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Abstract: From the studies of HIV/AIDS transmission and treatment 

dynamics using mathematical modeling, literature reviews have shown that 

attention had not been given to the behavioral attitude of screen-aware 

infectives not ready to receive treatment, HIV-aware infectives that initiated 

treatment but truncated only to resume treatment later (therapy abuse) and 

those on consistent treatment protocols. Moreso, following the non-outright 

eradication of the deadly HI-virus, recommendations have been geared 

towards exploring optimal control theory for the maximization of healthy 

uninfected CD4+ T-cells. Therefore, this present investigation seeks and 

formulated an optimal control 6-Dimensional deterministic mathematical 

dynamic model, which accounted for the Role of Antiretroviral Therapy 

(ART) abuse in the treatment dynamics of the HIV/AIDS epidemic. The 

materials and methods for this model are constituted by a set of 6-

Dimensional varying subpopulations interacting with concentrated HI-viral 

load. Interactions are investigated using bilinear control functions (condom 

use and ART) with empirically generated data. The model assumed a 

deterministic approach and was formulated using the fundamental theory of 

differential equations. Theoretical optimal predictions explored classical 

numerical methods with optimal control techniques (Pontryagin's maximum 

principle in conjunction with Hessian matrix) as a basis. Numerical 

simulations were conducted using in-built Runge-Kutta of the order of 

precision 4 in a Mathcad surface. Following the derived model for both off-

optimal control and onset-optimal control functions and model optimal 

control pair as well as model optimality system, results of simulations indicated 

that at off-optimal control function, near zero population extinction was 

observed. From the application of optimal control functions under optimal 

control techniques, there exists tremendous rejuvenation of susceptible 

populations vindicated by a reduction in the rate of ART abuse under a minimal 

proportion of bilinear control functions. The study concluded that adopting 

optimal control techniques for the investigation of the role of ART abuse in 

HIV/AIDS treatment yield highly significant recovery of healthy CD4+ T-Cells 

at minimal systemic cost when compared with off-optimal control outcome. 

Therefore, the study not only affirmed the vital concept of optimal control 

strategy but also, instituted the viability of the model. Thus, this model can be 

extensively used in Bio-system and applied mathematics. 

 

Keywords: Hamiltonian-Argument, Pontryagin’s-Maximum-Principle, Two-

Point-Boundary-Value-Problem, Optimal-Control-Protocols, Dual-Bilinear-

Control-Functions MSC (2010) 35F20, 93C15, 93A30, 49J15, 90C46 

 

Introduction 

Biologically, Human Immunodeficiency Virus (HIV) 

belongs to a well-known retroviral family known as 

Retroviridae. Retroviridae consists of viruses having a 

unique form of RNA replication. The transcription of 

mRNA, which leads to viral entry is more than just a 

known factor due to the indistinguishable nature of the 
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disease at the initial set point, (Ndziessi et al., 2013). That 

is, despite enormous scientific investigations and many 

theories, the origin of AIDS is yet to be traced.  

The problem of HIV remains an important component 

of mankind and the solutions are often based on the in-

depth application of mathematical modeling in 

understanding the mechanism of the spread of the virus 

among the population. In reality, following the discovery 

of HIV in the early 80s and the assumed incurable status 

of the virus, understanding the dynamics of HIV/AIDS 

has been through theoretical and numerical explanations via 

mathematical modeling, (Centers for Disease Control, 1982). 

Mathematical modeling plays a vital role and has been used 

extensively for the research into the epidemiology of 

HIV/AIDS and proved through the overwhelming use of 

first-Order Differential Equations (ODEs). Moreso, the 

application of mathematical models often aims at 

formulating and investigating either the control or 

prevention; and contact tracing of infected individuals from 

identified infected persons in a period. For instance, 

(Anderson et al., 1986) used a mathematical model to 

investigate the preliminary study of the transmission 

dynamics of HIV, the causative agent of AIDS. On the other 

hand, (Knox, 1986) conducted transmission dynamics with a 

focused discussion of the transmission model for AIDS. The 

effort of these researchers was further strengthened by 

May and Anderson (1987), who extensively studied the 

transmission dynamics of HIV infection. Since then, several 

mathematical models on HIV transmission and treatment 

methodologies have been developed. For example, a 

mathematical model has been applied in the study of 

nonlinear dynamics in physiology and medicine,  

(Glass et al., 2003). The analysis of the study applied Hopf 

bifurcation incorporating the Hodgkin-Huxley method with 

results indicating the existence of fixed points in an N-

dimensional system and having N eigenvalues, which can be 

calculated numerically using the auto option. 

Of note, reviews of mathematical models indicated 

that existing preventive measures had not achieved 

complete eradication of the deadly disease HIV/AIDS. 

Rather, the success of these control measures is best in 

lowering the rate of new virions replications and 

prolongation of infected individuals' lifespans. This 

situation that had risen curiosity among scientists leading 

to further dimensions aimed at enhancing HIV/AIDS 

prevention and treatment methodology. One aspect of this 

mathematical theory deemed useful by scientists is the 

optimal control theory, which is often used for the 

maximization of key variables while minimizing the cost 

of production. To this effect, notable optimal control 

models as far back as the 1990s, have been formulated in 

the area of infectious diseases-HIV/AIDS. For instance, 

(Butler et al., 1997), formulated an optimal control of 

chemotherapy affecting the infectivity of HIV. The 

model, which used a single reverse transcriptase inhibitor 

(AZT) and explored Pontryagin's maximum principle, 

presented a simple framework for testing and development of 

models, which could lead to new and improved chemotherapy 

strategies. The study (Culshaw et al., 2004), had proposed and 

formulated a similar model targeted at maximization of the 

immune response under minimized systemic cost. This study 

established an optimal control model of HIV treatment, using 

a single drug that reduces the cellular infection rate and 

explicitly incorporating the specific anti-HIV immune 

response as represented by levels of effector and memory 

CTLs. Results showed that ascribed control decreases soon 

after initiation of treatment, only to rise again, remain 

close to constant, and drop rapidly near the end.  

In the instance of the success of the application of optimal 

control strategy, multi-chemotherapy was further 

investigated for HIV/AIDS dynamics and as an 

improvement to a single drug treatment schedule. An optimal 

control of an HIV immunology model involving two 

treatment control functions was formulated and studied 

(Joshi, 2002). The analysis of the model explored classical 

Pontryagin's maximum principle. Results of numerical 

simulations affirmed the fact that the efficacy of treatments 

is a function of optimal weight factors, which defined drug 

toxicity. As a follow-up, (Adams et al., 2004) studied 

optimal STIs control approaches for the dynamic multidrug 

therapies "drug cocktails" for HIV. With the assumption that 

treatment protocol changes in a continuous manner, the 

model explored Pontryagin's minimum principle to achieve 

an optimal treatment schedule, where patients move from a 

virus dominant to an immune-dominant state. The study 

proposed an optimal control scheme that accounted for the 

application of two treatment functions, incorporating two 

immune responses, which were considered dual functions: 

State variables as well as serving as control functions under 

interacting two infectious virions-HIV and parasitoid 

pathogen. Results of the numerical simulations not only 

validate the maximal systemic cost of chemotherapy but 

proved to be sharper and coincide in terms of the 

performance index of healthy CD4+ T cells when compared 

with existing results. Recently, the application of optimal 

control for the treatment of tumors with a framework 

consisting of radio-and anti-angiogenesis control strategies 

that are included in a tumor growth model is investigated. 

The model was governed by differential constraint of a non-

smooth optimal control problem that aims at reducing the 

volume of the tumor while keeping the radio-and anti-

angiogenesis chemical dosage to a minimum. The analysis 

explored Pontryagin maximum principle in conjunction with 

Sequential Quadratic Hamiltonian (SQH) method. The 

results of which indicated how optimization weights could 

be chosen to obtain treatment functions that successfully 

reduce the tumor volume to zero. Other related 

innovative optimal control models include: Hattaf and 

Yousfi (2018); Adgba and Mbah (2011).  
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Notably, an optimal scheme in the context of 

mathematical models is often in use for infectious 

epidemics. However, from available reviews, there is 

currently no consensus on the treatment strategies or 

medical interruption schemes that produces the best 

optimal results. Also noted, is the fact that there are 

varying levels of positive results towards contracting the 

spread of the deadly HIV/AIDS and maximization of the 

uninfected healthy CD4+ T cells. Yet, none of these 

known models and presumably beyond have considered 

the investigation of HIV/AIDS epidemic dynamics in a 

structure, which incorporates condom use and accounting 

for the role of treatment behavioral change for screened 

aware infectives not ready to receive ART treatment, the 

aware infectives who initiated ART treatment but 

suddenly stop the ART protocol and later resume ART 

administration (ART abuse) among other subpopulations. 

Accounting for the limitations of these aforementioned 

studies using optimal control techniques, form the pivot of 

this present study. In (Bassey, 2022), the application of 

optimal control techniques on dual-bilinear controls for 

COVID-19 was successfully conducted. The model explored 

Pontryagin's maximum principle with classical results 

accomplished. More importantly, the precision of results 

from numerical simulations for this present investigation 

shall explore the best approaches from numerical methods in 

the form of computational methods and numerical 

approximations as had been the case for existing models, 

(Al-Smadi and Arqub, 2019; Al-Smadi et al., 2021).  

Materials and Methods 

The materials and methods for the study are constituted 

by a set of 5-Dimensional varying subpopulations interacting 

with concentrated HI-viral load studied using bilinear control 

functions (condom use and Antiretroviral Therapy-ART) 

amidst therapy abuse. The fact behind this investigation is 

unveiled by the problem statement of the study, 

followed by the transformation of the model into an 

optimal control problem. Optimal criteria are deplored 

for the derivation of system characterization and the 

existence of optimal control pair. The method for 

optimal analysis involves classical Pontryagin's maximum 

principle with the incorporation of the method of Hessian 

matrix. In-built Runge-Kutta of the order of precision 4 in a 

Mathcad surface will be deplored for numerical validations 

for both off and onset treatment scenarios. 

Problem Statement and Model Derivation 

In reality, understanding infectious disease 

transmission and treatment dynamics have been among 

other methods, through the use of mathematical modeling. 

Existing literature on HIV/AIDS models indicated that 

none have accounted for the behavioral attitude to 

treatment consistency by those screened to be aware of 

their status. Moreso, treatment inconsistency occasioned 

by avoidable truncation, which could lead to colossal drug 

abuse has not been given the desired attention. For 

instance, (Bassey and Atsu, 2021), recently formulated a 

6-Dimensional deterministic model that accounted for the 

global stability analysis of the aforementioned novel 

treatment dynamics but was devoid of the optimal control 

strategy. That is by extension, the application of optimal 

control techniques has not been explored to investigate the 

role of ART abuse in the treatment dynamics of 

HIV/AIDS infection. Moreso, in that study, it was 

recommended that any approach that could maximize 

healthy CD4+T-cells was highly encouraged. Therefore, 

in our quest for maximization of some designated 

predominant state-space, the present study extending the 

model by Bassey and Atsu (2021) and incorporating 

optimality conditions, seeks to explore optimal control 

techniques for the investigation of the role of ART abuse in 

the HIV/AIDS treatment dynamics. In that study, designated 

methodological treatment functions include condom use and 

antiretroviral therapy, which was administered on a set of 6-

Dimensional deterministic compartmental HIV/AIDS 

dynamic model partitioned into Susceptible population S(t), 

HIV positive (infective) individuals who are unaware of their 

HIV status I1(t) aware infective population not ready to 

receive ART treatment I2(t), HIV positive (infective) 

individuals receiving ART T(t), HIV positive population 

who are under ART but truncate the use of ART and then 

later resume the application of the ART (abuse of ART) TA(t) 

and full-blown AIDS population A(t). The epidemiological 

equations of the model, of which parameter descriptions can 

be found (Bassey and Atsu, 2021), were derived as: 
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and having initial conditions Ni (t) 0, i = 1,…6 for all 

t = t0 = 0. Against the backdrop of the above, the present 

study seeks to utilize the aforementioned system, which 

requires the transformation of the derived basic model to 

an optimal control model.  

Formulation of an Optimal Control Problem 

Here, we attempt to optimally investigate the impact of 

treatment functions (condom use and ART) in the presence 

of abuse of the latter. In other words, to mathematically 

derive our optimization problem, we first assume that our 

control functions 1 and  (where  = a1+a3) vary in time and 

have antiviral effects on virions production. M1 represents the 

rate at which condom use is applied and  = a1+a3 denote the 

rate of application of ART, where a1 is the consistent use of 

ART and a3 depicts the resumption of ART after truncation. 

Then, system (1) together with Eq. (2) becomes: 
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and having other initial conditions of the model (1) 

sustained. Thus, given Eq. (4), model (3) explicitly 

represents the typical optimal control equation for 

HIV/AIDS with time-dependent onset treatment. Since 

our model is time-dependent, the dynamical flow-chart 

is depicted in Fig. 1 below:  

Definition 3.1 

Objective function the objective function of an 

optimal control problem is an integral equation, which 

models the trade-off between virions and pathogen 

concentration, organ health, and the use of therapies 

(Hattaf and Yousfi, 2018). 

Now, by the Jacobian matrix of system (3) as 

established by Bassey and Atsu (2021), the control 

functions 1 and  are bounded and Lebesgue 

integrable. Moreso, virions production under control 

functions is (1- 1)I = 1,…,5, (Hattaf and Yousfi, 2018). 

Clinically, if  = 1, then inhibition of infection is100%  

efficacious. Otherwise, no inhibition if  = 0(i.e., drug 

abuse). On a similar note, if the control function 1 

represents the efficacy of condom use in blocking new 

infection transmission, then the infection rate in the 

presence of condom abuse is obviously (1-1)                 

I = 1,…,5, (Hattaf and Yousfi, 2018; Bassey and Atsu, 

2021). Therefore, the optimality problem that 

maximizes the goal of the study is defined by the 

objective functional: 
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subject to the system (3) as a constraint and having it as a 

treatment limit. 

Clearly, Eq. (5) shows that two positive constants            

WI = 1,20 had been introduced. These parameters denote 

treatment optimal weight factors, which define benefit on 

cost for control functions 1 and  respectively. Moreso, 

in equation (5), the first two terms represent the benefit of 

CD4+ T cells, while the other terms are systemic cost on 

control functions. Indeed, the quadratic functions 2 2

1 ,u 

reflect the severity of the side-effect of control functions, 

(Joshi, 2002; Hattaf and Yousfi, 2018). Therefore, since 

our target is that of maximizing the objective functional 

defined by Eq. (5), which is justified by an increase in the 

number of uninfected T-cells while decreasing the viral 

load at minimized systemic cost, then we seek an optimal 

control pair * *

1( , )u   such that: 
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u
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where  1 1: ( , ) \ ,u u =  is Lebesgue measurable with

1,i ix u y  , 0[ , ], 1,2ft t t i  = is the control set. 

Remark 3.1 

The benefit of the cost function is nonlinear. Thus, the 

introduction of linearization control function Wi=1,2 serves as 

simple nonlinear control. Moreso, the issues of drug side-

effect are adequately accommodated. 

Proposition 3.1  

Assuming there exists drug hazardous side-effect, then 

the inequality of the control set 
1, , 1,2i ix u y i  = holds 

and justifies the optimal weight factors Wi=1,2 0. This is 

true as the application of control functions often comes 

with drug side-effect after a definite time interval. 

Therefore, control functions are a function of 

boundedness with optimal weight factors serving as control 

indices to drug toxicity, (Joshi, 2002; Fleming et al., 1975). 
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Fig. 1:  Schematic diagram of HIV/AIDS transmission dynamics with ART abuse (misuse) 

 

Mathematical Analysis and Characterization of an 

Optimal Control Pair 

Here, we analyze the system's well-posedness 

properties, which include the system positivity and 

boundedness of solutions and the characterization of the 

system's optimal control pair. 

Optimal Positivity and Boundedness of Solutions 

Now, since the interest is that of optimal control, then 

for a typical optimal control problem of the model (3), we 

investigate the system optimal positivity and boundedness 

of solutions as defined by the following theorem. 

Theorem 3.1 (Positivity) 

The closed set ( ) 6 0
1 2, , , , , :D AS I I T T A N




+

 
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 is 

positively invariant and attractive concerning the system 

(3). Moreso, assuming the initial conditions

  6

1 2(0), (0), (0), (0), (0), (0)AS I I T T A + , then the solution 

set  1 2( ), ( ), ( ), ( ), ( ), ( )AS t I t I t T t T t A t of the system (3) 

remains positive for all t  0. 

Proof  

Here, we use the classical theory of differential equations. 

Then system (3) can be confined to a compact subset: 
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Let (S(t) + 11(t) + 12(t) + T(t) + TA + A(t)) be any solution 

with positive initial conditions such that N(t) = S(t) + 11 + 

12(t) + TA(t) + A(t). Then, the derivative of N (t) along the 

solution of system (3) under zero mortality rate, we have: 
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Integrating, we have: 
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where, A, is the constant of integration. Simplifying with 

respect to N(t), we obtain: 

 

0( )
dt

N t Ae



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Applying the initial condition for t = 0  N(t) = N(0). 

Then, the above differential inequality becomes: 
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Substituting Eq. (8) into the inequality Eq. (7) for N(t) 

gives: 
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Taking the limit for all t → , we have: 
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Therefore, system (3) defined i
6

+ s confined in the 

region , which implies the solutions are positive in the 

interval [0,). 

Theorem 3.2 (Boundedness) 

Let system (3) be bounded in a closed set
D  such that

( ) 6 0
1 2, , , , , :D AS I I T T A N
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
+

 
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. Then, all the 

solutions of the closed set 
D are bounded, positively 

invariant, and attractive concerning the system (3). 

Proof 

Invoking existing results on the boundedness of solutions, 

(Osman et al., 2018; Bassey and Atsu, 2021). Then, 

differentiating N(t) in the absence of mortality rate, we have: 
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Applying the integrating factor to Eq. (9) and then 

introducing the initial condition, t = 0, we have: 
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where, N(0) is the initial population at t = t0 = 0. This gives 

N(t) = N(0) as t→0 and N(t)0 as t→. Applying Birkh 

and Rota's theorem on differential inequality as obtained 

in (Mafuta et al., 2014), for all t→, we arrive at 0  N(t) 

 0, t  0. But from the system (3.3), 

 

1 2( ) ( ) ( ) ( ) ( ) ( ) ( )
0AdN t dS t dI t dI t dT t dT t dA t

dt dt dt dt dt dt dt
= + + + + + =  

 
which gives: 

 

( )
0

dN t

dt
=

 

Integrating, we have: 
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where, A is the constant of integration. But we know that 

the total population understudy equals 1, i.e.: 
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since there exists zero mortality rate, i.e., the population 

understudy exhibits a disease-free state, implying the 

population is unity. It follows that A = 1. Implying that the 

population is constant, positive, and equal to 1. Hence, all the 

feasible solutions of system (3) enter the invariant region: 
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Therefore, the region is not only bounded but also 

positive and attractive. That is, every local solution can 

be extended to any time t[0,). Hence, the solution 

exists optimally. 

Mathematical Characterization of an Optimal 

Control Pair 

A realistic and précised formulation of an optimal 

control pair (1*(t),*(t)) requires the identification of the 

system's optimal control characterization, which defines 

the penalty terms on the constraints. In this case, we 

invoke the classical Pontryagin's maximum principle, 

noting that the design of this model is compatible with the 

principle. Moreso, the biological behavior of the system, 

and the growth and clearance rates of the system state 

variables are determined using the optimality system. 

essentially, the principle involves converting solving our 

optimality problem into maximizing the Hamiltonian 

argument defined by the Lagrangian as:  

 

( ) ( ) ( )
6

2 21 2
1 2 1 1

1

11 1 1 12 1 1 21 2 22 2

, , , , , , , , , ( ) ( ) ( ) ( )
2 2

( )( ) ( )( ) ( )( ) ( )( )

A i i i

i

W W
L L t S I I T T A u S t T t u t t f

w t y u w t u x w t y w t x

   

 

=

 
 = + − + + 

 

+ − + − + − + −

  (12) 

 

where, 
11 12 21 22( ), ( ), ( ), ( ) 0w t w t w t w t  are penalty multipliers 

satisfying? 

 

11 1 1 12 1 1( )( ) 0, ( )( ) 0w t y u w t u x− = − =  at optimal 1* and:  

 

21 2 22 2( )( ) 0, ( )( ) 0w t y w t x − = − =
 

 

at optimal * with penalty multipliers ensuring that 1*and 

*remain bounded in the domain in
( , ) [0,1]iu  

, noting that 

the optimality problem is time-definite and control functions 

must be defined to account for drug side effects, (Joshi, 2002; 
Pontryagin et al., 1986; Fleming et al., 1975). Moreso, the 
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function ( ), 1,....,6i t i =  is the model adjoint variables, which 

determine the adjoint system, while , 1,....6if i =  the system 

dynamics are defined by: 

 

( )

( ) ( )

( )

1
1 0 1 1 1 2 2 2 3 3 4 4 5 5

1
2 1 1 1 2 2 2 3 3 4 4 5 5 1

3 1 1 2

4 1 2 3

(1 ( ))
( ) ( ) ( ) ( ) ( ) ( ) ( ),

( )

(1 ( ))
( ) ( ) ( ) ( ) ( ) ( ) ( ),

( )

( ) ( ),

( ) ( )

A

A

A

u t
f c I t c I t c T t c T t c A t S t S t

N t

u t
f c I t c I t c T t c T t c A t S t I t

N t

f I t a I t

f a I t a T t

      

       

  

 

−
= − + + + + −

−
= + + + + − + +

= − + +

= + − +( )

( )

( ) ( )

2

5 2 3

6 1 2

( ),

( ) ( ),

( ) ( ) ( ) ( ) ( )

A

A

a T t

f a T t a T t

f I t I t T t T t A t

 

   









 +


= − + +


= + + + − +

 (13) 

 

Therefore, using Eq. (12), we then verify all the 

possible controls for 1* and  including those of 

boundary conditions 0  1*,*  1. 

The case for the set {t/01*(t),1}: wij = 0 i,             

j = 1,2. Then, solving for the unconstrained optimality. 

Conditions 1*[0,1] and *[0,1], we apply 

Pontryagin's maximum principle, which takes the partial 

derivative of the Hamiltonian argument concerning the 

control functions i.e.,
*

1

0
L

u


=

 *
0

L




=


 and. This implies 

that we find
*

1

0
L

u


=


, 

*
0

L




=


 and solve for 1* and *by 

setting the partial derivative of L equal to zero i.e.: 

 

 

 

* 1
1 1 1 1 1 2 2 2 3 3 4 4 5 5* 2

1

2
1 1 1 2 2 2 3 3 4 4 5 52

*

11 21 1

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )

A

A

L t
W u t c I t c I t c T t c T t c A t S t

u N t

t
c I t c I t c T t c T t c A t S t

N t

w t w t at


    


    




= − + + + + +



− + + + +

− + =

 

 

Also: 

 

( )* *

2 3 2 4 2 5 21 22 1*
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0A A

L
W t t I t t I t T t t T t w t w t at    




= − − + + − − + =



 

 

Solving for the optimal controls 1*and* when          

Wij = 0, we have: 

 

( )

( )

*

1 1 1 1 1 2 2 2 3 3 4 4 5 5

1

2 1 1 1 2 2 2 3 3 4 4 5 5

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

A

A

u t t c I t S t c I t S t c T t S t c T t S t c A t S t
W

t c I t S t c I t S t c T t S t c T t S t c A t S t

     

     

= + + + +

− + + + +

 (14) 

 

since
1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) 1AN t S t I t I t T t T t A t= + + + + + =  

Similarly: 

 

 ( ) *

3 2 4 2 5

2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A At t I t t I t T t t T t

W
   = − + + −  (15) 

 

To complete the characterization of 1*and* we 

consider the boundaries for (1*, *) = 0 and (1*, *)         

= 1, as well as non-boundary cases: 

The case for the set {t/0 1*(t) = 0,*(t) = 0}: wij = 0, 

wi2 = 0i, j = 1 then, the optimal controls are given by: 

( ) 1 1 1 1 2 2 2 3 3 4 4 5 5

1

1 1 1 2 2 2 3 3

2 1

4 4 5 5

1
0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

A

j

A

t c I t S t c I t S t c T t S t c T t S t c A t S t
W

c I t S t c I t S t c T t S t
t w

c T t S t c A t S t

     

  


 

= + + + +

+ + 
− − 

+ +    
 

Since, W1j  0, this implies that: 

 

( ) 1 1 1 1 2 2 2 3 3 4 4 5 5

1

1 1 1 2 2 2 3 3

2

4 4 5 5

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) 0

( ) ( ) ( ) ( )

A

A

t c I t S t c I t S t c T t S t c T t S t c A t S t
W

c I t S t c I t S t c T t S t
t

c T t S t c A t S t

     

  


 

+ + + +

+ + 
−  

+ +    
 

Now, to ensure that 1* is not negative, we use the 

notation: 

 

( )*

1 1 1 1 1 2 2 2 3 3 4 4 5 5

1

1 1 1 2 2 2 3 3

2

4 4 5 5

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) 0

( ) ( ) ( ) ( )

A

A

u t t c I t S t c I t S t c T t S t c T t S t c A t S t
W

c I t S t c I t S t c T t S t
t

c T t S t c A t S t

     

  


 

+

= + + + +

+ + 
− = 

+ +  

 (16) 

 

i.e.: 

 

( )*

1 1 1 1 1 2 2 2 3 3 4 4 5 5

1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Au t t c I t S t c I t S t c T t S t c T t S t c A t S t

W
     =  + + + +

 

( )2 1 1 1 2 2 2 3 3 4 4 5 5( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )At c I t S t c I t S t c T t S t c T t S t c A t S t     
+

− + + + + 
 (17) 

 

Similarly: 

 

( )*

3 2 4 2 5

2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A At t I t t I t T t t T t

W
   

+

= −  + + −  
. 

 

The case for the set * *

1 1 2{ \ ( ) 1, ( ) 1}: 0, 0i jt u t t w w= = = 

, 2i j = . The optimal controls are as follows: 

 

( ) 1 1 1 1 2 2 2 3 3 4 4 5 5

1

1 1 1 2 2 2 3 3

2 2

4 4 5 5

1
1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

A

j

A

t c I t S t c I t S t c T t S t c T t S t c A t S t
W

c I t S t c I t S t c T t S t
t w

c T t S t c A t S t

     

  


 

= + + + +

+ + 
− + 

+ +    
 

which implies that: 

 
( )2 1 1 1 1 2 2 2 3 3 4 4 5 5

1 1 1 2 2 2 3 3

2 1

4 4 5 5

0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

j A

A

w t c I t S t c I t S t c T t S t c T t S t c A t S t

c I t S t c I t S t c T t S t
t W

c T t S t c A t S t

     

  


 

 = + + + +

+ + 
− − 

+ +    
 

Therefore: 

 
( )

( )

1 1 1 1 2 2 2 3 3 4 4 5 5

2 1 1 1 2 2 2 3 3 4 4 5 5 *

1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

A

A

t c I t S t c I t S t c T t S t c T t S t c A t S t

t c I t S t c I t S t c T t S t c T t S t c A t S t
u

W

     

     

  + + + + 
  

− + + + +  
 =  

  
  
    

 

Similarly: 

 

( ) *

3 2 4 2 5

2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) 1A At I t t I t T t t T t

W
   

   
−  + + −   =   

     
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This is to say that for this set, we must choose: 
 

( )

( )

1 1 1 1 2 2 2 3 3 4 4 5 5

2 1 1 1 2 2 2 3 3 4 4 5 5*

1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) min ,1

A

A

t c I t S t c I t S t c T t S t c T t S t c A t S t

t c I t S t c I t S t c T t S t c T t S t c A t S t
u t

W

     

     

  + + + + 
  

− + + + +  
=   

  
  
  

 (18) 

 

and:  

 

( )*

3 2 4 2 5

2

1
( ) min ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1A At t I t t I t T t t T t

W
   

   
= −  + + −    

   

 (19) 

 

Thus, we complete the characterization of the optimal 

controls by compatibly taking the three cases for 1* (t) 

and *(t) as defined by the following proposition. 

Proposition 3.2 

Taking on results of the three verified cases as in 

equations (14-19) for control functions1* (t), *(t), then 

optimal controls for the system optimality control 

problem of the system (3) with limits 
* *

10 1i ix u y     are completely characterized by: 

 

1 1 1 2 2 2 3 3

1

4 4 5 5

1 1 1 2 2 2 3 3

2

4 4 5 5*

1 1

1

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) min max ,

A

A

c I t S t c I t S t c T t S t
t

c T t S t c A t S t

c I t S t c I t S t c T t S t
t

c T t S t c A t S t
u t x

W

  


 

  


 

 + + 
  

+ +  
 

+ +  −  
 + + =  
 
 
 


 

1, y

+  
  
  
  
  
     
   
   
   
   

   
   

    

 (20) 

 

( )*

2 3 2 4 2 5 2

2

1
( ) min max , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,A At x t I t t I t T t t T t y

W
   

+      
= −  + + −      

     

 (21) 

 

Thus, the following remark can be drawn from        

Eq. (20) and (21).  

Remark 3.2 

Intuitively, the optimal controls of proposition 3.2 are 

concurrently a representation of system circulating 

terms associated with healthy and infectives and their 

adjoint variables. 

Next, we show the existence of an optimal control pair. 

Existence of an Optimal Control Pair 

The boundedness of the solution of system (3) for a finite 

interval is used to prove the existence of an optimal control 

pair. To establish this result, we invoke the following 

three theorems of the existence of optimal control pair, 

(Joshi, 2002; Fleming et al.,1975).  

Theorem 3.2 

Consider the control problem with system equation 

(3). Then, there exists an optimal control pair 

(1*,*) such that Q (1*,*) = max Q (1,). 

Proof 

To use an existence result, we should first check for 
the following properties. 

(D1) The class of all control sets (1,) are Lebesgue-
integrable functions on [t0, tf] with value in the admissible 
control sets and such that the corresponding state 
variables are satisfied and non-empty. 

(D2) The admissible control set , is convex and closed. 

(D3) The Right-Hand Side (RHS) of the state system 

is continuous and bounded by a linear function in the state 

and control variables. 

(D4) The integrand of the objective function is 

concave on . 

(D5) There exists a  > 1 and two constants 12 0 

such that the integrand: Hattaf and Yousfi, 2018; 
Fleming et al., 1975)  
 

( ) ( )
22 2

1 2 1 1, , ,L S T u u


    − +  

 
where: 
 

( ) 2 21 2
1 1, , , ( ) ( ) ( ( )) ( ( ))

2 2

W W
L S T u S t T t u t t 

 
= + − + 

 
 

 
To verify these conditions, we use the result and we 

observe that the boundedness of the state system Eq. (3) with 

two controls ensures the existence of solutions of Eq. (1). We 

can therefore deduce that the set of controls and 

corresponding state variables are non-empty, which gives 

condition (D1). By positivity of the state variables, the control 

set is convex and closed under controls (1,)[0,1] for all 

t[t0,tf], which ensures condition (D2). Moreso, since the 

system of the state-space, is bilinear in 1,, the right-hand-

side of (3) verifies condition (D3), using the fact that the 

solutions are bounded. For condition (D4), we apply the 

Hessian matrix for L, as follows: 
 

1

2

0

0
L

W
H

W

− 
=  

− 
 

 
and having determinant

1 2det( ) 0LH WW=  s such as, 

1( , )u A  Then, L is concave on A. 

Finally, from condition (D5), we have: 
 

( ) ( )2 2

1 2 1 1, , ,L S T u u    − +  

 

With 2 depending on the upper bound on S, T and: 
 

1 2
1 min , 0

2 2

W W


 
=  

   
 

 Then, we deduce that there exists an optimal control 

pair (1*,*)A, such that Q((1*,*) = max Q((1,).  
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Derivation of Model Optimality System 

In our previous subsection 3.3, we proved the 

existence of an optimal control pair for maximizing the 

objective functional (5), subject to the system (4). Of note, 

the advantage of this method-optimality system is the fact 

that as a vital component of the optimal control problem, 

the method allows for the observation of the system's 

biological behavior upon application of desired therapy. 

Moreso, the growth and clearance rates of the system state 

variables are determined using the optimality system. 

Definition 3.2 

The optimality system is a function of the state system 

coupled with the adjoint system with the initial conditions 

and transversality conditions together with the derived 

optimal control pair. 

Definition 3.3 

The adjoint system, which is determined by the adjoint 

variables, represents the backward effect of the optimal 

state variables, while the adjoint variables ( ), 1,...,6i t i =  

represent the backward effect of each of the state-space. 

Now, by definitions 3.1 and 3.2, it is obvious that system 

Eq. (3) with initial conditions as well as the optimal control 

pair has been established. Thus, to complete the derivation of 

the optimality system, a well-posed adjoint system and 

transversality conditions are necessary. From (Culshaw et al., 

2004), using Eq. (12), the adjoint system is given by: 
  

i

i

d L

dt






= −


 (22) 

 

where, i, I = 1,……,6 are the state variables. 

Furthermore, for a maximization problem of the type: 
 

1

0

1 0 1
( , ) A
max ( , ) ( ( )) ( , , )

ft

u
t

Q u G T f u dt


   


= + 
 

 

subject to the state system 1( , , , )
dv

f t u
dt

 = and such that 

(T) belongs to some target set g (T)).  

Then, we have the following transversality conditions 

on the adjoint variables as Culshaw et al. (2004): 
 

1

( ) ( ( )) ( ( ))
k

i i i

i

T G T c g T  
=

=  +   (23) 

 
with the function G denoting terminal cost. Of note, the fact 

is that our optimal problem does not contain any terminal 

cost. Then, from Eq. (23), G  (t)) = 0. Furthermore, our 

problem does not have a target set for our state variables. 

Rather, we have desired result with a free final state. So, the 

summation term is also zero. Therefore, transversality 

conditions for the adjoint variables are: 

( ) 0, 1,....,6i T i =  =  (24) 

 

Thus, from definition 3.1, taking the state system 

together with the adjoint system, the optimal control, and 

transversality conditions, we have the following theorem. 

Theorem 3.3 

For any optimal control pair 1*,* and any solutions 

(S*, I1*, I2*, T*, TA*, A*) of the corresponding state system 

(3), there exist adjoint variables i I = 1,..., 6 satisfying: 

  

( )
( ) 

* * * * * *

1 1 1 1 1 1 2 2 2 3 3 4 4 5 5

* * * * * *

2 1 1 1 1 2 2 2 3 3 4 4 5 5

* *

2 1 1 1 1 2

( ) 1 ( ) (1 ( )) ( ) ( ) ( ) ( ) ( )

( ) (1 ( )) ( ) ( ) ( ) ( ) ( )

(
( ) 1 ( ) (1 ( )) ( ) ( )

A

A

t t u t c I t c I t c T t c T t c A t

t u t c I t c I t c T t c T t c A t

t t u t c S t t

       

     

   

  = − − − + + + + −
 

 + − + + + +
 

  = − − − + 

* *

1 1 1

3 6

* * * *

1 1 2 2 2 1 2 2

3
* *

3 1 4 1 6

*

1 1 3 3

4

1 ( )) ( )
( ) ( )

( )

( ) (1 ( )) ( ) ( ) (1 ( )) ( )
( ) 1

( )( ( )) ( ) ( ) ( )

( ) (1 ( ))
( ) 1

u t c S t
t t

t u t c S t t u t c S t
t

t a t t a t t

t u t c S
t


 

  

   


    

 


  − 
+ +  

− + +   

    − − + −     = −  
+ + + + +  

− −
 = −

* * *

2 1 3 3

4 2 5 2 6

* * * *

1 1 4 4 2 1 4 4

5
* *

4 3 5 3 6

6

( ) ( ) (1 ( )) ( )

( )( ) ( ) ( )

( ) (1 ( )) ( ) ( ) (1 ( )) ( )
( ) 1

( ) ( ) ( )( ( )) ( )

( ) 1

t t u t c S t

t a t a t

t u t c S t t u t c S t
t

t a t t a t t

t

 

    

   


    




    + −    
 

− + + + +  

    − − + −     = −  
+ − + + +  

 = −

* * * *

1 1 5 5 2 1 5 5

*

4 3 6

( ) (1 ( )) ( ) ( ) (1 ( )) ( )

( ) ( ) ( )( )

t u t c S t t u t c S t

t a t t

  

   

    − − + −    
 

+ − +  

 (25) 

 

where, ( )i t 1,...,6i =  are transversality conditions with 

the control pair given by proposition 3.2?  

Proof 

Invoking the optimality results of (Hattaf and Yousfi, 

2018), we see that the transversality conditions and 

adjoint equations can be obtained as follows: 

 

( )i

i

d t L

dt






= −


,  

 

where, I = 1,…,6 
i

L






as depicted by Eq. (25). This implies 

that the transversality conditions are expressed by: 

 

1 1

2 2

1

3 3

2

4 4

5 5

6 6

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

f

f

f

f

f

A

f

L
t t t

S

L
t t t

I

L
t t t

I

L
t t t

T

L
t t t

T

L
t t t

A

 

 

 

 

 

 

  =− = 


  = − =
 



 = − = 


  = − =

 


  =− =
 


  = − =
 

  (26) 
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Then, from the definition of control set A and the optimal 

controls defined by proposition 3.2, if we substitute 

1*,*into the system (3), we obtain the target optimality 

system by compatibly combining Eq. (3) and (25) upon 

substituting Eq. (20) and (21) into Eq. (3); and Eq. (25) into 

Eq. (26). That is, the optimality system is derived as:  

 

( )

( ) ( )

( )

*
* * * * * * * *

0 1 1 1 1 2 2 2 3 3 4 4 5 5

*
* * * * * * * *1
1 1 1 1 2 2 2 3 3 4 4 5 5 1

*
* *2
1 1 2

(1 ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

(1 ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ),

A

A

dS
u t c I t c I t c T t c T t c A t S t S t

dt

dI
u t c I t c I t c T t c T t c A t S t I t

dt

dI
I t a I t

dt

d

      

       

  

= − − + + + + −

= − + + + + − + +

= − + +

( )

( )

( ) ( )

*
* * *

1 2 3 2

*
* *

2 3

*
* * * * *

1 2

( ) ( ) ( ),

( ) ( ),

( ) ( ) ( ) ( ) ( ),

A

A
A

A

T
a I t a T t a T t

dt

dT
a T t a T t

dt

dA
I t I t T t T t A t

dt

 

 

   

= + − + +

= − + +

= + + + − +

 

 
( ) * * * * * *

1 1 1 1 1 1 2 2 2 3 3 4 4 5 5( ) 1 ( ) (1 ( )) ( ) ( ) ( ) ( ) ( )At t u t c I t c I t c T t c T t c A t         = − − − + + + + −
   

 

( ) * * * * * *

2 1 1 1 1 2 2 2 3 3 4 4 5 5( ) (1 ( )) ( ) ( ) ( ) ( ) ( )At u t c I t c I t c T t c T t c A t      + − + + + +
   

 
* *

* * 1 1 1

2 1 1 1 1 2 3 6

(1 ( )) ( )
( ) 1 ( ) (1 ( )) ( ) ( ) ( ) ( )

( )

u t c S t
t t u t c S t t t t


     

  

  − 
  = − − − + + +    − + +     

 
* * * *

1 1 2 2 2 1 2 2

3
* *

3 1 4 1 6

( ) (1 ( )) ( ) ( ) (1 ( )) ( )
( ) 1

( )( ( )) ( ) ( ) ( )

t u t c S t t u t c S t
t

t a t t a t t

   


    

    − − + −     = −  
+ + + + +    

 
* * * *

1 1 3 3 2 1 3 3

4

4 2 5 2 6

( ) (1 ( )) ( ) ( ) (1 ( )) ( )
( ) 1

( )( ) ( ) ( )

t u t c S t t u t c S t
t

t a t a t

   


    

    − − + −     = −  
− + + + +    

 
* * * *

1 1 4 4 2 1 4 4

5
* *

4 3 5 3 6

( ) (1 ( )) ( ) ( ) (1 ( )) ( )
( ) 1

( ) ( ) ( )( ( )) ( )

t u t c S t t u t c S t
t

t a t t a t t

   


    

    − − + −     = −  
+ − + + +    

 
* * * *

1 1 5 5 2 1 5 5

6
*

4 3 6

( ) (1 ( )) ( ) ( ) (1 ( )) ( )
( ) 1

( ) ( ) ( )( )

t u t c S t t u t c S t
t

t a t t

   


   

    − − + −     = −  
+ − +    

 

1 1 1 2 2 2 3 3

1

4 4 5 5

1 1 1 2 2 2 3 3

2

4 4 5 5*

1 1

1

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) min max ,

A

A

c I t S t c I t S t c T t S t
t

c T t S t c A t S t

c I t S t c I t S t c T t S t
t

c T t S t c A t S t
u t x

W

  


 

  


 

 + + 
  

+ +  
 

+ +  −  
 + + =  
 
 
 


 

1, y

+  
  
  
  
  
     
   
   
   
   

   
   

    

 

 

( )*

2 3 2 4 2 5 2

2

1
( ) min max , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,A At x t I t t I t T t t T t y

W
   

+      
= −  + + −      

     

 (27) 

 

where, i(tf) = 0,I = 1,…,6 and S(0) = S0,I1(0) = I(1)0,I2(0) 

T(0) = T0,TA(0) = T(A)0, = I(2)0, A(0) = A0. 

Finally, we investigate the uniqueness of the 

optimality system for the possibly small-time interval. 

The Uniqueness of the Optimality System  

So far, we have established the existence of an optimal 

control pair and went further to develop the model 

optimality system strategy. We complete the optimality 

process by investigating the uniqueness of the optimality 

system for a possible small-time interval. Thus, the 

following theorem strengthened by the accompanying 

lemma 3.1 (without proof), provides the required result. 

Lemma 3.1 

Let * = (1*,*). Then, the function *(0) = (min 

(max (0, x, y))) is Lipchitz continuous in 0, where xy 

are some fixed positive constants.  

Theorem 3.4 

For the sufficiently small, bounded solutions to the 

optimality system are unique. 

Proof 

We invoke results from two optimal control models 

(Joshi, 2002; Suppose 
1 2 1 2 3 4 5 6( , , , , , , , , , , , )AS I I T T A      

1 2 1 2 3 4 5 6( , , , , , , , , , , , )AS I I T T A       e two different solutions of our 

optimality system (27). Now, let  > 0 be chosen such that 

the values of the solutions are obtained by setting: 

 

1 2

1 2 3 4 5 6

, , , , , ,

, , , , ,

t t t t t t

A

t t t t t t

S g e I g f I g c T g i T g j A g k

g m g p g q g r g s g t

     

          − − − − − −

= = = = = =

= = = = = =  
 
and: 

 

1 2

1 2 3 4 5 6

, , , , , ,

, , , , ,

t t t t t t

A

t t t t t t

S g e I g f I g c T g i T g j A g k

g m g p g q g r g s g t

     

          − − − − − −

= = = = = =

= = = = = = . 
 

Then, from Eq. (20) and (21) of proposition 3.2, if we 

substitute the above variables into the two different 

solutions, our optimal control pair is rewritten as: 

 

( )

1 1 2 2 3 3

4 4 5 5*

1 1 1

1 1 1 2 2 3 3

4 4 5 5

*

2

2

1
( ) min max , ,

1
( ) min max , ( ) ( )

t

t

t t t

c ef c ec c ei
g m

c ej c ek
u t x y

W c ef c ec c ei
g p

c ej c ek

t x g qf g r f j g sj
W





  

  

 

  

 



+   + + 
    
 + +     

=     
+ +     −      + +     

= − − + + 2, y

+      
      

       
 

and: 

 

1 1 2 2 3 3

4 4 5 5*

1 1 1

1 1 1 2 2 3 3

4 4 5 5

1
( ) min max , ,

t

t

c ef c ec c ei
g m

c ej c ek
u t x y

W c ef c ec c ei
g p

c ej c ek





  

 

  

 

+    + +    
    + +     

=     
 + +    

−        + +        
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( )*

2 2

2

1
( ) min max , ( ) ( ) ,t t tt x g qf g r f j g sj y

W

  

+       = − − + +     
       

 

Now, we substitute tS g e=  all corresponding terms 

into the first ODEs of (27) to get: 

 

( )

( )

*

0 1 1 1 2 2 3 3 4 4 5 5

*

1 1 1 2 2 3 3 4 4 5 5

*

1

*

1

(1 ( )) ,

(1 ( )) ,

( ) ,

( )

t t t t t t t

t t t t t t t

t t

t

e e u t c g f c g c c g i c g j c g k g e g e

f f u t c g f c g c c g i c g j c g k g e g f

c c g f a t g c

i i a t g c

      

      

 



       

        

   



  + = − − + + + + − 

  + = − + + + + − + + 

 + = − + +

 + = ( )

( )

( ) ( )

*

3 2

*

2 3

( ) ,

( ) ,

,

t t

t t

t t t

a t g j a g i

j j a g i a t g j

k k g f c j g i g k

 

 

  

 

  

    

+ − + +

 + = − + +

 + = + + + − +  
 

( ) *

1 1 1 2 2 3 3 4 4 5 51 (1 ( ))t t t t t tm m g m u t c g f c g c c g i c g j c g k             + = − − − + + + + −
   

 

( ) *

1 1 1 2 2 3 3 4 4 5 5(1 ( ))t t t t t tg p u t c g f c g c c g i c g j c g k          + − + + + +
   

 
*

* 1 1 1

1 1 1 1

(1 ( ))
1 ( ) (1 ( ))

( )

t

t t t tu t c g e
p p t u t c g e g p g q g t


   

    
  

  − 
  + = − − − + + +    − + +     

 
* *

1 2 2 1 2 2

* *

1 1

(1 ( )) (1 ( ))
1

( ( )) ( )

t t t t

t t t

g m u t c g e g p u t c g e
q q

g q a t g ra t g t

   

  

 


  

    − − + −     + = −  
+ + + + +    

 
* *

1 3 3 1 3 3

2 2

(1 ( )) (1 ( ))
1

( )

t t t t

t t t

g m u t c g e g p u t c g e
r r

g r a a g s g t

   

  

 


  

    − − + −     + = −  
− + + + +    

 
* *

1 4 4 1 4 4

* *

3 3

(1 ( )) (1 ( ))
1

( ) ( ( ))

t t t t

t t t

g m u t c g e g p u t c g e
s s

g ra t g s a t g t

   

  

 


  

    − − + −     + = −  
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Furthermore, we subtract the equations S  from S, I

from I, ……….., A  from A, 
1 from ,……..,

6  from 6 

and then multiply the result obtained by the appropriate 

difference of functions and integrate from t0 to tf. Finally, 

we sum the twelve integral equations and use the 

estimation approach to derive the uniqueness of the 

optimality system. Then, by lemma 3.1, we have: 
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where the constants i = 1,2 depends on the coefficients and 

the bounds on states and adjoint variables. Combining 

twelve of these estimates gives: 
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for all t0 = 0. Therefore, we can conclude from the above 

result that  
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where, 
1 2,  depends on the coefficients and bounds on e, 

f, c, i, j, k, m,….,s, t. For simplicity, we choose   such 

that 
1 2   + 1

2

1
ln

3
ft

 

 

 −
  

 
and, then

, , ,....., ,e e f f c c s s t t= = = = = . Hence, for a sufficiently 

small time, the solution is unique.  

 Therefore, it is optically clear from the above result 

that the uniqueness of the optimality system for the small-

time interval is a two-point boundary problem due to 

opposite time orientations, state equations, and adjoint 

equations, which are defined by initial and final time 

conditions. Moreso, the optimal controls 1*,*are 

characterized in terms of the unique solution of the 

optimality system. Again, from the epidemiological point 

of view, we deduce that if (W1+W2) for all (W1+W2)  

0 and 1

2

1
ln

3
ft

 

 

 −
  

 

, then infection is asymptotically 

stable, and if 1

2

1
ln

3
ft

 

 

 −
  

 

 for all (W1+W2), then 

global endemicity is eminent. Thus, the above optimal 

controls give the impact of an optimal treatment strategy 

for HIV/AIDS control dynamics under the scenario of 

therapy abuse. At this point, it is crucial to numerically 

investigate our theoretical predictions by simulating 
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several numerical examples. Thus, our next section is 

devoted to the system's numerical simulations and results. 

Numerical Simulations and Results 

In this section, we will attempt to verify per the study's 

set goal, the viability of our derived system theoretical 

predictions. That is, we resort to numerical simulations to 

illustrate the viability of our derived optimal control 

model and the optimality system equations, noting that the 

analytic approach becomes imperative due to the 

complexity of the derived optimality system. Moreso, our 

choice of 30 months as treatment time interval arises 

from the fact that chemotherapies have a certain 

designated allowable treatment time interval, noting that 

HIV can build resistance after a time frame (tstart - tfinal                 

2 years) due to its mutation ability resulting to potential 

hazardous side-effects, (Butler et al., 1997; Kirschner et al., 

1997; Fister et al., 1998). Remarkably, our entire 

simulations explore in-built rkfixed from Runge-Kutta of 

the order of precision 4 in a Mathcad surface, noting that 

initial adjoint variable i(t)  0, I = 1,….6. Also, it is 

important to note that for précised and coincide results, we 

shall dwell on the accuracy of our software for the design and 

calibrations of the system xy-coordinates, (Butler et al., 

1997; Fister et al., 1998; Naresh et al., 2006). 

For simplicity, the simulations shall entail an off-

treatment scenario (off-optimal technique) i.e., 10, 

= (a1+a3) = 0, using model (3), and when optimal 

treatment is administered i.e., 10, = (a1+a3) 0 for 

equation (27). Further insight into the application of the 

optimal technique is achieved with the simulation of 

the optimal control pair i.e., 1*(t)0,*(t)0.  

Notably, we conduct these tasks using generated data 

about data from our motivating model (Bassey and Atsu, 

2021), in addition to data on optimal control parameters. Thus, 

compatible data for the present study are depicted in Table 1. 

The entire simulations explore in-built rkfixed from 

Runge-Kutta of the order of precision 4 in a Mathcad 

surface, noting that initial adjoint variables ( ) 0i t  ,                 

i = 1,...,6. 

Simulation of System Basic Model (Without Control 

Functions) 

We recall that our goal is to investigate the impact of 

multi-treatment functions (condom use and ART) under 

therapy abuse. However, we simulate as leverage to the 

system-set goal, the system-derived optimal model Eq. (3) 

in a completely off-treatment scenario i.e., 1= 0, = 

(a1+a3) = 0. In reality, the essence of this simulation (as 

depicted by appendix A) is to allow us to ascertain the 

magnitude of HIV/AIDS infection transmission dynamics 

at off-treatment when compared to the accessibility of 

optimal control functions. 

Thus, invoking optimal model (3), for all 1 = 0, = (a1+a3) 

= 0, and (Table 1), we simulate the six subpopulation 

components as depicted by Fig. 2(a-f) below. 

Fig. 2(a-f) represents the dynamical flow of 

HIV/AIDS transmission with ART abuse and in particular 

under the off-treatment scenario. Notably, Fig. 2(a), 

which presents the susceptible population indicates an 

initial inclination with 0.5  S(t)  0.72 cell/mm3at tf 3 

months. This shows that despite the onset (asymptomatic 

stage) of virions transmission, the population experienced 

initial growth due to a steady inflow of population 

recruitment rate 0 (t)  0 and the initial response of the 

body's natural adaptive immune system, (Adams et al., 

2004). However, following the concentration of virions, its 

transmission proves to suppress the body's natural adaptive 

immune response resulting in sharp unstable decline, 

saddling at tf  10 months with S (t)  0.305 cell/mm3, 

(Glass et al., 2003). At 10 tf 30 months, the susceptible 

population exhibits symptomatic stability, following the 

introduction of screening mechanism and sustained 

recruitment rate, (Tripathi et al., 2007). The abysmal 

unstable decline in Fig. 2(a) is vindicated by the sharp 

undulating inclination rate of the unaware infected 

population (Fig. 2(b)) with 0.1I1(t) 0.948 cell/mm3at tf  

3months and then exhibiting saddle point at 3 tf 10 months. 

The introduction of a screening mechanism, which has a 

positive effect on the behavioral attitude of the population is 

seen to yield stability of the transmission of the virions with 

value I1(t)  0.89 cell/mm3for all 10 tf 30 months. 

Figure 2(c) represents the screened infective population that 

exhibited an initial sharp decline at 0 tf  3 months before 

becoming aware of their HIV status. This awareness yielded 

a significant behavioral attitude that resulted in early stability 

with value at I2(t) 0.007 for all 3 tf 30 months.  

From Fig. 2(d and e), we see the aware infectives that 

are on treatment compartments but have no access to 

treatment (i.e., off-treatment) exhibiting sequential near 

population extinctions leaving their varying population at 

0.1T(t) 0.58110-7for all 12 tf 30 and 0.1TA(t) 

1.25510-6 for all 16tf 30 months respectively. Finally, 

the depletion in the susceptible population and the increasing 

population of the unaware infectives is seen to transmute 

rapidly to full-blown AIDS as vindicated by Fig. 2(f) with a 

value at 0.1A(t) 1.483for all tf 30 months.  

Simulations of Model Optimality System (with 

Bilinear Control Functions) 

Having simulated the system basic model (3.3) for the 

off-treatment scenario with known results, it becomes 

paramount and in line with the study set goal, to simulate 

the modified model with control functions (condom use 

and ART) amidst drug abuse. Moreso, since the study is 

aimed at maximizing the concentration of the susceptible 

and those receiving treatment, then the system control 
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functions denoted by 1*(t) and *(t), where * (t) = 

(a1*(t)+a3*(t)) must be such that 1*(t)0 and *(t)0. 

Then, Eq. (3.17) is the required equation for simulation. 

Of note, we solve our optimality system using an iterative 

method with Runge-Kutta of the order of precision 4 in a 

Mathcad surface. That is, since the optimality system is a 

complicated problem, we solve the state system with initial 

conditions forward in time and then, the adjoint variables 

backward in time with the terminal conditions (i.e., two-point 

boundary value problem). Moreso, we note that by 

propositions 3.1 and 3.2, the toxicity of control functions are 

clinically observed under optimal weight factors: W1 = 

25000, W2 = 250 with drug efficacy bounded by x1 = 0, x2 = 

0.2, y1 = 0.4 and y2 = 0.9. Also, it is important to note that due 

to the variation in the control functions, the upper bound y1 

for 1 is much smaller than the upper bound y2 for , which 

is then balanced by the corresponding Wi=1,2 in the objective 

function. Hence, the results of the computations for the 

state variables and the adjoint system are represented 

in Fig. 3(a-f) and 4(a-f) below. 

The graphic images of the co-states are seen below. 

From the above simulations, Fig. 3(a-f) represents the 

general dynamical flow for HIV/AIDS with ART abuse in a 

situation where control functions (1*(t),*(t)) are clinically 

accessible. Specifically, Fig. 3(a) depicts the initial rapid 

maximal concentration of the susceptible population 

following coherent onset administration of control functions. 

Here, the susceptibility increases in the range of 0.5 S(t) 

6.056 cell/mm3 at tf 16 months. The concentration of the 

susceptible population exhibits some level of declination in 

the interval 16 tf  21months and then inclines towards S(t) 

3.01 cell/mm3 S(t) 3.01 cell/mm3for all 21 tf 30 months. 

The unaware infectives affirm the trend of the outcome of 

Fig. 4(a). That is, from Fig. 3(b), the unaware infectives 

subpopulation declined rapidly to I1(t)  0.047 cell/mm3 from 

I1(t)  0.1 cell/mm3 for all tf 10 months but thereafter 

exhibited undulating re-emergence with the declining trend 

of I1(t)  0.55 cell/mm3 at 22 tf 30 months.  

In Fig. 3(c), we investigate the dynamical behavior of 

the aware infectives but not ready to receive treatment. 

We observe an initial decline with a value at 0.1 12(t)  

3.19510-3, which could be attributed to the asymptomatic 

stage of infection and further align with the initial immune 

response. Since this compartment is not ready for 

accessing of treatment, the resurgence of infection 

concentration to 0.05  I2(t) 0.08 at 10 tf  30 months 

is observed. On the other hand, under coherent control 

functions, the compartment designated to the accessibility 

of treatment as in Fig. 3(d), clearly exhibited rapid steady 

decline following onset medication with a value range of 

0.1 T(t)  6.71410-3 cell/mm-3 for all tf  16 months. 

This same compartment however indicates a later increase 

to T(t)  0.04 at tf  27 months and thereafter declined 

sharply for all tf 27 months. Illustrating the dynamical 

flow of ART abuse in a scenario where control functions 

are accessible, the compartment represented by Fig. 3(e) 

exhibits initial tremendous recovery with an initial 

declining population range of 0.1 TA(t) 3.71810-3 for 

tf 16 months. This shows the presence and adherence to 

initial control protocols. The sudden surge in the number 

of infective to the value of 3.718  TA(t)  0.024 for 20 

 tf  27 months suggest truncation of ART and 

consequently, the abuse of ART. The TA(t) compartment 

declines thereafter, showing treatment resumption 

towards a later interval of 27tf 30 months. 

On full-blown AIDS compartment, the simulation as 

depicted by Fig. 3(f) indicates steady efficacy of the 

control measures sustaining its initial value of A(t)  0.1 

through a time interval of tf 12months, only to resurge to 

a value of 2154 cell/mm-3 at tf25 months. This sudden 

resurgence is attributed to the possible overflow arising 

from ART abuse. Finally, Fig. 4(a-f) depicts the co-state 

variables used for the determination of the model adjoint 

system. This adjoint system represents the backward 

effect of the optimal state variables. Most notable, are the 

variations of the adjoint variables '2(t) 4.8, '3 (t)  3.5, 

which in the controlled case are very large, indicating a 

high degree of sensitivity of the performance index Q 

(u1,) to the dynamic flow in I1(t) and I2(t). Thus Fig. 4(a-f) 

depicts the overall contributions (or impact) of the adjoint 

system on the optimality system.  

Simulations of System Control Functions 

To quantifiably illustrate the impact of varying treatment 

functions at varying stages of model investigations, we 

simulate in this section, the onset-treatment functions when 

the basic model was not transformed into an optimal control 

problem and when the control functions were derived as an 

optimal control pair. This procedure avails us with both 

biological and mathematical importance in terms of the 

applied optimal control theory. Thus, from the model (3.3), 

we simulate the applied control functions, using (Table 1) 

and letting 1 = 0.5, = (a1+a2) = (0.45+0.14) = 0.59 against 

time for all t[t0, tf] = [0,30]. For the optimal control pair 

1*(t),*(t), we use the results given by Eq. (20) and (21). 

The computations are depicted in Fig. 5 (a-d) below. 

From Fig. 5(a-d), we observe somewhat intriguing 

linear curves representing pair dual characteristics of the 

dynamics and impact of designated control functions for 

our system basic model under onset-treatment (without 

optimal implication) and when the model was 

transformed to an optimal control problem. Specifically, 

with the weight factor and its lower and upper bounds set 

to zeros (W1 = 0, X1 = 0, Y1 = 0), Fig. 5(a) depicts the 

dynamical increase in the proportion of condom use with 

a value ranging at 0.5  1(t)  15.5 for all tf  30 months. 

Under similar conditions and W2 = 0, X2 = 0, Y2 = 0, the 

application of therapy with a penchant for abuse of drugs 
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indicates that the proportion of ART used is in the range 

of 0.59  (t)  18.29 through tf  30 months-see Fig. 5(b). 

Furthermore, the application of optimal treatment 

under the optimality system is depicted in Fig. 5(c and d), 

where for both figures, the optimal weight factors and 

their lower and upper bounds are not zeros (i.e., W 0, xi 

0, yi 0 for all i = 1,2). Here, Fig. 5(c) shows a relatively 

low proportion of condom use with a range value at 0.5 

1*(t) 3.5, when compared with that of Fig. 5(a). On the 

other hand, the amount of ART required under the optimal 

control approach as described by Fig. 5(d) is in the range 

of 0.59  *(t) 6.95. The implication is that, with the 

application of optimality control theory guided by clinical 

conditions, less amount of control functions is required when 

compared to a treatment schedule without optimal 

conditions. Moreso, the criteria for minimal systemic cost is 

satisfied for all t[t0, tf] defined. Thus, we devote the next 

section to the in-depth analysis of our established results. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 

 
(f) 

 

Fig. 2: (a-f) Schematic representation of off-treatment of 

HIV/AIDS dynamics under ART abuse scenario; (a) 

Dynamics of the susceptible population under off-treatment; 

(b) Dynamics of unaware infective under off-treatment; 

(c) Dynamics of aware infective not ready for treatment 

under off-treatment; (d) Dynamics of aware infective on 

treatment under off-treatment 10.02d −= ; (e) Dynamics 

of aware infective with ART abuse under off-treatment
10.02d −= ; (f) Dynamics of full-blown AIDS infection 

under off-treatment 
3 10.3mm d −=  
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(d) 

 
(e) 

 

 
(f) 

 

Fig. 3: (a-f) epidemiological representation of an   optimality 

system of HIV/AIDS infection  dynamics under ART 

abuse; (a) Dynamics of the susceptible population under 

control function with 3 1

0 0.5mm d −= ; (b) Dynamics of 

unaware infective under control function with 
3 1 1

1 0.32mm vir d − −= ; (c) Dynamics of aware infective not 

ready for treatment under control functions scenario,;(d) 

Dynamics of aware infective on treatment under control 

functions scenario, 3 1 1

3 0.175mm vir d − −= ; (e) Dynamics of 

aware infective with ART abuse under control functions, 
3 1 1

4 0.125mm vir d − −= ; (f) Dynamics of full-blown AIDS 

infection under control   functions, 3 1 1

5 0.05mm vir d − −=  

 

 
(a) 
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(d) 
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(f) 

 

Fig. 4: (a-f) adjoint variables 
1,...,6 ( )i t =

 of the optimality system 

(3.17) under ART abuse;(a) Co-state    for the susceptible 

population under control functions,  * *

1 ( ) 0, 0u t   ;(b) Co-

state    for unaware infective under control functions, 
* *

1 ( ) 0, 0u t   ;(c) Co-state    for aware infective not ready 

for treatment with * *

1 ( ) 0, 0u t   ;(d) Co-state for aware 

infective on treatment with * *

1 ( ) 0, 0u t    ;(e) Co-state    for 

aware infective with ART abuse, * *

1 ( ) 0, 0u t   ;(f) Co-state  

2( )t  for full-blown AIDS infection, * *

1 ( ) 0, 0u t    

 
Table 1:  Variables, parameters, and their values for model (3) 

Variables Dependent state variables description Initial values Units 

S(t) Susceptible population 0.5 

I1 (t) Unaware infectives 0.1 

I2(t) Aware infectives but not receiving treatment 0.1 

T(t) Aware infectives receiving treatment 0.1 cell/mm3 

TA(t) Aware infectives under ART abuse 0.1 

A(t) Full-blown AIDS population 0.1 mm3d-1 

 Parameters and Constants Description 

0
 Recruitment rate (population source) 0.5 mm3d-1 

1,...,5i =  Probability of interaction by susceptible with various infectives 0.32; 0.27; 0.175: mm3 vir-1 d-1 

ci = 1, ….,5  0.125; 0.05 

  0.2; 0.1 

 = (1-1) Sexual contact by susceptible with various infectives 0.5; 0.4; 0.3; 


 Successful condom use 1 [0,1]u 

 day-1 

 Rate at which the unaware becomes aware 0.04 
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Table 1: Continue 

  Progression rate of aware infective to AIDS 0.028 

 
3 1mm d −

 

 Rate at which infectives develop AIDS 0.500 day-1  

 Natural death rate 0.002 
1day−

 

 AIDS induces a death rate of 0.300 
3 1mm d −

 

1a
 Rate of ART received by 

( )T t
 0.450 

2a
 Rate of abuse of ART by 

( )AT t
 0.370 day-1 

3a
 Resumption rate of ART by 

( )AT t
 0.140 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
Fig. 5: (a-d) simulations of system control functions for onset-

treatment 1( ), ( )u t t  and optimal control pair * *

1 ( ), ( )u t t ;(a) 

Onset-treatment control functions, 
1( ) 0u t   with

1 20, 0W W= = ;(b) Onset-treatment control function ( ) 0t   

with 1 20, 0W W= = ;(c) Optimal control pair *

1 ( ) 0u t    with

1 25000W = ;(d) Optimal control pair *( )t  with 2 250W =  

 

Results and Discussion 

Here, we bring to bear both the mathematical and 
epidemiological implications of our formulated model 
concerning the material and methods adopted in section 
three, as well as the results of numerical illustrations of 
section four. Moreso, in an attempt to significantly rate 
the present study, we shall draw some comparison of the 
present investigation with the scientific findings of most 
notable and compatible studies as well as with results 
from our motivating model. 

Discussion 

This present study has considered the extended version 

of the model by Bassey and Atsu (2021), following the 

redefinition and transformation of the derived basic model 

to an optimal control problem. The investigation was 

formulated as 6-Dimensional deterministic differential 

dynamic equations to investigate the application of 

optimal control techniques as a powerful tool for studying 
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the role of ART abuse on the control and treatment 

dynamics of HIV/AIDS infection. The present research 

adopted as control measures, a bilinear control functions 

in the range of condom use and ART amidst ART abuse. 

That is, the present study sought to determine the optimal 

control treatment strategies that aimed at maximizing not 

only the susceptible population but also, to maximize the 

concentration index of the aware infective under the 

coherent application of designated control functions, 

while reducing the rate of drug abuse. Of note, the main 

objective of the study was to access the capability of 

optimal control techniques in analyzing the role of ART 

abuse in the treatment dynamics of the HIV/AIDS epidemic. 

Moreso, in addition to the assumptions of the system 

motivating model, the main assumptions of the present 

study are defined by the control functions 1*(t)  0 

and *(t) 0 as functions of time variation and having 

an antiviral effect on disease viral load production.  

The material and methods adopted in this study involved 

bilinear control functions (condom use and ART) in limiting 

the spread of the HIV/AIDS viral load epidemic. Study 

analysis is based on compartmental state variables 

constituted by the susceptible -unaware infectives-aware 

infectives, not on treatment-aware infectives on treatment 

schedules-aware infectives with ART abuse-full-blown 

AIDS population. Essentially, the basic model was first 

transformed into an optimal control problem, and optimal 

characterization was investigated by the use of the 

fundamental theory of differential functions. Incorporating 

the method of the Hessian matrix into classical 

Pontryagin's maximum principle, the study investigated 

the existence of an optimal control pair, derived the model 

optimality system, and established the uniqueness of the 

optimality system of solutions.  

Daunted by the task of accessing the prowess of 

optimal control technique in the maximization of 

predominant variables, several numerical simulations 

were performed. First, the simulation was considered for 

an off-treatment (off-optimal) scenario, where infectives 

and full-blown AIDS populations inclined to an alarming 

proportion as evidenced by the near population extinction 

of the susceptible. An investigation that conformed to 

those of (Landi et al., 2008) for an untreated HIV 

infection transmission dynamic. Notably, the severity of 

virions spread as indicated by the aware infectives with ART 

abuse under off-treatment was rapid and high, reducing the 

population to near zero with 0.1 TA(t)1.255  10-6 

cell/mm3 when compared to the similar compartment under 

optimal control functions, where infected population under 

ART abuse was sustained at 0.1 TA(t)  3.718  10-3 

cell/mm3. That is, under off-treatment (off-optimal), we 

observed near population extinction for TA(t), which 

indicates the decline in the susceptible population with the 

value of 0.5 S (t)  cell/mm3. 

Clearly, following the transformation and derivation 

of the study optimality system, far-reaching significant 

results were established as depicted by Fig. 4(a-e) with 

corresponding adverse impact (adjoint variables) 

represented by Fig. 5(a-e) respectively. Of note, unlike the 

simulation of off-treatment (without optimal approach), 

which indicated a maximal decline of the uninfected 

proportion of 0.5  S(t) 0.35 cell/mm3, the maximization 

of the susceptible population under optimal control 

technique exhibited somewhat tremendous inclination 

with a maximal range of 0.5 S(t)  6.056 cell/mm3 for all 

tf 30 months see Fig. 4(a). The increase in susceptible 

population under optimal control technique is by far an 

improvement to the outcome of onset treatment under 

global stability conditions, (Bassey and Atsu, 2021). 

In Fig. 4(b), the number of unaware infectives at final 

time tf  3 months declined to I1(t) 0.0047 cell/mm3 as 

against unaware infectives incline rate of I1(t)               

0.948 cell/mm3 under off-treatment. Notably, under 

optimal control technique, the low rate of unaware 

infectives was by far an improved outcome when 

compared to the infection rate of I1 (t) 0.1096 for tf 3 

months from the study. Moreso, the dynamical flow for 

aware infectives with ART abuse from the optimal control 

technique significantly presented an improved rate of 

survival with TA(t)3.71810-3 cell/mm3 when compared 

to similar compartment simulated under off-treatment 

(without optimal protocol) with ART abuse, which 

exhibited near extinction rate with TA (t)0.255  10-6 

cell/mm3 for all tf 30 months. Thus, the implication from 

the present investigation was that optimal drug treatment 

protocol has a very desirable effect by increasing the 

index value of healthy CD4+ T cells of the susceptible 

population. Furthermore, it is observed that the undulating 

rebounds of infection as exhibited by aware infectives on 

ART treatment can be attributed to the interruption in the 

ART schedule. On the other hand, the compartment under 

coherent control functions, with a maximal value range of 

T (t) 6.714  10-3 affirmed the later resumption of 

coherent treatment by the aware infectives with initial 

ART abuse. Moreso, the terminal gradual surge in the 

proportion of full-blown AIDS to A (t)  2.154 cell/mm3 

suggested possible re-emergence in truncation of ART. In 

this case, this outcome intuitively affirmed the varying 

slight infection inclination at both TA(t) and T(t) 

compartments.  

Thus, the present results about the motivating model 

by Bassey and Atsu (2021), have shown that its control 

does behave somewhat differently from drug control 

systems not explicitly modeling ART abuse in the 

presence of optimal control strategy. Moreso, accounting 

for control function severities as was the case by 

(Culshaw et al., 2004), where the control functions 

exhibited an initial decrease soon after initiation of 
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treatment, then rose to applicable stable value and finally 

drop rapidly near terminal time interval. A dynamic that 

was attributed to actions of immune response and off-

treatment schedule. Importantly, from the present study, 

it is observed that control functions, which are a function 

of continuous treatment schedules, exhibited somewhat 

smooth linear inclined curves, typical of optimal 

dynamics. That is, our optimal treatment is a continuous 

time definite scheme, which justified the attained 

maximization of the susceptible index value.  

Conclusion  

This present investigation has been triggered by the 

limiting results and incisive recommendation (application 

of optimal control strategy) from the study motivating 

model, following the unaccounted consequential role of 

ART abuse in the transmission and treatment of the 

HIV/AIDS epidemic. That is, the present research sought 

and formulated an optimal control problem to access 

dynamics of the mathematical modeling of the role of 

ART abuse for the treatment of the HIV/AIDS epidemic 

using optimal control techniques. Giving an insight into 

the investigation, a 6-dimensional deterministic non-

linear mathematical model was derived and transformed 

into an optimal control problem. Fundamentally, the 

investigation first determined the system state space and 

its optimal characterization. Classical numerical methods 

based on optimal control strategy were explored for the 

derivation and analysis of the system's theoretical and 

analytical predictions. Furthermore, the system's optimal 

control pair was determined and the existence of optimal 

control pair was established using optimal criteria in 

conjunction with the Hessian matrix method. Analytical 

predictions for the model optimality system and the 

uniqueness of the solution using classical Pontryagin's 

maximum principle were conducted. Numerical validity for 

system analytical predictions for both off-optimal and onset-

optimal controls was conducted and results were obtained.  

Results of numerical simulations indicated that for 

the off-treatment scenario, there exists a rapid spread 

of infection leading to the near extinction of the 

susceptible population. Moreso, following the 

introduction of optimal control techniques sequel to 

optimal control treatment protocols under ART abuse, 

the study revealed highly tremendous maximization of 

the susceptible population with a value range of 0.5  

S(t) 6.056 cell/mm3 through tf  16months and later 

exhibited an undulating optimal value of S(t) 3.01 

cell/mm3 through 16  tf  30months. This later decline 

is a function of Therapy (ART) abuse. Conspicuously, 

these results do not only demonstrate the role of ART 

abuse but by far, depicted an improved outcome when 

compared to the global stability analysis of the system 

motivating model, where the outcome of the onset-

treatment schedule (without optimal control technique) 

yields a less maximal value of 0.5 S(t)  1.203 cell/mm3 

at tf 3 months. Remarkably, the present investigation 

does behave somewhat differently from drugs used to 

control systems not explicitly modeling ART abuse and 

not analyzing using optimal control techniques as was 

the case in (Culshaw et al., 2004). Therefore, this 

research overwhelmingly portrays the significance of 

optimal control techniques for the control dynamics of 

HIV/AIDS infection under a therapy abuse scenario. 

Nonetheless, the incorporation of the contributive role of 

the adaptive immune response, time delay immunity lag, and 

the immeasurable effect of counseling under the presence of 

drug abuse in future advances is highly anticipated.  
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