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Introduction

The definition of chaos in dynamics was started in
1975 by Li and Yorke (1975). They studied pairs of
points with the property that their orbits are neither
asymptotic nor separated by any positive fixed
constant. To describe the complexity and
unpredictability of the system from different
perspectives, various definitions of chaos have been
proposed, such as Devaney chaos (Banks, 1992),
Generic chaos (Snoha, 1990), dense chaos (Snoha et
al., 1992), dense J-chaos (Ruette, 2005), Li-Yorke
sensitivity (Akin and Kolyada, 2003) and so on. While,
an important extension of Li-Yorke chaos is
distributional chaos, which is introduced by Schweizer
and Smital (1994). The related concept distributional
chaotic pair as two points for which the statistical
distribution of distances between the orbits does not
converge, and Schweizer and Smital (1994) proved that
the existence of a single distributional chaotic pair is
equivalent to the positive topological entropy (and
some other notions of chaos) when restricted to the
compact interval case. Since then, distributional chaos
has been widely concerned in dynamical system theory
(see Smital and Stefankova, 2004; Balibrea et al., 2005;
Martinez-Giménez et al., 2009; Liao et al., 2009;
Oprocha, 2009; Li, 2011; Dvorakova, 2011; Wu and
Chen, 2013; Shao et al., 2018). Smital and Stefankova
(2004) showed that the two notions of distributional
chaos used in the paper, for continuous maps of a
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sequence f  =(f,, f...--),VneN (Nisaset of natural numbers) is studied.
Then, the uniformly distributional chaos and maximal distributional chaos of
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compact metric space, are invariants of topological
conjugation. To describe distributional chaos in more
detail, distributional chaos of type 1 (DC1), of type 2 (
DC2), and of type 3 (DC3) are proposed. Balibrea et al.
(2004) showed that DC3 does not imply chaos in the sense
of Li and Yorke. They also showed that DC3 is not
invariant with respect to topological conjugation.
Contrary to this, either DC1 or DC2 is topological
conjugation invariant and implies Li and Yorke chaos.
Then, Martinez-Gimenez (2008) provided sufficient
conditions which give uniformly distributional chaos for
backward shift operators, and Liao (2009) gave an
example which is mixing but not distributively chaotic. In
the same year, Oprocha (2009) proved that any interval
map with positive topological entropy contains two
invariant subsets X,Y <1 such that f|, has positive
topological entropy and f|, displays distributional chaos
of type 1, but not conversely. Next year, Li (2011) showed
that for a continuous selfmap f of a compact metric space
X and any integer N>0, f is DC1 (resp. DC2) if and
only if f"is also DC1 (resp. DC2). And Dvorakova
(2011) showed that if f is a DC3 continuous map of a
compact metric space then also f“ is DC3 for every
N >0. In 2013, Wu proved that the annihilation operator of
an unforced quantum harmonic oscillator admits an invariant
distributionally e-scrambled set for any 0< & <2, showing
that this operator can exhibit maximal distributional chaos on
an uncountable invariant subset (in (Wu and Chen, 2013)).
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Moreover, the weighted shift operator exhibits uniformly
distributional chaos and this property is preserved under
iterations (in (Wu et al., 2013)). In 2018, Shao et al. (2018)

showed that three versions named DC1, DC2 and DCZ%
are invariants under iterations when {f }" "is equi-
continuous in X, which weakens the condition in the
literature that {f, }”0 uniformly converges in a compact

space X . Itisalso proved that DC1, DC2, and DCZ% are

invariants of topological equiconjugacy.

However, most of the literature studies chaos in
autonomous systems (X, f), but in reality, a lot of
systems do not have good properties as autonomous
systems. Different disturbances need the different
functions to describe, suggesting that many systems in
engineering practice are non-autonomous systems.
Non-autonomous systems were first proposed by in
literature (Kolyada and Snoha, 1996). Subsequently,
they discussed the minimality of non-autonomous
systems and the topological entropy of non-
autonomous piecewise monotone dynamical systems
on intervals in literature (Kolyada et al., 1999;
Kolyada and Trofimchuk, 2004).

In this study, let 1 =[0,+] and the metric on | is
denoted as p. f :1 —1, neN is a mapping sequence
and denoted by f, =(f,f,--). This sequence defines a
non-autonomous discrete system (1, f,.) . Under this
mapping sequence, the orbit of the point xel is

orb(x, f,.)=(f"(x))(neN),

where f"=f o...of ,f° denotes the identity mapping.
Similarly, f¥=f , ,o-of ,of . If f for vneN,
then (1, f,,) is an autonomous discrete system (I, f).

Next section, several definitions of distributional
chaoticity are given. In section 3 and section 4, the main
results are established.

Preliminaries

Similar to the definition of distributional chaos in
autonomous systems, the following defines distributional
chaos in the case of non-autonomous.

Definition 2.1

Let f, _=(f, f..-) (YneN) is a mapping sequence
on I. f, is called distributional chaos (or distributional

chaos of type 1, briefly, DC1), if there is an uncountable
subset S < I such that, for vx,yeS,x=y,

74

(i) vt>0,Fy(t.f,.)
. 1 X i-n+ i-n+:
= limsupy 2ot (P00 67 0)

(i) 3t >0, F, (t.f,.)

=1,

.. 1 X i-n+ i-n+:
:I'Ql'ffk_nJrlzZ[“‘)(p(f" (), £ (y))) =0,

where, te R, X[oy is the characteristic function of the set
Xpy. That is, when s<[0,t), Zio(8) =1, when s¢[0,t),
l’[o,[)(s) =0.

F,tf ) and F (tf ) are called the upper and
lower distributional functions of f respectively and

is called the distributional

the uncountable subset S
scrambled setof f , in 1.

The following will give other definitions of
distributional chaoticity in the case of non-autonomous:

Definition 2.2

The mapping sequence f,. (Vn € N) is called:

(1) distributional chaos of type 2 (briefly, DC2), if there
is an uncountable subset S< 1, for any x,yeS and

t>0, Fy(tf, . )=land F (tf, )<1;

distributional chaos type 3 (briefly, DC3), if there is
an uncountable subset Sc1, for any x,yeS and

t>0,Fy (4 f,. ) > Fy (6 FL) 5

distributional chaos of type 2%, (briefly, DCZ% ), if

)

®)
there is an uncountable subset S 1, forany x,yeS
, there exist ¢>0,r>0 such that F,(t,,f

n' 'neo

)<c<

Fo(tf,.

) forall O<t<r;
(4) (p,q) -distributional chaos (where 0<p=<qg<1,
briefly, (p, q)-DC), if there is an uncountable subset

Scl ande>0, for any xyes , Fy(t.f,.)=q,

ny (t, fn,oc) = p fOI‘ a.” O<t<eg X
is an

uniformly distributional chaos, if there
uncountable subset S I satisfying that,

Q)

i Fy (. f,.

)=1forany x,yes andany t>0,

ii. there exists to> 0 such that Fyy (to, fn) = 0 for any
X,y eS;

maximal distributional chaos, if there is an

uncountable subset S I satisfying that,

(6)

i Fy(t. fn,w)Il forany x,yeS andany t>0,
il. ny(tOlfn,oo):O for any X,ye$S and any O<t0<
diaml .
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The Relationship of Chaotic Properties
between f1,» and fn,

Lemma 3.1

Wu et al. (2013) the mapping sequence f_ is

distributionally chaotic if and only if the mapping
sequence f, (vneN, nx2) isdistributionally chaotic.

Similar to Lemma 3.1, the following discuss distributional
chaos in Definition 2.2.

Theorem 3.2

The mapping sequence f,, is - chaotic if and only
if the mapping sequence f,, (VneN, nx2) is 7-
chaotic. Where 7- chaos stands for DC2 , DC3,
DCZ%,(p,q) -distributional chaos, uniformly distribu-
tional chaos, or maximal distributional chaos.
Proof

Only the sufficiency of the case n=2 is proved. The
necessity is similar,
(1) For DC2, let Sc1 be a distributional scrambled

setof f,,,thenvx,yeS,x=y,vt>0, one has

(i) Fy (b1

:Iir:lsijpﬁ {2£i <k:p(f,7(x). 1, l(y))<t}‘ =1,

(i) Fy (t.7,..)

= Iiminfé‘{Zs i<k :p( £,4(x), f2i71(y))<t0}

k—w

<Fy (t, fz“,{),

where, | A| represents the cardinality of the set A.

Since f, is surjective, then for any x,yeS,x=vy,
there exist x",y"el,x" =y  such that f(x)=x, f,(y)=y.
Taking an inverse image of each element in S under f,,

and let T is the set of these inverse images, then T isan
uncountable set. The following will prove that T is the

distributional scrambled set of f,, .
(@ For any t>0 and any x,y eT , let c=1if
d(f,(<), f,(y)) <t ; let c=0 if d(f,(x), f,(y")) =t , then,

Foe(t fi)= Iirknsup%‘{ls i<k: p( f(x), £ (y*))<t}‘

—n

= Iimsup%(‘{z <i<k: p( f(x), £ (y)) <t}‘ +c)

k—w

= Iimsupl‘{Zs i<k: p( £,7(x), fzi’l(y))<t}‘

ke K
<k (170, 17 (v)) <t

IA

:Iimsupﬁ‘{Z

k—w

=F,(tf,.)=1

(b) Forany t>0,

Frpe(t 1) = Iirpjgf%‘{lg i<k p(£(<). 1 (y)) <t}‘

=liminf 1(\{2 <izk:p(1(x), 17 (y)) <t]|+c)

kon K

~ liminf 1 {2<i<kip(f,7(x), £,7(y)) <t}‘

koo kK —1
=F,(tf,.)
<1.
So, F..(t f,.)<F..(tf,). Thus, f.is DC2.
In the following proof, x, y", S, T are the same as the

proofin (1).

(2) For DC3, since F(t, fr0) <Fey(tf5.) for any
t >0 and because

F;y* (t, fl,oc) = F;;(t, fz,oc)’ Fx*y* (t, fl,oo) = ny (t, fz,w) ’

then, Fo.(t, )< Fi.(t f)-
So, f., is DC3.

(3) For DCZ% , since there exist ¢>0, r>0 such that

Fy(t.f,.)<c<F,(tf,,) foranyx,yeSandany 0<t<r

,thenforany x",y" T, for the above ¢>0, r >0, one has
that

Fope(t. ) =Fy (L., ) <c<Fy (4.1, ) = Fru(t. £,

forany O<t<r.
That is to say, f, . is DCZ%.

(4) For (p, q)-distributional chaos (where 0< p<q
<1), since there exists a ¢ >0 such that

Fo(tf.)=a.F,(tf.)=p

forany x,yeS andany O<t<eg,thenforany x',y T,

Fo(t ) =Fy (tf,. ) =0 Fen(t f, ) =Fy (LT, ) =P,

forany O<t<e.
So, f,., is (p, g)-distributionally chaotic.

(5) For uniformly distributional chaos, by (a),
Fx’iy*(t, f,.)=1 for any t>0. The proof of the lower

distributional function is as follows.
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Since there exists a t, >0 such that F(t, f,,)=0
forany x,yeS,thenforany x’,y"eT andthe above t,
, one has that

Fo(to. f..) = Fy (6. £,..) =0.

This means that f; .. is uniformly distributional chaos.
(6) For maximal distributional chaos, by (a),
Fx’iy*(t, f,.)=1 for any t>0. The proof of the lower

distributional function is as follows.
Since F,(t, f,.)=0 for any x,yeS and any
0<t, <diaml , then for any x",y"eT and any 0<t, <

diaml , one has that

Fx*y* (to’ fl,oo) = F><y (tO’ f2~°°) =0

Thus, f,, is maximal distributional chaos.
The proof is completed.

Distributional Chaoticity of Compound
System of f,,

This section mainly discusses the relationship between
the distributional chaos of f1 .. and the distributional chaos of
the compound system ™ (m is a positive integer). In the

following, it is always assumed that f, (n € N) are
surjective, which is a common condition when dealing with
these systems.

For any meN, denote:

h = o f,
h f o fm+1‘
hy = fopomeo f(p-i)m+1""

(1, hy«) is called a compound system of (I, f1.). To make
it easier to see the relationship between system (I, hi«)
and system (I, f ), the compound system hy. is also

denoted by ™.
Theorem 4.1

If the mapping
distributionally chaotic, then for any meN, fI" is also

sequence f,, s

,00

uniformly

uniformly distributionally chaotic.
Proof

Let s, is auniformly distributionally scrambled set of
f,,. For any meN, the following will prove that s, is
also a uniformly distributionally scrambled set of 7.

(i) For any x,yeS,:x=yand any t>0, it is claimed
that there is an i e N such that

k .
Fy(t £) = lir:fgp%;z[o,t)(p( L(x), £7(y))) =1

In fact, hypothetically, there exist x,,y, €S,: %, # ¥,
and t, >0 such that F; (t, f{7')<1, then,

limsup- Zlox.]( (£/(x). £ ()

k—o

m k-1

_Ilmsup—zz;(ot ( (£ (x), 17 (v)))

Jll*

<28 imswn St (o(17100.171 )

= X—>®

< %(m 10 F, (1))

<1
Since, s, isauniformly distributionally scrambled set
of f,.,then Fx:yO [t; fl"”j =1. By the definition of upper

limit, there is a strictly increasing sequence {n},_, such
that

Put
M, ={km:keZ }n{n :seN},
M, ={km+ 1:keZ"} n{n,:seN},

M, ,= {km+m— 1:keZ*} N {n,:seN}.

m

Then there exists a 1 €{0,1,---,m—1} such that M, isan

infinite set. Denote M, ={nl:se N}, then

Amn.Z; o J( P (%) £ (%)) =2

Thus,

n!+m—I

_| 2 Z[mo( ( ( )vfli(VO)))

i=1

1> Ilmsup
. 1
> limsup—
850  Ng +

. ng
> limsup4————
8w N —Ing =

=1.
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By the definition of M, one can get that m|n! +m—1I. So

imsup S ([1106). 1)

> Iimsupﬁmz’? Z[Oyto)(p( fli (XO)' f1i (yo )))

8w

=1

This contradicts that

Iimsupﬁikzml}{[o‘%) (p( f(x), f; (y))) <1l

k—>o0

(ii) The following prove that there exists a o> 0 such that

0

m R 1 : im im
By (5 1) =ity S ({18700, 67(9) -
forany x,yeS,:x=y.

In fact, since s, is a uniformly distributionally
scrambled set of f, , there exists 5 >0 such that
Fy(d,f..)=0 forany x,yes,:x=y.

Hypothetically, there exist such that
S5
2
>0, there are x,.,y. €S, such that F, (&% £)>0.

5%

Xss Y5 €Sy

E

XsYs

(6, t")>0forany 5>0 . In particular, for 5" =

Since F

X Yo

increasing sequence {m.J},

(6,,f,,)=0. then there exists a strictly
such that

eN

m . .
e (01 =m0 ({1 05). £/ (3))) =0
Similar to the proof of (i), one can find

ce{0,1,---,m-1} such that
m; ={km+c:k e N}n{m, :seN}

is an infinite set. Thus,

0=Ilim

i3 1 ({1 ). 8 (5)

i 1 i i
:gmm IZ::, Z[o,o‘l)(p(fl (Xé*)l f, (yo‘*)))

%(mg +mfc)fl

X[Ml)(p( fime (x(;*), fimi (y,)))

77

oo 1 m
2liminf — ———-
s m om;+m-c

l(m§ +m—c)—1

m ; Z[o,b‘l ) (p( fl(i+1)m (X(;*)1 fl(i+1)m (y{s*)))

22F (3.1
> %FM_ (67, £7)>0.

It is a contradiction.
So, ™ is uniformly distributionally chaotic.

The proof is completed.
Theorem 4.2
If the mapping

distributionally chaotic, then for any me N, f™ is also
maximally distributionally chaotic.

sequence f, is maximally

Proof

Let s, be a maximal distributionally scrambled set of

f,, , the following will prove that S, is also a maximal

Lo !

distributionally scrambled set of f™, vmeN .

(i) By the proof of Theorem 4.1, for any x,y €S, :x =y
and anyt>0, one has F, (t, ') =1.

(if) For any x,y e S,:x=y and any 0<¢ <diaml , one
can prove that

0.

1 . !
o0 )= 2t (00 £20)

In fact, since S, is a maximal distributionally
scrambled set of 1, then F (s,f,)=0 for any

X,yeS,:x=y andany 6:0<o <diaml .

Hypothetically, there exist x.,y.eS, and X:%

such that F, | (5", t1)>0.

5

Since F, (5, flm)zo, then there exists a strictly

5

increasing sequence {m.},_, such that

eN

1

(@)= tim S (o). £ (3, )

—>ms:

F

XY

=0.

One can find ce{0,1,---,m -1} such that

m; ={km+c:keN} ~{m, :seN}
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is an infinite set. Then,

_I|m—Zl[os( (8% 2 ()

S0 m

mg +m—c

wrinms 3 Aeale(0) ()

i=1
Xo.5) (p( fime (XJ*), fime (y,)))

%(m&m—c)&

%(mg +mfc)f1

Mg +M—CiT S

It is a contradiction.
So, f™ is maximally distributionally chaotic.

The proof is completed.

The above two Theorems show that uniformly
distributional chaos (or maximal distributional chaos) of

f,. is maintained under the compound case. While, if
vmeN,m=>2, {7 is uniformly distributional chaos (or

maximal distributional chaos), whether f, . is uniformly

distributional chaos (or maximal distributional chaos) or
not? To answer this question, three lemmas are given first.

Lemma 4.3 (Wu et al., 2013)
If the mapping sequence ( f, )::1 converges uniformly

to f,then vmeN, m>2, the mapping sequence (fnm)°°=1
converges uniformly to ™.

Lemma 4.4 (Wu et al., 2013)

is equicontinuous,

f”m )::1

If the mapping sequence (f, ):
then vmeN,m>2, the mapping sequence ( is
equicontinuous.

Lemma 4.5(Wu et al., 2013)

If the mapping sequence (fn )°°_1 is equicontinuous (or
uniformly converges to f ), then ve>0,vmeN, there

exist o(e)>0 and N(m)eN such that

% ; Z[o‘a)(p(flim”(xé*)'flimj(yf"*)))

78

p(f(x). £
n>N(m).

(y))<g

for wx,yel:p(xy)<d(e) and

Now the question posed above can be answered.
Theorem 4.6

If (f, ):=1

to f)and vmeN,m=2, f" is uniformly distributionally

is equicontinuous (or uniformly converges

chaotic, then f;_, is uniformly distributionally chaotic.

Proof.

Let D, be a uniformly distributionally scrambled
set of 7.

If F,(6,f7)=1 for any xyeD,:x=y and any
§>0, then, F (t,f,,)=1for any x,yeD,:x=yand any

t>0.

In fact, for any t>0, by Lemma 4.5, there exist
0:0<6<t and NeN such that, for any
x,yel:p(x,y)<d and any k>N, p(f!(x),f,(y)) <t for

any i:1<i<m. So, for any j=N:p(f"(x), f"(y))<o
and any i:1<i<m, one has that

p( f7 (x), £, (y)) <t.

Then:

(k+1)m
N <

ZZ[O?( (£7(). £"(v))- Ziow (P( (). £ (¥)))

1
m =
Thus,

Fr (. flw)—llmsup z;{[m (p(flj(x),f1j(y)))

k-

(k+1)m

:Iir:ElJJp( +1)m ; )([0,‘)(p(fli(x)lfli(y)))
_..rknjgp!*z) oo P10, 1(9)
=limsupy (me( (17 (). £ (1)) -N)
=1

If there exists a s>0 such that F, (s, f{7')=0 for any
x,yeD,:x=y , then there exists a 0>0 such that

F,(0.f..)=0forany x,yeD,:x=y.
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In fact, for the above s >0, there exist 5:0 < §<sand N;
€ N such that, for any x,yel:p(x,y)<d and any k > Ny,
p(fl(x), fi(y)<s for any i:1<i<m So, for any
i=N, 1p(f"(x), f,"(y))=s and any ix1< 1 <m, one has that

p(fm (%), £, (y)) 2 6.
Then,

zllw( (£7(x). £"(y)))-N zl[m( () (x). 1 (v)))

And because

limsup—

o 31,0 ({1 47(9)
=1-liminf [Zz[m( (17 >,fsm(y>>)]

=1-F,, (s 1) =1.

Then,
. 1( & i j
limsup- Do (P(R () R (¥)) |=
- j=1
Thus,

F., (3., )=1-limsup=

k—0

S ol ) -

So f,, is uniformly distributional chaos.

Theorem 4.7

" (1,);
n=1
to f)anvmeN,m=2, fis maximally distributionally
chaotic, then f,  is maximally distributionally chaotic.

is equicontinuous (or uniformly converges

Proof.

Let D, be a maximal distributionally scrambled set of
f". Forany x,yeD,:x=Yy, one has

(i) If F,,(5,£7")=1 for any 5 >0, then F, (t.f,.)=
foranyt>0;

(i) If F,(s.f)=0 for any O<s<diaml , then
F.(8.1,,)=0forany 0<5<diaml .

The proof of upper distributional function for f, is

the same as the proof of uniformly distributional chaos, so
it is omitted. The following will lower upper distributional
function for f,_ .

79

In fact, for any 0 < 5 < diaml, there exists: 0 <s < 6 and
N e N such that, for any x, y € I: p(x, y) and any k > N
p(Fl(x), fl(y) <6 for any i:l< | < m, So, for any

i=N:p(f"(x),£"(y))<s andany i:1<1<m, one has that

p(fm(x), £ (y)) <.
Then,

Z%u((f“ X). £ (y))) =N
S (P00, 89)

L1
Thus,
Fo(8.f.)= Iirkllinflzkllovg'(p( fi(x), £, (y)))
3 a o800 )
=timint 23 20 (p(1 () 1/(1))

=liminf (2105( (t( ),fliM(y)))—N]:o.

=liminf ———
k—w

k+1
(k+)m

So f, is maximal distributional chaos.

The proof is completed.

In Theorem 4.6 and Theorem 4.7, the condition
“(f, ):l is equicontinuous (or uniformly converges to f

)’ is indispensable. We give a counter example to show
that, there is a compound system which is distributional
chaos, but the original system is not. The following
proof is for uniformly distributional chaos. Maximal
distributional chaos is similar.

Example 4.8

Define metric p:1x1 —[0,1]as:

0, x=y,
l 2k 2k+1
p(xy) ﬁ,[x]:[y]so(modZ ><¢ye[2bJ ijj,keN,
[
1, others.
where, b =2,b =2%"",
Let
1 ©
fi=2x f =2x+1 (f) = ffuf)

define functions g, = f, - f, (ieN), then
(1) g, is not uniformly distributional chaos;
(2) g™ is uniformly distributional chaos.
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Proof.

(1) vx,yel0,+x)(x =y), the following prove that

( gle = Ilmsup . ZZ[

i=1

)( p(gl(x).a1)(y))<7.

N

2

It can be proved in three cases.
(1a) if [x]=[y], then VieN,

Lai(0)]=Dx+il=[y+i]=[gi(¥)],

s0 p(8i(x).g;(y))=1. Therefore,

imsipie 3z o ({801 (1) <o

i=1

(1b) if [x]=[y]=0(mod2), then VieN,:

[ (x)]=[x]+2i +1=[y]+2i +1=[ gZ"*(y)] =1(mod2),

S0 p(glzwl( ) glzl+1(y)) =1,
Therefore,

k
“rknjlojpk;l[ 0, ]( (gli(x)191i(y)))S |irpj:p‘:i:|:;.

(1c) if [x]=[yl=1Lmod2) , at the same time, it was
noted that [ g;(x)|=[gi(y)]=0(mod2), by (1b),

limsup= . Z;([

k—% i=1

)( p(01(%).9(y))) <

N

'2

Thus, g, is not uniformly distributional chaos.

(2) Denote s=(0,1) , one can proved that s is a
uniformly distributionally scrambled set of g/ .

1
(2a) Forany t>0, take n, e N, such that ZTno <t. Let

L, L
L, _Zjle VX, yeS(x=y),V Olvie|:2n122n+1_1Jl

since

80

(0 (x) = x+2i [ Ly, Lyt ).

(92).(y) = y+2i €[ Ly L),

and

()00 =] (a2).(v) | =21

then,

P((012),(0).(082), () = p(x-+ 21y +20) = ;n <X

Therefore,

L2n+l — L2n
i HaoP((652), (00 (12). (1)) | —2
2n+1 i=1 2n+1
2 2
So,
12F (t,g7)
—timsup 3 7, (o((662), 001 (62), ()
Z;ﬂ
2timsup—— 3 7, (((652), () (62);(v)))
n—ow & i=1
2
L2n+12_ L2n -1
> limsup
N—ew L2n+1
2
by +b, +..4by,
% 1
=li
Ty b, +b, +...+D,, +2%
2
=1
(2b) Put

t, :%,VX,yeS(x;t y),vneN,Vi e{LZZM,LZE*le,

Since

(0, (%) % (92 ).(¥) €[ Lnssr Lonsz ).

then
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A(a2);00.(612), (v)) =1
So,
23 bllofonteon)s 2
2 2

One can obtain that,

0<F, .62

= liminf igl[oij(p((gl[ﬂ )Il(x)(gﬁlj);(y)))
Mi:"[o1](p((gfi)l(X),(giil)i(y)))

2
2

L2n+2 _ b2n+2 -1
2 2

2n+2

2
b, +b2+...+b2m1+1
= liminf 2 T
e b +h, +L by, 22T
2

<liminf

n—w

<liminf

n—w

Thus, g¥ is uniformly distributional chaos.
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