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Abstract: This study compares robust Poisson INARCH(P) models 

(more briefly: RP-INARCH) and robust negative binomial INARCH(p) 

models (more briefly: RNB-INARCH) to fit the new daily confirmed 

cases for the first wave of COVID 19 in Egypt. The robust estimation of 

these models is based on some modifications of the Conditional 

Maximum Likelihood Estimates (CMLE). The simulation results show 

that RNB-INARCH is more robust than RP-INARCH, but less efficient 

if the data contain isolated or patched additive outliers in terms of the 

bias calculation, whereby the low-bias model is more robust. These 

results are confirmed by the application study on COVID-19 data. The 

Akaike Information Criterion (AIC) is also compared for these models . 
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Introduction 

In 2020, Corona virus or “SARS-COV-2” 

(abbreviation of Corona-2 virus, severe active 

respiratory syndrome) also known as “COVID 19” 

spread globally. In 11 March 2020, the World Health 

Organization declared this virus as a pandemic. By the 

end of 2020, the virus has spread in at least one case in 

218 countries. In Egypt, the primary case was reported 

on 14/02/2020. At the end of 2020, it confirmed its 

higher new cases of COVID-19 that occurred every day 

and it’s become essential from the statistical point of 

view to analyze the behavior of this disease. 

Biostatistics as an important branch of statistic 

provides us with models which help to solve most 

problems of human health and diseases. Elsaied (2021) 

proposed some examples in the medical field, which 

used different statistical models: Heinen (2003) used a 

conditional autoregressive Poisson model (CAP) to fit 

the time series of monthly polio cases in the United 

States. Promprou et al. (2006) used ARIMA model to 

predict dengue haemorrhagic fever cases in southern 

Thailand. Martinez et al. (2011) used SARIMA model to 

predict dengue fever cases in Campinas, São Paulo State, 

Brazil. Ahdika and Lusiyana (2017) compared the INAR (1) 

Poisson model and Markov prediction model in West Java, 

Indonesia to predict the number of Dengue Hemorrhagic 

fever (DH) patients. On the other hand, Elsaied (2021) 

expanded other models that were applied to COVID-19 

data: Giuliani et al. (2020) used GLM model class to 

model and predict the spatio-temporal spread of Corona 

virus disease 2019 (COVID-19) in Italy. Fahmy et al. 

(2020) used a generalized and modified version of 

classical SIR/SEIR” Susceptible-Exposed-Infectious-

Recovered” models to analyze the dynamics outbreak 

of COVID-19 in Egypt, Qatar and Saudi Arabia. 

Asamoah et al. (2020) extended the generalized SEIR 

epidemic model to capture the dynamics of COVID-19 

in Ghana and Egypt. Lauer et al. (2020) assumed totally 

different distribution: Log normal, gamma, Weibull 

and Erlang to estimate the period of time of COVID-19 

from publicly reportable confirmed cases. Babaei et al. 

(2021a) investigated a stochastic SEIAQHR model for 

transmission of Corona-virus disease. Their model was 

established due to several safety protocols, for instance 

social-distancing, mask and quarantine. Also, Babaei et al. 

(2021b) introduced a stochastic model to describe the 

spread of coronavirus with considering several disease 

compartments related to different age groups. Khan et al. 

(2021), proposed a stochastic model to discuss the 

dynamics of novel corona virus disease. They formulated 

the model to study the long run behavior in varying 



Hanan Elsaied / Journal of Mathematics and Statistics 2021, Volume 17: 50.58 
DOI: 10.3844/jmssp.2021.50.58 

 

51 

population environment. Additionally, Elsaied (2021) 

recommended to use the RP-INARCH(p) models to fit 

the number of new daily confirmed cases of “COVID 

19” in Egypt, wherein those models proved its reason-

ability than the non robust ones to model such data. 

These models are considered to be the simplest 

subclasses of the INGARCH (p, q) models. The 

INGARCH (p, q) were developed early by Ferland et al. 

(2006) and Fokianos et al. (2009) among others. This 

study suggests to compare between RP-INARCH(p) and 

RNB-INARCH(p) models to fit “COVID 19” count data. 

In (2014), Elsaied and Fried analyzed the robust 

estimation of the Poisson-INARCH model for counting 

time series data. Also, negative binomial INARCH(P) 

(NB-INARCH) models and their comparison with the 

Poisson-INGARCH(P) (P-INARCH) models were 

proposed for time series data. For non-robust data: Davis 

and Wu (2009) studied the negative binomial model of 

time series counting and provided a performance 

estimator, which is an efficiency estimator, very close to 

the ML estimator. Zhu (2010) compared between     

Yule-Walker, the conditional least squares estimator and 

the maximum likelihood estimator (MLE) in terms of the 

mean absolute deviation error (MADE) under the shape 

parameter of NB-INGARCH model is known.  

Jamaludin et al. (2020) used P-INGARCH and NB-

INGARCH models to investigate the behavior of asthma 

disease in Johor Bahru. In keeping with their results NB-

INGARCH with identity and log link function is adequate 

in representing the asthma data than P-INGARCH model. 

As far as we know that there are few researches applied 

for robust time series data: Xiong and Zhu (2019) 

conferred the robust quasi-likelihood estimation for the 

NB-INGARCH (1,1) model within the presence of 

transient shifts and additive outliers with an application to 

transaction counts data. Recently, Elsaied and Fried 

(2021) discussed robust M-estimation for NB-

INARCH(p) models. In their study, they mixed the M-

estimation approaches developed by Elsaied and Fried 

(2014) for the restricting Poisson INARCH model with 

Aeberhard et al. (2014) for the negative binomial 

regression model. The remainder of this study, through its 

sections, will compare between RP-INARCH (1) and 

RNB-INARCH (1) to fit the new daily confirmed cases 

for the first wave of COVID 19 in Egypt. Section 2 

provides the theoretical basis for modelling and 

estimating these models. Section 3 uses some built-in 

functions in the R program to calculate the parameter 

estimates for our model. The simulation comparison between 

our functions is given in section 4. The use of COVID-19 

count data is described in section 5. Section 6 contains some 

conclusions based on the analysis results in sections 4 and 5. 

Modeling and Estimation 

Modeling 

Let {Yt :t ℕ} denotes a count time series and Yt| Ft−1 

with Ft−1 stands for the history of the process generated by 

Yt−1 up to time t-1. When the process allows equal-

dispersion, we assume the observations at each time 

point conditionally on the past to follow a Poisson (Yt| 

Ft−1 ∼Pois(µt)). But when the process allows over-

dispersion, we assume the observations at each time 

point conditionally on the past to follow the negative 

binomial Yt| Ft−1 ∼NB(r,pt). Here, r ℕ is a constant 

number of successes and pt is a probability of success 

that varies with time. Aeberhard et al. (2014) 

represented the density function for the linear NB-

model in terms of the inverse probability µt = (1 − pt)/pt 

with κ = r−1 ≥ 0 is used as a measure of the over-

dispersion parameter, as shown below: 
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 (3) 

 

Here, = (1,yt−1,...,yt-p)0, M(u) represents the 

digamma function, M(u) = ∂ lnΓ(u)/∂u. 

By solving the score equation St,θ(z) with κ = 0, we 

obtain the CMLE of θ for the P-INARCH(p) models. 

For κ, we use the moment estimation defined in 

(Breslow, 1984; Lawless, 1987; Christou and Fokianos, 

2014) in the following: 

 

 (4) 

 

here p + 1 is that the dimension of θ. 

Following to Elsaied and Fried (2021), an M-

estimation approach estimation to estimate θ given in (3) 

has the following form: 

 

 (5) 

 

with related conditional Pearson-residuals

and σt
2 as given above. dt,i: i = 0,...,p denotes the bias 

correction terms. The bias corrections can be calculated in 

the same way as in Elsaied and Fried (2014) by: 

 

 

 

To estimate κ, we use the M-estimator of Aeberhard et al. 

(2014) as follows: 

 

 

with: 

 

 

 

For computation, we can fix κ and drive a new estimate 

of κ iteratively as follows: 

 

 

 

Initialize σ from Poisson and then retrieve κ in an 

iterative process until the numerical convergence is 

obtained. Here, we use the ψ function for Tukey, which 

can be abbreviated as: 

 

 

 

with IA is the indicator function of a real set A. 

The tuning constant C determines the robustness and 

the efficiency of the estimators. Choosing a higher value 

of C can improve efficiency, but will reduce the 

robustness to outliers. 

The asymptotic properties of the consistency and 

normal convergence of the M-estimators for the RP-

INARCH and RNB-INARCH models are discussed in 

Elsaied and Fried (2014) and Elsaied and Fried (2021), 

respectively. 

Computation 

Elsaied (2021) proposed two functions implemented 

in the R program to compute the estimates of the P-
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INARCH (1) parameters in a robust and non-robust way. 

We recall the following notation for using those functions: 

“CML-Pois” to compute the conditional maximum 

likelihood estimator and “Tukeycor-Pois” to compute M-

estimation estimator with bias correction term. Similarly, 

we provide two new functions to calculate the parameter 

estimates of the NB-INARCH model (1) given in (3) and 

(5), by using “CML-NB” to denote the first function 

and“Tukeycor-NB” to call the second one. 

We follow the steps below to calculate the “CML-NB” 

algorithm in the R-program: 
 
1. Define a function in data(y), the parameter vector θ = 

(α0,α1) to calculate the score equation St,θ(z) with κ = 

0 defined in (3) to get the Poisson likelihood 

estimator of θ 

2. Define the function “CML-NB” as a function on θ and 

data (y) in order to solve the estimation score equation 

St,θ(z) defined in (3) to obtain the NB quasi-likelihood 

estimator of θ. These estimates are obtained using the 

“constrOptim” R function with initial values obtained 

under Poisson case resulted from Step 1 

3. In order to simplify the calculation of κ, assume that κ = 

0.3 is a known value, as given by Xiong and Zhu (2019) 
 

While the steps to calculate “Tukeycor-NB” algorithm 

in R program are as follows: 
 
1. Define a function in data (y), the parameter vector θ = 

(α0,α1) and in the tuning constant (C). Then solve the 

score equation St,θ(z) with κ = 0 given in (5) to obtain M-

estimation for Poisson quasi-likelihood estimator of θ 

2. Define the function “Tukeycor-NB” as a function of 

y and C. This function solves the estimation equation 

St,θ(z) defined in (5) to calculate the NB M-estimation 

of θ with bias correction term . As above again, we 

use the “constrOptim” function with initialization 

resulted from step 1 

3. Here, also κ is assumed to be known as described above 
 

In order to determine which of the two models is the 

best, we suggest to use Akaike Information Criterion 

(AIC). The general AIC formula for a given modal using 

the CMLE of the parameter vector θ is as follows: 
 

 (6) 

 
with LML is the log likelihood of the fitted model and 

N is the number of parameters in the model. Different 

modified robust versions of (6) are given in Ronchetti 

(1997) and Tharmaratnam and Claeskens (2013) among 

others. In order to simplify the calculation of AIC, we call 

the “robmixglm” function in the package robmixglm in R-

program. The “robmixglm” is a function in: [Formula(yt 

∼yt−1 with t ≥ 2),family = c(“Poisson”,”nbinom”,....)]. It 

returns AIC as a “robmixglm” object by using the following 

command: AIC (robmixglm(yt ∼yt−1)). We note that this 

package offers the possibility to calculate AIC criteria which 

are not available under “glmrob” function in the R package 

robustbase, for more details see Beath (2017). 

Simulations 

In this section, we run some simulation experiments to 

compare the performance of the functions defined above: 

“CML-Pois”, “CML-NB”, “Tukeycor-Pois” and 

“Tukeycor-NB”. We consider scenarios with no outliers 

and those with isolated or patched additive outliers and 

real parameter vector z = (α0, α1, κ) = (0,55,0,4,0,3), which 

are similar to those selected by Xiong and Zhu (2019). 

For Clean Data 

We start by comparing the efficiency for data without 

outliers and generate 500 time series with the length n = 1000 

from P-INARCH (1) and NB-INARCH (1) models as a 

function in the tuning constant C. The efficiencies for 

“Tukeycor-Pois” and “Tukeycor-NB” are measured 

relatively for “CML-Pois” and “CML-NB”, respectively. As 

shown in Fig. 1 (both top), the “Tukeycor-Pois” estimators 

achieve about 85% level of efficiency for α0 and about 90% 

level of efficiency for α1. While the “Tukeycor-NB estimator 

improves this level to reach about 95% with tuning constant 

C >9. Figure 1 (both below) shows the biases also as function 

of the tuning constant. There are slight differences in biases 

for all estimators with tuning constant C >7. These 

differences become lager when C <7 especially for α0. 

According to Fig. 1 and since the suitable selection of the 

tuning constants depends in principle on the parameters of 

the model, we suggest to use C  {7,9,11} where for: 

 

 (7) 

 

In the next two subsections, we will compare the 

estimated values in cases of presence isolated or patch 

additive outliers and increase or fix their sizes using the 

previously suggested values of the tuning constant C to 

control the efficiency level. 

Isolated Additive Outliers 

In this section, we will compare the biases between our 

estimators to increase 4, 8,..., 40 isolated outliers of size 5 or 

10 at random selected positions. We use 100 time series, each 

with a sample size of 500. For size 5 in Fig. 2, the loss of 

robustness of the “CML-Pois” or “CML-NB” is expressed as 

an increase in positive (negative) bias for α0 (α1), especially 

for the larger number of outliers. For α0, “Tukeycor-NB”, 

with C = 7 has the smallest bias. Whereas for α1, “Tukeycor-

Pois” with C = 7 has the smallest bias. Both followed by the 

biases with C = 9. But CMLEs give the largest biases for both 
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α0 and α1. For size 10 in Fig. 3, all estimators show similar 

biases behavior however the CMLEs give the largest biases. 

Here, the differences in biases between “CML-Pois”, 

“CMLNB” in one side and “Tukeycor-Pois”, “Tukeycor-

NB” on the other hand, it becomes larger than in case of size 

5 for both for both α0 and α1. 

Patch Additive Outliers 

Here, we consider a scenario that has a consecutive 

patch outlier of the same size. This type may occur due to 

temporary interruptions or temporary level shifts. Figure 

4 compares our estimated biases of 20 patch outliers of 

fixed size 5 at positions 101: 120. We use 100 time series 

for each with sample size = 500. All estimators show 

small biases differences. “Tukeycor-NB” with C = 7 and 

C = 9 give smaller biases than with C = 11 for both α0 and 

α1. Figure 5 compares the biases in case of 20 patch of 

additive outliers. The size increases from 1 to 20. For α0, 

all estimators show small biases differences, except for 

“CML-Pois” with a large number of outliers >10. But for 

α1, “Tukeycor-NB” with C = 7 and C = 9 give smaller biases 

than those for “Tukeycor-Pois”. Followed by the biases with 

C=11. Whereas “CML-Pois” and “CML-NB” have the 

largest biases, especially for number of outliers >6. 

Altogether, we conclude that “Tukeycor-Pois” and 

“Tukeycor-NB” with C = 7 and C = 9 give better results than 

those with C=11. Also, they are better than the CMLEs under 

the both scenarios of outliers: Isolated or patch additive. 

 

 
 
Fig. 1: Simulated efficiencies (both above) for 0 on the left and 1 on the right as a function of the tuning constant C for M-estimators 

"Tukeycor-Pois" and "Tukeycor-NB" relatively to CMLEs. Similar experimental biases (both bottom) for 0 (left) and 1 (right) 

with z = (0:55. 0:4. 0:3) and n = 1000 

 

 
 
Fig. 2: Simulated biases for M-estimators and CMLEs with various C for 0 (in left) and 1 (in right) for 40 isolated outliers of size 

5 with z = (0:55. 0:4. 0:3) and n = 500 

Relative efficiency for alpha_0, n = 1000, sigma = 0.3 Relative efficiency for alpha_1, n = 1000, sigma = 0.3 

Bias for alpha_1, n = 1000, sigma = 0.3 Bias for alpha_0, n = 1000, sigma = 0.3 
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Fig. 3: Simulated biases for M-estimators and CMLEs with various C for 0 (in left) and 1 (in right) for 40 isolated outliers of size 

10 with z = (0:55. 0:4. 0:3) and n = 500 
 

 
 
Fig. 4: The biases for M-estimators and CMLEs with various C for 0 (in left) and 1 (in right) for 20 patched-outliers of size 5 with 

z = (0:55. 0:4. 0:3) and n = 500 
 

 
 
Fig. 5: The biases for M-estimators and CMLEs with various C for 0 (in left) and 1 (in right) for 20 patched-outliers, their size 

increases with z = (0:55. 0:4. 0:3) and n = 500 
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Using COVID-19 Data 

This section compares the performance of our best 

function resulted above, which are: Tukeycor-Pois and 

Tukeycor-NB with tuning constants 7 and 9 through 

fitting RP-INARCH(1) and RNB-INARCH(1) for the 

variable of the number of new “COVID-19” confirmed 

cases in Egypt. Figure 6 shows 265 observations of 

each day new confirmed cases of “COVID 19” from 

March 7, 2020 to November 26, 2020. This period 

corresponds to the time until the end of the first wave 

of COVID 19 in Egypt as it is declared. The source of 

this data and its description are given in Elsaied (2021). 

Here, we follow the steps below to reach which one of 

the two models is the best choice: 

 

1. Fit RP-INARCH (1) and RNB-INARCH (1) to the 

real confirmed COVID-19 cases using the functions 

“Tukeycor-Pois” and “Tukeycor-NB” with tuning 

constants 7 and 9 

2. Use the modified version of the “interv-multiple” 

function in the R-package “tscount” to detect and 

remove the outlier. This function returns the data 

after each step of the correction process using the 

same setting parameter as given in Elsaied (2021) 

3. Repeat Step 1 again, but after removing the outliers 

according to Step 2 

4. Compare the values of AIC criteria for our functions 

(the less AIC is the better) depending on the function 

“robmixglm” as defined before. 

 

Table 1 (right) shows the results of the final estimates by 

RP-INARCH(1) and RNB-INARCH(1), which depend on 

the data obtained from the last step of the correction 

procedure. Here is step 24, Fig. 6. By using of the “interv-

multiple” function, we detect 10 essential outliers without 

repeating and without including the small level shifts at the 

beginning of the series with 7 of 10 (70% of the determined 

outliers) were level shift outliers. These outliers at point 

times: 45, 69, 117, 119, 133, 237 and 255. As excepted for 

clean data, “Tukeycor-Pois” and “Tukeycor-NB” with 

tuning constants 7 and 9 give similar results for and . 

Also, the differences in “RMSEs” are negligible. In 

Table 1 (left), however, all estimators give different 

values for both for and . “Tukeycor-NB” with C=7 

and C=9 give smaller RMSEs” than for “Tukeycor-

Pois”. For both types of data, the “RMSEs” are 

computed by simulation using 100 data sets of sizes 265 

from P-INARCH (1) and RP-INARCH (1) models with 

true parameter values computed by the CMLE. 

For both data types, “Tukeycor-NB” has smaller AICs 

than that of “Tukeycor-Pois” and we find that the values 

of AIC do not affect the values of the tuning constant C. 

This is because that the function “robmixglm” does not 

depend on the tuning parameter values to be determined 

in advance, Beath (2017). 

We note that for the dependence parameter α1, there’s 

nearly no serial relation and α0 absorbs all outliers' effects. 

An explanation of this problem is that the presence of 

seven level shifts can be explained as the long sequence 

of outliers, that is, the high degree contamination. 

According to our situation here, we deduce that: At 

tuning constants 9: Both estimators have the same 

efficiency and RNB-INARCH(1) is more robust. At 

tuning constants 7: RP-INARCH(1) is more efficiency but 

less robust than RNB-INARCH(1) and the choice of any 

one depends on the aim of the study or the desire 

properties of the estimator. 

 

 

 

Fig. 6: COVID 19 data (in solid line) and data after the outliers are removed (in dashed line) 
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Table 1: Parameter vector θ = (α0,α1) estimates, their related roots of the Mean Square Errors (RMSEs) between the parentheses and 

AIC for Covid 19 data (left) and for the cleaned Covid 19 (right) 

 Real data   Clean data 

 ---------------------------------------------------- ------------------------------------------------------- 

Estimates model estimators 0 1 AIC 0 1 AIC 

“Tukeycor-Pois,C= 7” 14.783 0.013  2.718 0.956  

 (2.2346) (0.1378) 3823 (1.5068) (0.0424) 1975 

“Tukeycor-Pois,C= 9” 35.373 0.088  2.893 0.952  

 (2.2187) (0.1397) 3823 (1.5163) (0.0422) 1975 

“Tukeycor-NB,C= 7” 1.74 1.27*10−9  0.005 0.850  

 (1.766) (0.1147) 3242 (1.4565) (0.0605) 1955 

“Tukeycor-NB,C= 9” 37.369 0.006  0.006 0.918  

 (1.5143) (0.1124) 3242 (1.4426) (0.0581) 1955 

 

Conclusion 

We have compared the robust parameter estimates of 

INARCH (1) model with conditional Poisson or negative 

binomial distributions. Our proposal of negative binomial 

is more robust with the tuning constant = 7, but has a 

lower efficiency compared to Poisson. For the tuning 

constant = 9, both have similar efficiencies, but the 

negative binomial is more robust. Obviously, it is more 

difficult to choose a tuning constant in order to achieve 

high efficiency and high robustness for different outlier 

scenarios (isolated or patched). Therefore, when 

robustness is important, we prefer to use negative 

binomial. When efficiency is important, we prefer 

Poisson. Alternatively for future work, we suggest to use 

the concept of numerical quadrature, ordinary differential 

equation with block method, non-linear partial differential 

equation with B-Spline collocation and differential 

transformation technique instead of Poisson process. 
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