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Abstract: Financial market participants often speculate on how markets 

would behave in the light of certain information at hand. This speculation 

contributes to volatility within the financial market and consequently, it 

makes the market unstable. The Ornstein Uhlenbeck (OU) model has 

intensively been used in modelling volatility, however, the contribution of 

speculation on volatility has not been studied in the OU model. Therefore, 

this study focuses on the modification of the OU model by incorporating a 

time dependent exponential function that caters for the contribution of 

speculation on volatility. The statistical properties of the Improved OU 

model are then studied and the results compared with properties of the OU 

model. NAD/USD exchange rate data is used to compare and validate the 

Improved model with the OU model. It was found that both the OU and 

Improved OU model had a similar expected price, while variance of price 

for the OU model stabilised upwards up to 16 and variance of price for the 

Improved OU model stabilised downwards up to 0.01. The variance of the 

Improved model was found to be much lower than that of the OU model. 

Additionally, it was found that the distribution of the forecasted price changed 

with different lead times for the OU model whereas, the distribution of the 

forecasted price for the Improved OU model did not change with different lead 

times. Thus, the OU model is a time specific model whereas the Improved OU 

model is an invariant time model. Consequently, the Improved OU model was 

found to be more efficient than the OU model. 
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Introduction 

According to Hirota et al. (2018), speculators are short 

term partakers in financial markets. When markets are 

occupied by speculators, prices can be susceptible to 

excess volatility (Keynes (1936), Shiller (2000), Stiglitz 

(1989). The role of speculators in financial markets has 

been a source of considerable interest and controversy in 

recent years. An example of the effects of speculation is 

given in an article by Provan et al. (2020), where a rumour 

of positive news regarding a Covid-19 vaccine that was 

developed at the University of Oxford increased shares in 

Astra Zeneca by 5 percent. To understand the effect such 

and other types of speculation has on volatility, it is 

important to model volatility and investigate what effect 

speculation has on volatility using the same model. 

Geometric Brownian Motion (GBM) has been used 

widely in modelling price volatility since its introduction 

in the 1960’s. According to stochastic process St is said to 

follow a geometric brownian motion if it satisfies the 

following stochastic differential equation: 

 

,t t t tdS µS dt S dW   (1) 

 

where, St is price, dSt is the change in price, dt is the 

change in time and dWt is change in a Wiener process 

(brownian motion). Parameters µ and σ are interpreted 

as the drift and the volatility term respectively. One of 

the drawbacks of the GBM model is that its predicted 

price can continue to increase to unrealistic values or 

decrease to generate negative price Sigman (2006), 

which does not depict a real-life scenario. Therefore, 

the Ornstein Uhlenbeck (OU) Model tries to solve this 

weakness by incorporating a mean reverting parameter 

k as shown in (2): 
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  ,t t tdS k µ S dt dW    (2) 

 

where the parameter µ, σ and k represent mean, volatility 

term and the rate by which the price reverts towards the 

mean respectively, Doob (1942). The process in (2) 

fluctuates randomly but tends to revert to the mean µ with 

the help of the mean reverting parameter k where, the 

behaviour of this reversion depends on both the short-term 

standard deviation σ and the speed of the reversion 

parameter k (Franco 2015). The larger the value of k, the 

greater the speed of mean-reversion and vice-versa 

(Manzoor (2015). 

Although the OU model solves the weakness of the 

GBM model, it carries its own weakness which is the 

inability to predict accurate price when speculation is 

present in a market. Having identified the short comings 

of the GBM model and OU model, this study modifies the 

existing OU model in (2) by incorporating a speculation 

function to make the volatility time dependent and 

assesses the contribution of speculation on volatility. 

Secondary data obtained from a foreign exchange 

platform called Reuters, officially known as Refinitv 

Eikon (Haycock 2008) for a time period from 

1993/11/24 to 2021/03/09, was used for numerical 

simulation. The data was cleaned and analysed using 

various statistical methods and software (e.g., R, 

EXCELL, MAPO and MATLAB). 

Development of the Models 

Statistical Properties of Ornstein Uhlenbeck Models 

To solve for ST, we rearrange (2) to get (3) below: 

 

t t tdS kS dt kµdt dW    (3) 

 

Multiplying both sides of (3) by the integrating factor 

ekt and applying the product rule on the left-hand side 

(Gatto (2002)), we obtain 
 

 e  e ekt kt ktd
S kµ dt dWt

dt
   (4) 

 
Integrating from 0 to T and evaluating the integrals, 

we have: 
 

0
0

0
0

e  e
e  e    e

kT k
T

kT kt

T tS S kµ dW
k




     (5) 

 
Multiplying by e−kT to isolate ST and moving S0 to the 

right, we get the solution: 
 

  ( )

0  
0

e 1  e  e
T

kT kT k T t

T µ tS S dW

         (6) 

 

ST is normally distributed since the integral of a 

deterministic function with respect to Brownian is 

Gaussian (Lebovits (2014), Shahnazi et al. (2021); The 

expectation of ST is given by (7): 

 

     
0

e
 [ e 1  e    e ]

T T tkT kT k

T tE S E S µ dW
        (7) 

 

Noting that the expected value of a deterministic 

function with respect to Brownian is 0 (Vardar-Acar and 

Bulut (2015), we get the formula for the mean: 

 

   0 e 1  ekT kT

TE S S µ   
 (8) 

 

The variance of ST is given by (9): 

 

   

  
   

 

2

2
( )

0
0

0

2
( )

0

2
( )

0

2 ( )
2

2 ( ) 2 ( 0)
2

2
2

2

 

 e 1  e
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T
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2 2

1
2

2

T T T

T
kT kT k T t

t

kT kT

T
k T t

t

T
k T t

t

k T T

k T T k T

kT

V S E S E S

E S µ e dW

S µ e

E e dW

E e dW

e
E

k

e e
E

k k

E e
k






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


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 
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 

 

   
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    

   
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  
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 
  

 
  

 
  

 

 
  

 

 
  

 









 21 kTe
k



 (9) 

 

Thus,  
e-kT

2
e-kT

0ST N (S   + (1- ), 1 .
2

kte
k


  

 
 

Consider 

time T and time R where R<T. The covariance between ST 

and SR is given by: 

 

       

   

   

- 
( )

0 0
0

( )

0 0
0

( )
( )

0 0

2

0 0

,  ( )( )

e 1  e ) 1

( e 1  e ) e 1  e

( )

T R T T R R

TkT
kT k T t kT

t

k R uR
kR kR kR kR

u

k R uT R
k T t

t u

kuT R
k kt

t u

Cov S S E S E S S E S

E S µ e dW S e kT µ e

S µ e dW S µ

E e dW e dW

e R T E e dW e dW





 

 

   

 
   

 
 



  

       

     

 
  

 

 





 

 
 
 
 

 (10) 

 

Noting that the covariance over the non-overlapping 

period is 0 Frankland et al. (2019) and applying Ito’s 

isometry Takahiko (2014), we are left with a 

deterministic integral: 
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 



    
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
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 

 

 
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 (11) 

 
Therefore: 
 

   
2

( ) ( ),  e
2

k T R k T R

T RCov S S e
k

       (12) 

 
To understand how the expected value and variance of 

ST will behave in future, we revisit the limiting 

distributions of ST: 
 

  

 

-e

0

0

lim ( ) lim S  +  1 

lim 1 lim

kT kT

T
T T

kT kT

T T

E S e

S e e







 

 



 



   

 

 (13) 

 
And: 
 

 

 

2
2

2
2

2

lim ( ) lim 1
2

1 lim
2

2

kT

T
T T

kT

T

V S e
k

e
k

k









 





 
  

 

 



 (14) 

 
The variance is inversely proportional to the speed 

of mean reversion Tsou (2011). This can be explained 

by the fact that, the higher the speed of mean reversion, 

the higher the drift towards the mean, which means 

lower variance. 

Development of the Improved OU Models 

This study proposed a model that modifies the current 

OU model by considering σ as a time varying function f(t) 

as given in (15): 
 

    ,t t tdS k µ S dt f t dW  
 (15) 

 
where, St is price, 

tdS  is the change in price, dt is the 

change in time and 
tdW  is change in a Wiener process 

(brownian motion), µ is the mean and f(t) is the volatility 

component. For simplicity, we make the following 

assumptions on ( )f t : 

 
(1) Volatility being constant between time 0 and t1

∗ 

(2) Volatility depending on time during the period 
* *

1 2t t

and then 

(3) Volatility being constant in the time interval  
*

2 ,t T  that is 

 

* *

1 2

*

2

,0 *

( ) ( ), ,

,

t t

f t g t t t t

r t t T





 


  


   
 

where, r R; r  1, g(t)  r ;  1,  g tr R is assumed to be an 

exponential function. The time scale is defined by 0-t1∗ as the 

time before speculation, 
* *

1 2t t  the speculation period and *

2t

-T the time after speculation. We note that the speculation 

function g (t) can take on any other function. 

Statistical Properties of the Improved OU Models 

To solve for ST, we recall (15) and expand to get: 

 

 t t tdS kS dt kµdt f t dW    (16) 

 

If we multiply the integrating factor ekt by (16), we get; 

  

 e e e ekt kt kt ktdSt k Stdt kµ dt f t dWt  
 (17) 

  

 

It can be noted that the left side of (17) is the derivative 

of ektSt with respect to t. Thus, 

 

   e  e e             d kt kt ktSt kµ dt f t dWt   (18) 

 

Integrating from 0 to T and evaluating the integrals, 

we get: 

 
kT 0

kT 0

T 0
0

e
e S  - e S  = k ( )

k
T

kt

t

e
f t e dW

k



  (19)  

 

Multiplying by e−kT to isolate ST and moving S0e−kT to 

the right, we get the solution. 

 

 0
0

1 ( )
T

kT kT kT kt

tST S e e e f t e dW        (20) 

 

0 Recalling the properties and assumptions of ( )f t : 

 

* *

1 2

*

2

,0 *

( ) ( ), ,

,

t t

f t g t t t t

r t t T





 


  


   
 

where, r ∈ R; r ≥ 1 and g(t) is assumed to be an 

exponential function such that g(t) = σ eγt and γ≥ 0. 

Substituting ( )f t into (20), we get; 
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 
* *
1 2

* *
1 2

0
0

1 ( )
t t T

kT kT kT kt

T t t t
t t

S S e e e e dW g t ekt dW r ekt dW      
       

  
 (21) 

 

Replacing g(t) with σeγt we have; 

 

 
* *
1 2

* *
1 2

0
0

1 ( )
t t T

kT kT kT kt kt kt

T t t t
t t

S S e e e e dW g t e dW r e dW      
       

  
 (22) 

 

Expanding the last term of (22), we get; 

 

 

 
* *
1 2

* *
1 2

0

0

1

( ) ( )

kT kT kT

T

t t T
k rt

t t t
t t

S S e e e

e k T t dW e e k T t dW r e k T t dW



  

  



   

        

  (23) 

 

ST is normally distributed since the integral of the 

brownian motion part is Gaussian (Lebovits (2014), 

Shahnazi et al. (2021). To find the mean of ST, we take the 

expectation on both sides of (23) and get; 

 

 

 
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1 2
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1 2

0
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0

[ ] 1
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kT kT

T
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  

 
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 

 
     

  
 (24) 

 

Noting that the expected value of the brownian motion 

part is 0 and the expectation of a constant is the constant 

itself, we get; 

 

   0 e 1  ekT kT

TE S S µ     (25) 

 

The variance of ST is evaluated as follows; 
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k r k

e e e
e e r e e

k r k k



    
 

                    

            


    

2 2 2 2 2 2
2 * 2 * 2 2 2

1 2

1 2 3

1
1 *

2 2 2

kT kT kT
r kkt t kT kt

term term term

e e e
e e r e e

k r k k

    
 

 
 

             
 

 (26) 
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Term 1 is the volatility before speculation, term 2 is 

the volatility during speculation and term 3 is the shift in 

volatility due to speculation occurring between t2
∗ and T. 

In term 2, speculation is inversely proportional to γ+k. 

Noting that γ is the speculation parameter and the rate at 

which the exponential grows from t1
∗ to t2

∗, a high value 

of γ indicates a great amount of speculation which causes 

volatility to shift rapidly and vice-versa. If γ = 0 (there is 

no speculation), volatility in term 3 is at a similar level as 

in term 1, with some adjustments of t1∗ and t2∗. 

Numerical Simulations 

Descriptive Analysis 

To understand the movement of price over time, we 

plotted the average price for the period January 2019 to 

March 2021. The average price is the mean of the open, 

close, high and low daily prices. Figure 1 shows that between 

January 2019 and December 2019, the average price moved 

between 14 and 15 with an almost constant volatility. 

From December 2019 there was a rise in price which 

occurred when Covid19 regulations such as international 

lockdowns were implemented. With the uncertantity of 

the future, market participants started to speculate causing 

the rise in price. This speculation lasted till around June 

2020 when price began to drop. At this point, market 

participants got used to operating with the lockdown 

restrictions, noting how the market could continue 

running amid the pandemic. Therefore, price volatility 

began to stabilise from December 2020. Figure 1 provides 

clear evidence that speculation should be included in price 

prediction models such as the OU model, hence the 

importance of this study. 

Numerical Simulations 

Ornstein Uhlenbeck Models 

Recalling (2) and generalizing ST to an arbitrary start 

time t and end time t+δt we get; 

 

e (1-e )    
t st

k t k t kst k t

t St t t
t

S S µ e e dW  


        (27) 

 
Therefore, the mean and variance of (27) becomes; 

  

( ) e (1  e )t k t

t t tE S S k µ 



    
 (28) 

 

   
2

 1  e
2

k t

t tV S
K





     (29) 

 

The process in (27) at time t+δt from starting time t is 

normally distributed with the mean and variance given in 

(28 and (29), respectively. Therefore, St+δt can be 

simulated using (30) since the integral of the brownian 

part in (27) becomes the standard normal times the 

standard error of the process. 

 
21

[0,]
2

kst
kst

t t

e
S t S e N

k
 


 

    (30) 

 

Since (30) is modelled per year and we assumed there 

are 252 trading days in a year, we interpret δt as the small 

change in time such that δt = ( ). The process presented 

in (30) is similar to the Autoregressive process of order 1 

(AR(1)), in time series analysis. If we write the AR(1) 

process in terms of y; 
 

1 1i iy by a i     (31) 

 
where ϵ represents the errors which are assumed to be 

normally distributed (i.e SE). Mapping (31) to (30), we 

get the following parameters 
 

 

1  

1

1

2

i t St

i

kst

kst

kst

y S

y St

b e

e

e
SE

k

 









  





 




 (32)  

 

Considering (30), (31) and (32), we fit the  AR 1  

process to the data and use (32) to get the parameters of 

our stochastic process. The estimated parameters of the 

AR (1) process for the above stated data are; b = 

0.999770392, a = 0.003705613, SE = 0.091078178. Using 

these values, we calculate the values of the parameters of 

the stochastics process (that is k, µ and σ) and get; k = 

0.057867938, µ = 16.13884515 and σ = 0.091078178. 

Improved OU Model 

Similarly, recalling (23) and generalizing ST to an 

arbitrary start time t and end time t+δt we get; 

 

 
* *
1 2

* *
1 20

=  + 1kst st

t St t

t t t st
kst rt kst kst

t t t
t t

S S e e

e dW e e dW r e dW



  

 


  

  

  
 (33) 

 

Therefore, the mean and variance of (33) becomes; 

 

( ) e (1  e )k t k t

t t tE S S µ 



    
 (34) 

 

  

*
2

2 2
2 2 * 2 2 2 *

1 2

2
2 ( ) 2 *

1

( ) 1
2 2

( )
2 2

t stkt k kt

t St

rt r k

e kT e kT
V S e r e e

k k

e kst
e e t r k

r k


 




 


       




     

 (35) 
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The process in (33) normally distributed with the mean 

and variance given in (34) and (35) respectively. Therefore, 

St+δt can be simulated using (36) since the integral of the 

Brownian parts in (33) becomes the standard normal 

multiplied by the standard error of the process. 
 

 

 
* *
1 2

* *
2 1

2 2
2 22 2 2 ( )

2
2 ( ) 2 ( )

e (1  e )

1
2 2

[0.1]
2 2

k t t

t t t

T tk k st
kt ktk t st

k st
t r k t r k

S S µ

e e
e r e e

k k

e
e e N

r k

 





 

 
 


 

    

 
           


      

 (36) 

 

The process in (36) is fitted to the   AR 1 producing the 

same values for parameters b = 0.999770392, a = 

0.003705613, k = 0.057867938 and µ =16.13884515. If we 

let * *

1 2

100 120
0.2, ,

252 252
t t    and r=1.3 we get; 

SE=0.091078178 and by substituting the above values into: 
 

 
* * * *
1 2 2 1

2 2 2
2 2 2 22 2 ( ) ( ) ( )

Im

1
2 2 2 2

, ; Im 0.07514189335

k st k st k st
kt kt kt tk t st r k r k

provedOU

SE

e e e
e r e e e e

k k r k

weob tain provedOU





  
          

     

 

 

 

Sample paths of ST 

Using the parameters (k, µ, σImprovedOU, γ, r, t, * *

1 2,t t , T, 

SE) obtained in section 3.2.1 and 3.2.2 we generated St 

shown in Fig. 2 with S0 = 15.4375 at time 0, forecasted 

over a time period of 252 days which exclude all non 

trading days such as weekends and public holidays. The 

stochasticity of St is seen in Fig. 2. 

Distribution of ST Over Different Lead Times 

If we simulate ST at different lead time intervals of 
t  

such that 
63

252
t  represents price distribution at 3 

months (red line), 
126

252
t  represents price distribution at 

6 months (blue line), 
183

252
t  represents price 

distribution at 9 months (green line) and 
252

252
t 

represents price distribution at 12 months (black line), we 

get the distribution in Fig. 3. The distribution of ST for the 

OU model in (a), illustrates simulating that ST over a 

smaller interval of δt predicts a value for ST that has 

smaller variation compared to simulating ST with a larger 

interval of δt. The distribution of ST for the Improved OU 

model in (b), illustrates that the Improved model does not 

limit predictions of ST to any specific time, as variance from 

the mean at different lead times is almost equal. Therefore, 

the Improved model indicates that variance becomes 

consistent w.r.t time and efficient since variance is low. 

Expectation and Variance of ST 

Figure 4 displays the simulations of the expected 

mean and variance of ST for the OU and Improved OU 

models, displayed as OU expectation (a), OU variance 

(b), Improved OU expectation (c) and Improved OU 

variance(d).
 

 
 

Fig. 1: Time series plot of average price for the time period January 2019 - March 2021 
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Fig. 2: Price simulation of the OU and Improved OU models 

 

 

 
Fig. 3: Price distributions for the OU and Improved OU models 
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Fig. 4: Simulation of the expected OU mean (a), expected OU variance (b), expected Improved OU mean (c) and expected Improved 

OU variance (d) 

 

 
 

Fig. 5: Effect of speculation parameters (γ and r) on variance 

 

The simulated expectations of ST for both models in (a) 

and (c) behave exactly the same regardless of the starting 

value for ST and stabalised upwards and became constant 

after some time. However, the simulated variances for the 

models as seen in (b) and (d) behaved differently from 

each other. The variance for the OU model (b), stabalised 

upwards around day 40 with high values for variance 

whereas, the simulated variance for the Improved OU 

model (d) stabalised downwards before day 40 with very 

low values for variance. This suggests that the OU model 

can forecast an accurate value for ST with low volatility 

for short lead time and as the lead time increases, volatility 

becomes constant regardless of the starting price. 

Furthermore, it proves that the Improved model can 

forecast an accurate value for ST with very low volatility 

regardless of the starting price. 

We observe not only a decrease in volatility when 

speculation is included in the forecasting model but, we 

also observe that the variance itself is much lower in the 

Improved model compared to that of the OU model. 

Variance becomes constant in both models after some 

time. Therefore, what distinguishes the two models is the 

ability of the Improved model to produce constant and low 

variance with the inclusion of market speculation. The 

speculation parameter is discussed and analysed in the 

next section. 

The Effects of the Speculation Parameter (γ and r) 

on Variance 

Using (36) and the parameters obtained in 3.2.1 and 

3.2.2, we evaluate the effects of the speculation 

parameters (γ and r) on variance, as shown in Fig. 5. 
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It can bee seen that an increase in γ causes an increase 

in variance. However, as γ continues to increase, variance 

starts to stabilise at some point. Futhermore, noting that 

variance between  and T is rσ, we see that r, which is the 

shift in variance due to speculation, increases as γ 

increases. However, r does not have a direct effect on 

variance as it only effects variance through γ such that, the 

effect of r on volatility is not felt when γ becomes zero. 

Therefore, volatility is experienced when there is some 

value of γ. The presence of speculation in the market 

causes an increase in variance and the incorporation of 

this parameter in forecasting gives us a realistic model. 

Conclusion 

The OU model was modified by replacing its volatility 

component with an exponential function to cater for 

speculation which occurs in almost every reallife market. 

This model was named the Improved OU model as shown in 

(23) and was simulated along with the OU model using the 

same data described in section 1. It was found that the OU 

model can only predict price (ST) with small volatility over a 

short period of time, whereas the Improved OU model can 

predict ST with small volatility at any point in time during a 

trading year. The expectation of ST was exactly the same in 

both the OU and the Improved OU models. However, it was 

found that variance of the OU model gradually increased 

until it reached its maximum and stabalised upwards after 

some time during the trading year, at an exchange rate of 16, 

whereas variance of the Improved OU model gradually 

decreased towards zero which proves that the incorporation 

of speculation in modelling reduces volatility. Although the 

OU model’s volatility also stabilises towards zero, the 

Improved model stabilised at a faster rate than the OU model. 

This study provides market participants with a 

forecasting model that takes speculation into 

consideration by introducing an exponential function as 

the speculation function. Future studies may use other 

types of functions and compare them against the current 

Improved OU model. Additionally, this study assumed an 

additive speculation model. We recommend to further study 

other models such as multiplicative. Future studies can also 

look at alternative forcasting approaches such as Recurrent 

Neural Network to forecast time series data other than the 

mentioned stochastic modelling approaches. 
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