories prediction 

from a fitted weighted subject-specific predictions 

and/or cross-validated EPOCE predictions, regardless 

of the individual true distribution of estimates 

differences and little bias expectation. When the 

sample size is large, trajectories prediction tends to be 

slightly more efficient when fitting the model. 
The model goodness of fit is assessed through the 

comparison of predicted values against the observed 

values of the repeated measurement outcomes and plot 

the martingale residuals of the time-to-event outcomes 

(Appendix A-Fig. 4). More information about the 

model fit and subject heterogeneity can be provided 

through the plots by each classes. However, other 

forms of estimating baseline hazard functions can be 

explored such as generalized Gamma distribution and 

piecewise constant baseline hazard (Liu, 2009;       

Cox et al., 2007). 

Conclusion and Recommendation 

The estimation of parameters is jointly analyzed for 

the latent class mixed effect model with binary 

indicator and the Cox PH model using EM algorithm. 

The algorithm is constructed with nonparametric 

maximum likelihood estimation for the baseline 

hazard with Weibull distribution for the Cox model. 

Through simulation, we examined the performance of 

the joint model with two binary latent class indicators 

in calculating the joint likelihood and compare it with 

one class joint model using the likelihood ratio test, 

variance of the random effects and plotted EPOCE 

plot to show the comparison of different models to 

show the predictive power at different landmark 

times. Additionally, the latent class joint model in our 

study determined TB prognostic factors, in which the 

effects can be reduced largely by changing the lifestyle 

and TB treatment indictors, in which the effects of 

primary outcomes for TB disease can hardly be 

improved unless the other risk factors are controlled. 

The posterior classification from the results illustrated 

the different trends in the latent classes to show 

prognostic mean probabilities in each class threshold. 

The performance of the model from the simulation 

suggest that the joint estimation with latent class 

indicators performs better in finite samples. The model 

is applied on the real dataset to show the advantages of 

latent class inclusion in the model. 

We use EM algorithm for maximum likelihood 

approach but a Bayesian approach may be of use in the 

same context. A longitudinal mixed effect data that 

would allow Poisson indicators can also be looked into 

as part of the joint model extension. Also, a good idea 

missing data approach to incorporate a multiple 

imputation would be suitable for use in a joint modelling 

approach and useful for future research. A shared 

random effect to join the longitudinal and survival 

processes is also a good idea (Liu et al., 2015). It should 

be noted that sensitivity analysis should also be 

conducted to estimate the impact of the number of 

degrees of freedom used for the survival and longitudinal 

trajectories indicator. 
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Fig. 4: The model goodness of fit of predicted values against the observed values and plot the martingale residuals of the time-to-

event outcomes 

 

R Codes 
 

install.packages("lcmm") 

library(lcmm) 

install.packages("zoo") 

install.packages("hlme") 

library(multlcmm) 

install.packages("multlcmm") 

install.packages("jointlcmm") 

tb <- read.delim("C:/Users/Azeez/Desktop/tbdata.R") 

View(tb) 

head(tb) 

m1a=hlme(pulse~poly(resrate,degree = 2,raw = TRUE)*sex, random = ~poly(resrate, degree = 2, raw = TRUE), 

subject = 'id', data = tb, ng = 1) 

m1=hlme(pulse~poly(resrate,degree = 2,raw = TRUE)+sex, random = ~poly(resrate, degree = 2, raw = TRUE), subject 

= 'id', ng = 1, data = tb) 

library("NormPsy") 

cvd$normpulse = normpulse(cvd$pulse) 

tb$Normpulse = Normpulse(tb$pulse) 

tb$age=(tb$age - 25)/10 

load(tb) 

tb$age25 = (tb$age-25)/30 

md1=hlme(hpt~age25*pul*sex*history, random=~age25, subject='bmi', ng=1, data=tb) 

md2a=hlme(hpt~age25*pul*sex*history, mixture=~age25, random=~age25, classmb = ~pulse+resrate+bloodg+diab, 

subject = 'bmi', ng=2, data=tb, B=md1) 

md2a=hlme(hpt~age25*pul*sex*history, mixture=~age25, random=~age25, classmb = ~arrhy+diab, subject = 'bmi', 

ng=2, data=tb, B=md1) 

md2b=hlme(hpt~age25*pul*sex*history, mixture=~age25, random=~age25, classmb = ~arrhy+diab, subject = 'bmi', 

ng=2, data=tb, B=random(md1)) 

md2c=gridsearch (rep = 450, maxiter = 100, minit = md1, hlme(hpt~age25*pul*sex*history, mixture=~age25, 

random=~age25, classmb = ~arrhy+diab, subject = 'bmi', ng=2, data) 

newdata = data.frame(age25=seq(0,5, length = 500), pul=rep(0,500), sex=rep=(0,500), history=rep(0,500), 

arrhy=rep(0,500), diab=rep(0,500)) 

postprob(md2c) 

plot(md2c) 

plot(md2c, which = "fit", var.time = "age25", bty="0" ylab = "hpt", xlab = "(age-25)/30", lwd=1) 

plot(md2c, which = "fit", var.time = "age25", ylab = "hpt", xlab = "(age-25)/30", lwd=1, marg = FALSE) 

datnew = data.frame(age = seq(25, 95, length = 100)) 
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datnew = data.frame(age = seq(25, 95, length = 449)) 

datnew$age25 = (datnew$age-25)/30 

datnew$diab = 0 

diab0 =predictY(md2c, datnew, var.time = "age") 

datnew = data.frame(age25 = seq(25, 95, length = 449), pul = seq(0, 1, length=449), sex = seq(0,1, length = 449), 

history = seq(0, 1, length=449), arrhy = seq(0, 1, length = 449), diab = seq(0, 1, length = 449)) 

plot(predicthpt(md2c, datnew, var.time ="age25"), legend.loc = "right", bty = "1") 

plot(predict hpt(md2c, datnew, var.time ="age25"), legend.loc = "right", bty = "1") 

plot(predict Y(md2c, datnew, var.time ="age25"), legend.loc = "right", bty = "1") 

plot(predict (md2c, datnew, var.time ="age25"), legend.loc = "right", bty = "1") 

plot ((md2c, datnew, var.time ="age25"), legend.loc = "right", bty = "1") 

plot (md2c, datnew, var.time ="age25", legend.loc = "right", bty = "1") 

datnew = data.frame(age25 = seq(25, 95, length = 449), pul = seq(0, 1, length=449), sex = seq(0,1, length = 449), 

history = seq(0, 1, length=449), arrhy = seq(0, 1, length = 449), diab = seq(0, 1, length = 449)) 

datnew 

dia=predictY(md2c, datnew, var.time="age25") 

plot(dia) 

plot(dia, lty=1, lwd=2, type="1", col=1.2, ylim=c(25, 95), bty="1", xlab ="age in years", ylab="Diabetic condition", 

legend=NULL) 

plot(dia, xlab ="age in years", ylab="Diabetic condition", legend=NULL) 

plot(dia) 

pul1=predictY(md2c, datnew, var.time="age25") 

plot(pul1) 

sexx=predictY(md2c, datnew, var.time="age25") 

sexx 

sexy=predictY(md2c, datnew, var.time="hpt") 

sexy=predictY(md2c, datnew, var.time="pul") 

plot(sexy) 

mlin=lcmm(hpt~age25*sex, random=~age25, subject='bmi', data=cvd) 

summary(mlin) 

joint=Jointlcmm(hpt~age25*pul*sex*history, mixture=~age25, random=~age25, survival = Surv(days, 

status)~arrhy+diab, hazard = "Weibull", hazardtype="PH", subject='bmi', ng=2, data=cvd) 

summary(joint) 

plot(joint, which="fit", var.time="age25", marg = F, break.times = 10, bty ="0", ylab = "hpt", xlab = "age in years") 

plot(joint, which="fit", var.time="age25", marg = F, break.times = 10, bty ="2", ylab = "hpt", xlab = "age in years") 

plot(joint, which="fit", var.time="age25", marg = F, break.times = 10, ylab = "hpt", xlab = "age in years") 

plot(joint) 

md1 

plot(md1) 

plot(md2a) 

plot(md1, md2a) 

plot(md2b) 

plot(md2c) 

summarytable(md1, md2a, md2b, md2c) 

postprob(md1) 

postprob(md2a) 

postprob(md2b) 

postprob(md2c) 

plot(md2c, which="fit", var.time="age25", ylab="hpt", xlab="(age-25)/30", lwd=1, marg=FALSE) 

plot(md2b, which="fit", var.time="age25", ylab="hpt", xlab="(age-25)/30", lwd=1, marg=FALSE) 

plot(md2a, which="fit", var.time="age25", ylab="hpt", xlab="(age-25)/30", lwd=1, marg=FALSE) 

plot(md1, which="fit", var.time="age25", ylab="hpt", xlab="(age-25)/30", lwd=1, marg=FALSE) 

plot(md2c, which="fit", var.time="age25", ylab="hpt", xlab="(age-25)/30", lwd=1, marg=FALSE) 

dia=predictY(md2c, datnew, var.time="age25") 

dia 
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plot(dia) 

mlin 

plot(mlin) 

postprob(joint) 

plot(joint, which="fit", var.time="days", ylab = "age25", xlab ="survival", lwd=1, marg=FALSE) 

jointy=predictY(joint, datnew, var.time ="days") 

jointy=predictY(joint, datnew, var.time ="bmi") 

jointy=predictY(joint, datnew, var.time ="age25") 

jointy=predictY(joint, datnew, var.time ="age25") 

summary(jointy) 

plot(jointy) 

plot(aggregate(cvd$t.stop, by = list(cvd$bmi), FUN=max)[2][ ,1], joint.gap$martingale.res, ylab="", xlab="days", 

main="Mobility indicators of heart diseases", ylim=c(-5,10)) 

plot((cvd$t.stop, by = list(cvd$bmi), FUN=max)[2][ ,1], joint.gap$martingale.res, ylab="", xlab="days", 

main="Mobility indicators of heart diseases", ylim=c(-5,10)) 

plot(aggregate.data.frame(cvd$t.stop, by = list(cvd$bmi), FUN=max)[2][ ,1], joint.gap$martingale.res, ylab="", 

xlab="days", main="Mobility indicators of heart diseases", ylim=c(-5,10)) 

joint1=predictY(joint, datnew, var.time ="hpt") 

joint1=predictY(joint, datnew, var.time ="pul") 

plot(joint1) 

xyplot(log(hpt)~age25|diab, group = status, data = cvd, panel = function(x, y, ...){panel.xyplot(x, y, col = 2, lwd = 2)},) 

library(sme) 

install.packages("sme") 


